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Abstract

Motivation: Access to unprecedented amounts of quantitative biological data allows us to build and test biochem-
ically accurate reaction–diffusion models of intracellular processes. However, any increase in model complexity
increases the number of unknown parameters and, thus, the computational cost of model analysis. To efficiently
characterize the behavior and robustness of models with many unknown parameters remains, therefore, a key chal-
lenge in systems biology.

Results: We propose a novel computational framework for efficient high-dimensional parameter space characteriza-
tion of reaction–diffusion models in systems biology. The method leverages the Lp-Adaptation algorithm, an
adaptive-proposal statistical method for approximate design centering and robustness estimation. Our approach is
based on an oracle function, which predicts for any given point in parameter space whether the model fulfills given
specifications. We propose specific oracles to efficiently predict four characteristics of Turing-type reaction–diffusion
models: bistability, instability, capability of spontaneous pattern formation and capability of pattern maintenance.
We benchmark the method and demonstrate that it enables global exploration of a model’s ability to undergo
pattern-forming instabilities and to quantify robustness for model selection in polynomial time with dimensionality.
We present an application of the framework to pattern formation on the endosomal membrane by the small GTPase
Rab5 and its effectors, and we propose molecular mechanisms underlying this system.

Availability and implementation: Our code is implemented in MATLAB and is available as open source under
https://git.mpi-cbg.de/mosaic/software/black-box-optimization/rd-parameter-space-screening.

Contact: sbalzarini@mpi-cbg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In systems biology, mathematical models provide a framework to
connect experimental observations with theory. This enables add-
itional insights into the underlying biological mechanisms and
allows comparing alternative molecular hypotheses. Besides offering
a compact representation of data and of biological mechanisms,
mathematical models allow us to explore how system behavior
depends on experimentally non-controllable parameters, and how it
varies over experimentally non-accessible time scales. Therefore,
models provide a context in which data can be mechanistically inter-
preted and the function of biological systems dissected (Liepe et al.,
2014; Sbalzarini, 2013).

Models in biology, however, usually include unknown parame-
ters. The more molecular interactions are included in a model, the
higher the dimensionality of its parameter space. Although data
from the literature or independent measurements can be used to esti-
mate some of the parameters, and therefore, to reduce the dimen-
sionality of the parameter space, substantial uncertainty often
remains about several parameters or about the precise values of

estimated parameters. This constitutes a major challenge for the
characterization of the behavior and robustness of biological sys-
tems. The difficulty of model characterization increases exponential-
ly with the dimensionality of the model’s parameter space.

For biochemical reaction–diffusion models, the dimensionality
of the parameter space depends on the chemical reaction network
topology of the considered molecules and on the type of interactions
assumed between them. Typical questions addressed using such
models are: ‘Are there any parameter values compatible with the
generation of Turing patterns?’, ‘How large is the portion of param-
eter space in which the model fits given data?’, ‘Which model
parameters are correlated?’ or ‘Which model parameters are most
important for the pattern-forming capacity of the model?’. For low-
dimensional parameter spaces (typically less than five-dimensional),
these questions can be addressed by brute-force sampling (Barkai
and Leibler, 1997). While this is easy to implement, it quickly
becomes infeasible in higher-dimensional parameter spaces.

Exploring models with higher-dimensional parameter spaces,
however, is important in systems biology. For example, it has been
shown that models including three or more molecular species
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(parameter space dimensionality>5) have different pattern-
formation requirements and reveal novel biological network designs
(Haas and Goldstein, 2021; May, 1972; Satnoianu et al., 2000).
However, due to the computational complexity of identifying and
characterizing such models, extending biochemical reaction–diffu-
sion models to more realistic network topologies has been challeng-
ing. These challenges have been addressed in glocal methods, which
combine the global and local search for analyzing high-dimensional
parameter spaces (Hafner et al., 2009; Zamora-Sillero et al., 2011).
Notwithstanding their importance and success, glocal methods re-
main limited by their exponential algorithmic complexity with
parameter-space dimensionality and by their inability to explore
non-convex regions in parameter space. Moreover, glocal methods
rely on a continuous cost function, which is appropriate only when
one is able to define a scale for the response of a model, such as a
frequency of oscillations.

