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SUMMARY

NuRD (nucleosome remodeling and histone de-
acetylase) is a versatile multi-protein complex with
roles in transcription regulation and the DNA damage
response. Here, we show that ZMYND8 bridges
NuRD to a number of putative DNA-binding zinc
finger proteins. The MYND domain of ZMYND8
directly interacts with PPPLF motifs in the NuRD
subunit GATAD2A. Both GATAD2A and GATAD2B
exclusively form homodimers and define mutually
exclusive NuRD subcomplexes. ZMYND8 and
NuRD share a large number of genome-wide bind-
ing sites, mostly active promoters and enhancers.
Depletion of ZMYND8 does not affect NuRD occu-
pancy genome-wide and only slightly affects expres-
sion of NuRD/ZMYND8 target genes. In contrast,
the MYND domain in ZMYND8 facilitates the
rapid, poly(ADP-ribose)-dependent recruitment of
GATAD2A/NuRD to sites of DNA damage to promote
repair by homologous recombination. Thus, these re-
sults show that a specific substoichiometric interac-
tion with a NuRD subunit paralogue provides unique
functionality to distinct NuRD subcomplexes.

INTRODUCTION

The nucleosome remodeling and histone deacetylase (NuRD)

complex is a highly conserved chromatin-remodeling complex

that is generally associated with transcriptional repression (Allen

et al., 2013). Several NuRD complex subunits are rapidly re-
Cell
This is an open access article und
cruited to sites of DNA damage and play roles in DNA-damage-

induced transcriptional repression (Chou et al., 2010; Gong

et al., 2015; Larsen et al., 2010; Polo et al., 2010; Smeenk et al.,

2010). The NuRD complex contains two catalytic activities: the

ATP-dependent chromatin-remodeling enzymes CHD3, CHD4,

and CHD5 (Allen et al., 2013; Potts et al., 2011) and the histone

deacetylases HDAC1 and HDAC2. In addition to these catalytic

activities, the NuRD complex contains either methyl-CpG-bind-

ing domain (MBD)2 or MBD3; GATAD2A and GATAD2B; MTA1,

MTA2, and MTA3; RBBP4 and RBBP7; and CDK2AP1 (Allen

et al., 2013; Hendrich and Bird, 1998; Spruijt et al., 2010, 2013).

AlthoughSmits et al. (2013) recently determined the average stoi-

chiometry of the complex, questions remain regarding which

subunits or paralogues are mutually exclusive and how many

functionally distinct NuRD complexes exist.

In previous reports, we and others have identified a number

of substoichiometric interactors of NuRD, including ZMYND8

and ZNF687 (Eberl et al., 2013; Kloet et al., 2014; Malovan-

naya et al., 2011; Smits et al., 2013). The ZNF687 protein con-

tains ten C2H2-type zinc fingers (ZNFs), which are potential

(sequence-specific) DNA-binding domains or protein-protein

interaction domains. ZMYND8 has a completely different domain

architecture consisting of a PHD finger, BROMO domain, and

PWWP domain at its N terminus and a MYND domain located

close to its C terminus. This protein is also called protein-ki-

nase-C-binding protein (PKCBP1) or RACK7 (Ansieau and Ser-

geant, 2003; Fossey et al., 2000). Very recently, the PWWP

domain of ZMYND8 has been linked to H3K36me2 and tran-

scriptional regulation of retinoic-acid-induced genes during

neuronal differentiation (Adhikary et al., 2016). Furthermore, the

BROMO domain of ZMYND8 has been linked to transcriptional

repression in response to DNA double-strand breaks (DSBs)

(Gong et al., 2015).
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Here, we show that ZMYND8 directly interacts with the NuRD

subunit GATAD2A through its conservedMYND domain and that

GATAD2A and GATAD2B assemble in mutually exclusive NuRD

complexes. Although the effects of ZMYND8 depletion on the

recruitment to and expression of NuRD target genes areminimal,

ZMYND8 plays an important role in the recruitment of GATAD2A-

containing NuRD to sites of DNA damage during repair by ho-

mologous recombination. Thus, these results show that pa-

ralogue-specific substoichiometric interactions further expand

the functional diversity of distinct NuRD subcomplexes.