Here, we propose a computational framework to globally ex-
plore potentially non-convex parameter spaces of reaction–diffusion
models in polynomial time and without having to define a cost func-
tion. Our method leverages Lp-Adaptation, an adaptive statistical
method for design centering and volume estimation in high-
dimensional spaces (Asmus et al., 2017). Instead of a continuous
cost function, Lp-Adaptation uses binary oracles. We propose four
specific oracles that capture the main characteristics of pattern-
forming reaction–diffusion models: bistability, instability, pattern
formation and pattern maintenance (Trong et al., 2014). The result-
ing algorithm is capable of exploring these characteristics in param-
eter spaces of arbitrary shape: connected or disconnected and
convex or non-convex. Moreover, we empirically show in bench-
marks that the computational cost required to do so scales polyno-
mially with the dimension of the parameter space.

In the remainder of this article, we present in detail our frame-
work for the efficient characterization of high-dimensional param-
eter spaces of reaction–diffusion models. The strength of the
proposed framework lies in its ability to explore pattern-forming
instabilities of models in polynomial time with the dimensionality.
We validate the proposed oracle functions on the example of the
partitioning-defective proteins (PAR) polarity system (Trong et al.,
2014) and provide an estimate for the computational complexity of
the algorithm using synthetic data. This article concludes with a
demonstration of the framework on the real-world problem of mem-
brane pattern formation by the small GTPase Rab5, where we com-
pare three hypotheses that potentially explain the molecular
mechanism that drives domain formation on early endosomes.

2 Materials and methods

We briefly review the main concepts of the Lp-Adaptation algorithm
(Asmus et al., 2017) and then present the proposed oracles for
pattern-forming reaction–diffusion models. Finally, we present the
overall workflow of our framework and explain its use in model
selection.

2.1 Lp-Adaptation for high-dimensional design center-

ing and volume estimation
Lp-Adaptation is a versatile statistical method for design centering
and volume estimation (Asmus et al., 2017). It allows identifying the
most robust parameter set, the design center, which enables a model
to fulfill certain function under the largest possible perturbations. In
addition, Lp-Adaptation estimates the shape and the volume of the
portion of parameter space in which the model does so, the feasible
region. It therefore enables model selection based on the robustness
and quantification of parameter correlations.

Lp-Adaptation is an iterative algorithm that is inspired by
Gaussian Adaptation (Kjellström and Taxén, 1981; Müller and
Sbalzarini, 2011) and by the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) (Hansen and Ostermeier, 1996). The
important difference is that Lp-Adaptation does not use Gaussian

proposals, but sampling is done uniformly from Lp-balls. Similarly
to CMA-ES, however, Lp-Adaptation uses an adaptive multi-sample
strategy (Hansen, 2008), which is state-of-the-art in bio-inspired op-
timization (Hansen and Ostermeier, 2001).

In each iteration, Lp-Adaptation draws samples uniformly from
an n-dimensional Lp-ball of radius r>0:

Ln
pðrÞ ¼ fx 2 R

n : jjxjjp � rg; (1)

where jjxjjp is the p-norm of the vector x ¼ ðx1; . . . ;xnÞ 2 R
n:

jjxjjp ¼
Xn

i¼1

jxijp
 !1=p

: (2)

Every such sample represents one point in the parameter space of
the model, i.e. one specific set of values for the unknown model
parameters.

For every sampled parameter vector, a binary function called an
oracle is evaluated, which tests for the conditions, or specifications,
that one wishes the model to fulfill. Based on the binary results of
the oracle for every sampled parameter set, the position, orientation
and aspect ratio of the Lp-ball are adapted. For efficient design cen-
tering and volume approximation, this adaptation of the Lp-ball
proposal distribution is combined with an adaptive schedule for
changing the target hitting probability of the sampler, which is the
desired probability for a randomly drawn point from the proposal
to be feasible (i.e. to satisfy the oracle).