RESULTS

ZMYND8 Connects the NuRD Complex to the Z3 Module
via Its MYND Domain
Recently, ZMYND8 was identified as a novel interactor of the

NuRD complex (Eberl et al., 2013; Malovannaya et al., 2011;

Smits et al., 2013). To investigate the molecular nature of this

interaction, we performed SILAC (stable isotope labeling with

amino acid in cell culture)-based GFP affinity purifications for

MBD2, MBD3, and ZMYND8 in HeLa cells (Baymaz et al.,

2014). As expected, the MBD2- and MBD3-GFP purifications

were significantly enriched for NuRD core subunits (Figure 1A;

Figure S1A), some ZNF proteins, ZMYND8, and the known

NuRD interactor SALL4. Purification of GFP-ZMYND8 resulted

in the identification of the BHC complex (consisting of LSD1,

RCOR1-3, PHF21A, and HMG20B), subunits of the EMSY com-

plex (Varier et al., 2016), and the NuRD complex (Figure 1B).

These results are in agreement with recent data showing

that ZMYND8 and three associated ZNF proteins—ZNF532,

ZNF592, and ZNF687 (Z3 module)—act as a central hub in a

large transcription regulation network (Malovannaya et al., 2011).

To investigate which protein mediates the interaction between

the NuRD complex and the Z3 module, we performed label-free

quantification (LFQ) purifications of GFP-MBD3 from stable cell

lines containing either a scrambled short hairpin RNA (shRNA)

or an shRNA targeting ZMYND8, ZNF687, or CDK2AP1 (also

called DOC-1) (Figures S1B and S1C) (Cox et al., 2014). We

then applied the iBAQ algorithm to estimate the stoichiometry

of the core NuRD subunits, ZMYND8 (3%–5%), and ZNF pro-

teins (0%–2%) (Figure 1C, left graph) (Smits et al., 2013). Due

to their sequence conservation, the three ZNF proteins share

some tryptic peptides, which compromises iBAQ-based stoichi-

ometry estimation for each individual protein. Therefore, we used
Figure 1. ZMYND8 Mediates the Interaction between the Z3 Module a

(A) SILAC-based purification of MBD3-GFP from HeLa FRT/TO cells shows all N

(B) SILAC-based purification of GFP-ZMYND8 from HeLa Kyoto. NuRD and BHC

belonging to the Z3 module are indicated in magenta.

(C) Stoichiometry (left) and normalized unique intensity (right) graphs, respectiv

CDK2AP1, ZMYND8, or ZNF687 knockdown.

(D) Stoichiometry (left) and normalized unique intensity (right) graphs of GFP-GAT

cells was also used in Figures 2A and 2C.

(E) Schematic representation of the GFP-fused deletion mutants of ZMYND8.

(F) Heatmap showing the row-mean subtraction-normalized LFQ intensities of th

ZMYND8 deletion mutants (indicated at the top). The Z3 module, NuRD, and BH

(G) SILAC-based GFP purification of ZMYND8MYND.

Error bars represent SD. Two-tailed Student’s t test p values: *p < 0.05; **p < 0.0

See also Figure S1 and Table S1.
the intensity of unique peptides that were identified for each ZNF

protein instead of iBAQ values to estimate the relative abun-

dance of each protein in the complex (Figure 1C, right graph).

Since these values are not normalized for protein size, normal-

ized unique intensities can only be used to compare the abun-

dance of a single protein under different conditions. Knockdown

of ZMYND8 (by �50%) reduced the levels of the ZNF proteins

interacting with MBD3 by about 50% (p < 0.05; Figure 1C).

In contrast, knockdown (by �60%) of ZNF687 significantly

reduced the levels of ZNF687 co-purifying with NuRD, whereas

the levels of the other ZNF proteins and ZMYND8 were not

strongly affected.We corroborated these observations by purify-

ing NuRD in a ZMYND8-knockout (KO) line (Figures 1D and S1D).