This is repeated iteratively until the chain of samples has reached
stationarity (according to a statistical test), where averaging over
samples becomes meaningful. The hallmark of a stationary state is
that the statistics of the proposal distribution, such as mean volume
and hitting probability, no longer change on average. The n-dimen-
sional volume volðAÞ of the feasible region A is then approximated
as:

volðAÞ � Vest ¼ P � volðLn
pðrÞÞ; (3)

where P is the empirical hitting probability (averaged over iterations
at stationarity) and

volðLn
pðrÞÞ ¼

ð2r � Cð1þ 1=pÞÞn

Cð1þ n=pÞ (4)

is the exact analytical volume of the n-dimensional Lp-ball with ra-
dius r, where

CðzÞ ¼
ð1

0

tz�1e�t dt (5)

is the Gamma function.
An important advantage of Lp-Adaptation is that it is effectively

parameter free. All parameters required for the computation have
default settings that need to be changed only in exceptional cases
(Asmus et al., 2017). In all our computations below, we always use
the default parameter settings in conjunction with L2-balls, which
have been suggested to be a good choice when no prior knowledge
about the shape of the feasible region is available (Asmus et al.,
2017). We also use a decreasing schedule for the target hitting prob-
ability, which leads to better volume approximation as recom-
mended by Asmus et al. (2017).

2.2 Oracles for reaction–diffusion models
Lp-Adaptation is based on an implicit definition of the feasible re-
gion through a binary oracle. An oracle f is a black-box function
(i.e. point-wise computable but not necessarily known in closed
form) that performs the computations required to determine if a
given parameter vector x 2 R

n lies within the feasible region, i.e.
leads to the model fulfilling the specifications. Given an oracle func-
tion f ðxÞ that returns 1 iff x 2 A and 0 otherwise, the n-dimensional
volume of the feasible region A can be defined as:
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volðAÞ ¼
ð

. . .

ð
X

f ðx1; x2; . . . ;xnÞ dx1dx2 . . . dxn: (6)

We propose four oracles that allow to efficiently test for different
parameter space characteristics of reaction–diffusion models: bist-
ability, instability, pattern formation and pattern maintenance.

2.2.1 Bistability

The bistability oracle tests whether a parameter vector lies within a
region of homogeneous bistability. To determine this, we find stable
states of the non-spatial (i.e. reactions only) part of the model by nu-
merically solving the corresponding system of ordinary differential
equations (ODEs). The system is solved until time t¼1000 in non-
dimensionalized characteristic time units using the MATLAB ODE
solver ode15s. To account for the possibility of multiple stable
steady states, similar to Scholes et al. (2019), we generate a grid of
initial conditions with three concentrations per species within a
defined interval of biologically relevant concentrations.

The endpoints of the simulated concentration trajectories are
clustered using k-means clustering. The cluster centers are further
validated to be steady-state concentrations when used as initial con-
centrations for the original system of ODEs. The system is then
solved a second time until t¼2000. The resulting steady-state con-
centration vectors are then tested for stability using linear stability
analysis. The oracle returns 1 iff the number of homogeneous stable
steady states is larger than one.

2.2.2 Instability

The instability oracle tests whether a parameter vector lies within an
instability region of the model’s parameter space. For this, every
homogeneous stable steady state identified as described above is
tested for its response to small non-uniform perturbations. The or-
acle returns 1 iff there exists at least one homogeneous steady state
that is stable with respect to uniform perturbation and unstable with
respect to non-uniform perturbation.

2.2.3 Pattern formation

The pattern formation oracle simulates the full partial differential
equation (PDE) model to test whether a spatial pattern forms for a
given parameter vector. Pattern formation implies the emergence of
stable spatial structures from homogeneous initial conditions, which
are taken to be the (possibly multiple) solutions of the corresponding
system of ODEs. To mimic molecular noise, and to trigger potential
pattern-forming instabilities, we add 1% Gaussian noise to each ini-
tial condition. The simulations are performed in a 1D spatial do-
main with periodic boundary conditions. The diffusion operator is
discretized using second-order central differences, and time is
evolved using the explicit Runge–Kutta scheme of order 4. The time
step dt is automatically defined from the Courant-Friedrichs-Lewy
(CFL) condition of the PDE. We run the simulation until conver-
gence of the solution to a steady state, or until 3000 time steps,
whatever comes first. Convergence is defined by an absolute toler-
ance �:

kðsðx; tÞ � sðx; t þ 1Þk2 < �; (7)

where s(x, t) is the concentration of a molecular species at location x
and time t. At the end of a simulation, we test whether the steady
state of any species is an inhomogeneous pattern, by checking if the
diffusion term DDs is larger than a threshold d. In this work, we fix
� ¼ 10�6 and d ¼ 10�2 (Lo et al., 2012). The oracle returns 1 iff
Equation (7) holds and DDs > d for any species s in any of the simu-
lations (for multiple initial conditions).

2.2.4 Pattern maintenance

The pattern maintenance oracle tests whether a model preserves or
maintains a pre-patterned state for a given parameter vector, or
whether it requires a finite perturbation to undergo pattern forma-
tion. Unlike the previous two oracles, which study the behavior of a
model with respect to infinitesimal perturbations, the pattern

maintenance oracle explores the response of a model to a finite per-
turbation. This oracle calls the pattern formation oracle with an ini-
tial condition containing a pre-patterned concentration field,
introducing a finite initial perturbation, for example, with a single
Gaussian peak

Sðx; t0Þ ¼
S0

r
ffiffiffiffiffiffi
2p
p exp � x2

2r2

� �
; (8)

where r specifies the width of the peak and S0 its amplitude. The ini-
tial perturbation is typically chosen to recapitulate empirically
observed peaks in images. The oracle returns 1 iff the pattern forma-
tion oracle returns 1 for this finite initial perturbation.

2.3 Workflow
To start the analysis, Lp-Adaptation requires two inputs: (i) an or-
acle f that checks if any given point in the parameter space X fulfills
the specifications and (ii) a feasible starting point x0 2 A � X. For
the application considered here, we also require bounds of the par-
ameter space, which can be large, but finite.

To identify a feasible starting point for Lp-Adaptation, we first
sample a random point x 2 X and check its feasibility by evaluating
the oracle f ðxÞ. If the point is feasible (i.e. f ðxÞ ¼ 1), we use it to
start Lp-Adaptation. If the point is not feasible, which happens in
most cases, the oracle f is negated to f �, such that non-feasible points
of f are feasible for f �, i.e. f ðxÞ ¼ 0() f �ðxÞ ¼ 1. This enables
using the randomly sampled point x as a starting point for Lp-
Adaptation over the negated oracle f � and estimate the volume V�est

of the negated feasible region. If V�est is comparable to (as defined in
Equation (10)) the total volume of the parameter space VX, which
can easily be computed since X is a hypercube, then the model is glo-
bally incapable of fulfilling the specifications encoded in f, and
therefore, Vest ¼ 0. If V�est is smaller than the total volume of the par-
ameter space VX, a non-feasible points of f � will at some point be
sampled. As soon as that happens, Lp-Adaptation over f � is aborted
and that point is used as a feasible point to start Lp-Adaptation over
f and compute the volume estimate Vest of the feasible region A. A
schematic representation of this workflow is shown in Figure 1.

We always perform 5–10 runs of Lp-Adaptation, starting from
different initial feasible points. If the feasible region is disconnected
or highly non-convex, these runs will explore different parts of the
feasible region. To get good volume approximation, we set the tar-
get hitting probability to decrease over time, according to the sched-
ule described by Asmus et al. (2017). If the volume estimates vary
significantly between runs, the mean or the maximum across all
runs is used for model selection.

2.4 Model selection
High-dimensional parameter space exploration is closely linked to
model robustness estimation. The robustness of a system to a specif-
ic class of perturbations can be defined as the ability of the system to
perform its function under these perturbations (Stelling et al., 2004).
It has been shown that the robustness of a model is associated with
the volume of its feasible region (Dayarian et al., 2009): a small feas-
ible region requires fine-tuning of the parameter values, while a
large feasible region implies the ability of the model to robustly per-
form a desired function under significant parameter fluctuations.
This can be used for model selection in systems biology, because
many biochemical systems are robust to a variety of perturbations,
including temperature (Ruoff, 1992), mutations (Wagner, 2000)
and molecular noise (Gonze et al., 2002). Biological systems need to
be robust against parameter perturbations to persist in a changing
environment. Therefore, robustness can be used to select between
competing hypothetical mechanisms (Hafner et al., 2009). When
comparing two models, both of which are capable of reproducing
the function of a biological system, the more robust one should be
preferred. We therefore use the estimated volume of the feasible re-
gion as provided by Lp-Adaptation to perform model selection.

To compare models of different complexity, or parameter space
dimensionality, robustness has to be defined in a dimension-
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independent way. A good choice is to use the linear volume of the
feasible region, normalized as

ffiffiffiffiffiffiffiffi
Vest

n
p

(Hafner et al., 2009), where n is
the dimension of the parameter space. It can be interpreted as the

average tolerable variation per parameter dimension that still per-
mits the model to perform its function.

3 Results

We first validate our proposed oracle function in a low-dimensional

model where the stability properties are analytically known. Then,
we empirically quantify the computational cost of our workflow for

increasing parameter space dimensionality. Finally, we apply our
method to model the selection of small GTPase domain formation
mechanisms.

3.1 Oracle validation
We validate the oracles proposed above on the partitioning-defective
proteins (PAR) model (Goehring et al., 2011), which describes the

establishment of uniaxial anterior–posterior polarity in the zygote of
the roundworm Caenorhabditis elegans shortly after fertilization.

This model has a two-dimensional parameter space for which the
ground-truth characteristic regions and their volumes are known
analytically (Trong et al., 2014). We compare these ground-truth

regions of the four parameter-space characteristics with the feasible
regions identified by our proposed oracles. Furthermore, we validate

the volume estimates computed by Lp-Adaptation.
The spatiotemporal dynamics of the membrane-bound anterior

PAR (aPAR) complexes with concentration Am and posterior PAR

(pPAR) complexes with concentration Pm is described by the reac-
tion–diffusion model (Goehring et al., 2011):

@tAm ¼ DADAm þ konAAc � koffAAm � kAPP2
mAm;

@tPm ¼ DPDPm þ konPPc � koffPPm � kPAA2
mPm;

(9)

where Ac and Pc are the cytoplasmic concentrations of aPAR and
pPAR, respectively, DA and DP are their respective diffusion con-
stants on the membrane and konA and koffA (konP and koffP) are the
reaction rate constants of binding/unbinding to/from the membrane.
The mutual inhibition of the protein complexes on the membrane is
defined by the reaction rate constants kAP and kPA. All parameters
except kAP and kPA were fixed for the model analysis, reducing the
parameter space to two dimensions (Trong et al., 2014).

Figure 2 shows the four characteristic regions in this two-
dimensional (kAP and kPA) parameter space: (i) bistability, (ii) in-
stability, (iii) pattern formation and (iv) pattern maintenance. The
feasible points sampled by Lp-Adaptation are shown as blue dots,
while the black outlines delimit the ground-truth regions (Trong
et al., 2014). All feasible points sampled by Lp-Adaptation lie inside
the boundaries of the ground-truth regions, validating the proposed
oracles.

We also compare the ground-truth volumes of the four feasible
regions from Figure 2 with the respective Lp-Adaptation estimates.
The ground-truth volumes are computed by exhaustive grid search
using a resolution of 0.05. For Lp-Adaptation, we start volume esti-
mation from five different initial feasible points until stationarity.
We average the volume estimates over the last 200 iterations. The
resulting volume estimates are 1.73 for the bistability oracle (ground
truth 1.69), 1.04 for the instability oracle (ground truth 1.07), 1.01
for the pattern-formation oracle (ground truth 1.03) and 5.83 for
the pattern-maintenance oracle (ground truth 5.87). All these are
within the resolution of the ground-truth volume computation
(0.05). Therefore, we conclude that the volume estimates of the four
regions defined by the proposed oracles agree well with the ground-
truth volumes.

3.2 Computational cost and scaling with dimension
Lp-Adaptation is expected to scale polynomially with the dimension-
ality of the parameter space, and not exponentially as is the case for
exhaustive sampling (Asmus et al., 2017). However, this is an empir-
ical result because the algorithmic complexity of volume estimation
cannot be rigorously bounded for general, non-convex regions

Fig. 1. Flowchart of the workflow for high-dimensional parameter space screening

using design centering. The process starts with initialization, where the user defines

the oracle function f and the bounds of the parameter space X. Next, a random

point x 2 X is sampled and checked for feasibility. If the point is feasible, i.e.

f ðxÞ ¼ 1, then it is used to start Lp-Adaptation and estimate the volume of the feas-

ible region Vest . If the randomly chosen point x is not feasible, i.e. f ðxÞ ¼ 0, then the

oracle is negated such that f �ðxÞ ¼ 1. This allows to start Lp-Adaptation for the

negated oracle f � and estimate the volume V�est where the model is not capable of

fulfilling the specifications defined by the oracle f. If the volume estimate V�est is com-

parable to the volume VX of the whole parameter space, then the model is globally

incapable of satisfying the oracle f, and we set Vest ¼ 0. If V�est is smaller than VX,

then Lp-Adaptation is started for the original oracle f with a feasible starting point

that has been sampled during Lp-Adaptation over the negated oracle function f �. In

all cases, the final output is the volume estimate Vest of the feasible region of the ori-

ginal oracle f. The inset panels illustrate the volume VX of the whole parameter

space on the top right, the volume V�est of the feasible region for the negated oracle

on the bottom right and the volume Vest of the feasible region for the original oracle

on the left

(a) (b)

(d)(c)

Fig. 2. Bistability region (a), instability region (b), spontaneous pattern-formation

region (c), and pattern-maintenance region (d) of the PAR model in the kAP � kPA

parameter space. Dots show the feasible points sampled by Lp-Adaptation over the

respective oracle. The crosses mark the estimated design centers. The solid outlines

show the ground-truth region boundaries from Trong et al. (2014)
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(Lovász and Vempala, 2006; Simonovits, 2003). For the empirical
quantification of the algorithmic complexity of Lp-Adaptation,
Asmus et al. (2017) used n-dimensional L1 and L2 balls as
ground-truth feasible regions. They observed that the number of
evaluations required for volume approximation to within a given
tolerance scales as n3 (see Fig. 3).

Here, we confirm this result for an n-dimensional hypercube, an
L1-ball, as the ground-truth feasible region. This is motivated by
the need of our framework to also estimate the volume of the entire
parameter space X, which is an n-dimensional hypercube (see
Fig. 1). Figure 3 shows the number of oracle evaluations required to
reach a relative volume-approximation error below 10% scales cu-
bically with the parameter space dimensionality n also in this case.
Therefore, we expect the overall workflow in Figure 1 to scale poly-
nomially with parameter space dimensionality.

The accuracy of the final volume estimate depends on the shape
of the feasible region, the starting point, and the dimensionality of
the parameter space. Asmus et al. (2017) have shown that Lp-
Adaptation with L2-ball proposals can underestimate the volume of
a 20-dimensional L0:5-ball by 50% even for decreasing the target
hitting probability. Here, we measure the relative error of hypercube
volume approximation using an L2-ball proposal, which we find to
always be below 10% for the dimension of the parameter space
going up to 30. This allows us to define a threshold on the approxi-
mated feasible volume for the negated oracle V�est before concluding
that the model is incapable of robustly meeting the specifications
given by the oracle anywhere in parameter space. This threshold is:

VX �V�est

VX
< 0:1; (10)

with VX the volume of the whole parameter space.

3.3 Application to small GTPase domain formation
Small GTPase proteins are known to play an important role in nu-
merous cellular processes, including cell proliferation and growth
(Militello and Colombo, 2013; Park and Bi, 2007), cytoskeletal
regulation and cell motility (Charest and Firtel, 2007) and intracel-
lular trafficking (Murphy et al., 1996; Ridley, 2006; Zerial and
McBride, 2001). Some of these processes are hypothesized to depend
on the emergence of spatial patterns formed as a result of nonlinear
interactions of small GTPases with their effectors on membranes
(Horiuchi et al., 1997; Zerial and McBride, 2001) (see
Supplementary Section S1 for details). Although the key molecular
players and the interactions between them have been discovered a
while ago and have been included in a mechanistic model of pattern

formation for small GTPases (Goryachev and Pokhilko, 2008), the
recent reconstitution of domain formation of the small GTPase
Rab5 by the GDP dissociation inhibitor (GDI) and the guanine nu-
cleotide exchange factor (GEF)/effector Rabex5/Rabaptin5 complex
by Cezanne et al. (2020) motivates alternative models for the small
GTPase Rab5.

The known molecular interactions in this system are:

XY þ RT�XYRT

XY þ RD ! XY þ RT

XYRT þ RD ! XYRT þ RT

RD þ I�RDI
RT ! RD:

(11)

Here, soluble species are shown in light color, while membrane-
bound species are in black. In the first reaction, Rabex5/Rabaptin5
(XY) is recruited to the membrane via interaction of Rabaptin5 with
membrane-bound active Rab5 (RT). The GEF/effector complex can
dissociate from the membrane; therefore, the reaction is reversible.
In the second reaction, the Rabex5/Rabaptin5 complex activates in-
active Rab5 (RD). The third reaction corresponds to Rab5 activation
by Rabex5 in complex with active Rab5 (XYRT). The shuttling of
inactive Rab5 via GDI (I) is described by the fourth reaction. The
last reaction corresponds to spontaneous GTP hydrolysis by Rab5.
See Supplementary Section S2 for details on the physical domain of
the models, parameter value bounds and definition of the parameter
spaces. Supplementary Section S3 contains the resulting model PDEs
and their conservation laws.

This defines the basic interactions in the model ‘Rab5’ in
Table 1. We complement this basic model with seven alternative
models, each including a different combination of additional, hypo-
thetical molecular interactions as given in Table 1: GEF/effector
spontaneous membrane binding, handover of newly activated Rab5
from the GEF to the effector and presence of the GEF complex in di-
meric form with cooperative Rab5 binding. See Supplementary
Sections S4 and S5 for detailed equations, parameter values and
explanations on each of these alternative models. We compare the
capability of these eight models to robustly form Turing patterns.
Therefore, we use the present framework with the proposed instabil-
ity oracle.

We perform five independent runs of Lp-Adaptation for every
model and every condition with 10 000 evaluations for six-
dimensional parameter spaces and 15 000 evaluations for eight-
dimensional parameter spaces. This required between 30 min and
2 h of computer time per model using MATLAB on a standard office
laptop. Table 2 reports the mean 6 standard deviation (over all
runs) normalized volumes of the instability regions in comparison to
the entire volume of the parameter space. In cases where the model
is globally incapable of forming Tuing patterns, the estimated nor-
malized volume of the negated oracle is given instead.

The results show that the basic model is globally incapable of
producing robust patterns (Table 2, Rab5 model). However, any
one of two additional hypothetical interactions is each sufficient for
diffusion-driven instability: GEF/effector membrane binding in a
Rab5-independent manner (mRab5 model) or a dimerized form of
the GEF/effector complex (2xRab5 model). All model variants con-
taining any one of these hypothetical additional interactions can
form Turing patterns with similar robustness (about 60% of the en-
tire parameter space). While the model with spontaneous GEF/ef-
fector membrane binding is analogous to the classic Cdc42 model
(Goryachev and Pokhilko, 2008), our screen thus identifies an alter-
native model for small GTPase pattern formation, which includes a
dimerized form of the GEF/effector complex. This demonstrates the
applicability of the proposed method to inferring molecular mecha-
nisms of pattern formation by selecting between alternative hypoth-
eses based on robustness.

4 Conclusions

We have presented a computational framework for efficient high-
dimensional parameter space screening of reaction–diffusion models

Fig. 3. Number of samples (oracle evaluations) required with increasing parameter

space dimension n to reach a relative volume approximation error of <10% for an

L1-ball using L2-ball proposal distributions. The solid line without symbols shows

the best least-squares fit of a cubic scaling. The number of evaluations needed for

volume approximation of L1- and L2-balls is shown as a reference (inset legend); the

respective pre-factors for the cubic fitting are 10.2767 and 1.9724 (Asmus et al.,

2017)
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in systems biology. Our framework is based on Lp-Adaptation, an
adaptive statistical method for approximate design centering and
volume estimation. Lp-Adaptation uses Lp-balls as proposals for
parameter-space sampling, which are dynamically adapted based on
the sampling history to efficiently explore the feasible region of a
model. The feasible region is defined by specifications, which are
jointly included in a binary black-box oracle function. The estimated
volume of the feasible region relates to the robustness with which a
model is able to fulfill the specifications under parameter perturba-
tions and, therefore, provides a solid basis for model selection in bio-
chemistry. We have proposed four oracles to characterize the
parameter space of pattern-forming reaction–diffusion systems in
terms of bistability, instability, spontaneous pattern formation and
pattern maintenance. We have benchmarked the proposed oracles in
a real biological example with analytically known parameter space
regions and have demonstrated that Lp-Adaptation using these pro-
posed oracles produces volume estimates within 10% of ground
truth in polynomial computational time.

In addition to the four proposed oracle functions, we have intro-
duced negated oracles and have formulated a criterion on the vol-
ume estimate for the negated oracles that suggests the inability of a
model to fulfill specifications, defined in the original oracle, robustly
anywhere in its parameter space. This is useful in cases where a
model lacks the feasible region and, therefore, Lp-Adaptation cannot
be initiated on the original oracle. It is also useful to rule out bio-
chemical hypotheses.

An important feature of the presented algorithm is the polyno-
mial scaling of its computational cost with parameter-space dimen-
sionality, which, to our knowledge, outperforms the previous state-
of-the-art glocal methods for high-dimensional parameter space
characterization in systems biology. Moreover, the present approach
does not require formulating a real-valued objective function of
known dynamics.

Although the present framework is capable of characterizing
high-dimensional parameter spaces efficiently, it has several limita-
tions. First, our framework does not exploit dependencies or corre-
lations between parameters and cannot identify the causes of low or
high robustness. One way to explore causes of robustness would be
to explicitly include them in the model. Comparing volume esti-
mates of the feasible regions with and without a specific cause
included may uncover contributions to the total robustness.
Parameter correlations could be explored by analyzing the shape of

the approximated feasible region or its main axes (eigenvectors).

Second, the presented oracles are formulated in a general way with-
out a strict definition of the output, e.g. pattern formation without
specifying a certain pattern type. While such general oracles are con-

venient, they could be refined to more specific outputs, for example
by restricting to wavenumbers that are characteristic for certain pat-
tern types. Third, for very high-dimensional parameter spaces

(n>30), the relative error of volume approximation can increase
above 10%. Further adjustment of the target hitting probability is
then necessary to improve the accuracy at the expense of a higher
computational cost.

Taken together, we believe that the algorithmic framework pre-
sented here can be useful in exploring the global behavior of reac-

tion–diffusion models with high-dimensional parameter spaces. It
enables characterizing the capability (or incapability) of a model to
exhibit bistability, form Turing-type patterns, or maintain a pat-

terned spatial distribution robustly. It does so without requiring spe-
cific values or fits of the parameters, using robustness as a principled
criterion for model comparison.
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