Thus, these results reveal that ZMYND8 forms a direct link

between the Z3 module and the NuRD complex.

Next, we set out to identify the domain in ZMYND8 that is

required for the interaction with the NuRD complex and other in-

teractors. ZMYND8 contains three domains that are involved

in chromatin binding: a PHD finger, a BROMO domain, and

a PWWP domain. In addition to these domains, ZMYND8 has

a MYND (MYeloid, Nervy, and Deaf) domain, which is a well-

conserved protein-protein interaction domain (Ansieau and

Leutz, 2002). We generated GFP-ZMYND8 deletion constructs

for all these domains (Figures 1E and S1E), which were then

used in label-free-based GFP pull-down experiments. These

experiments revealed that deletion of the MYND domain in

ZMYND8 abolishes the interaction with the NuRD and BHC

complex (Figure 1F; Figures S1F–S1I), which is in agreement

with recent data from the Miller lab (Gong et al., 2015).

To further substantiate these observations, we performed

a SILAC-based GFP affinity purification experiment using a

C-terminal fragment of ZMYND8 encompassing the MYND

domain (Figure 1E). Both the NuRD and BHC complexes were

specifically enriched in this pull-down experiment (Figure 1G).

Altogether, these experiments show that ZMYND8 mediates

the interaction between NuRD and the Z3 module and that

the MYND domain in ZMYND8 is both necessary and sufficient

for these interactions.

ZMYND8 Interacts with NuRD Subunit GATAD2A, which
Is Mutually Exclusive with GATAD2B
Close inspection of the ZMYND8 GFP purifications (Figures 1B,

1F, and 1G) revealed that all known NuRD core subunits co-

purify, with the exception of GATAD2B. The NuRD complex
nd NuRD via Its MYND Domain

uRD subunits and a number of substoichiometric interactors.

complex subunits are indicated in green and blue, respectively. ZNF proteins

ely, of MBD3-GFP purifications from cells with shRNA-mediated scrambled,

AD2A purifications from Control and ZMYND8-KO cells. GFP-GATAD2A in WT

e ZMYND8 interactors (and additional NuRD subunits) in GFP purifications of

C complex subunits are indicated in magenta, green, and blue, respectively.

05.
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contains two GATAD2 molecules per complex (Smits et al.,

2013), but whether GATAD2A and GATAD2B form heterodimers

is not known. Our purifications suggest that ZMYND8 exclu-

sively binds NuRD complexes containing GATAD2A. To further

investigate this, we performed label-free GFP purifications for

GATAD2A and GATAD2B (Figures 2A and 2B; Figures S2A and

S2B). The GATAD2A purification resulted in enrichment of the

Z3 module and all NuRD core subunits (Figure 2A). In contrast,

the GATAD2B pull-down resulted in the enrichment of all NuRD

subunits except GATAD2A (Figure 2B). A direct comparison of

enriched proteins in the GATAD2A and GATAD2B pull-downs

further confirms a specific interaction of ZMYND8 and the ZNF

proteins with GATAD2A (Figures 2C and S2B). Since ZMYND8

is only enriched in GATAD2A purifications, we hypothesized

that ZMYND8 interacts directly with GATAD2A. To test the

importance of either GATAD2 protein for the interaction between

NuRD and ZMYND8, we made use of stable GATAD2A or

GATAD2B shRNA knockdown cell lines containing doxycy-

cline-inducible expression of MBD2-GFP (Figure S2C). We puri-

fied MBD2-GFP from nuclear extracts of these cell lines. All

purifications enriched for the entire NuRD complex with similar

stoichiometries (Figure 2D, top; Figure S2D). The summed stoi-

chiometry of the GATAD2 paralogues in the knockdown lines is

remarkably similar to that in the control knockdown line. This

implies that, in the absence of either GATAD2, the NuRD com-

plex fully assembles using the other, available GATAD2 pa-

ralogue. We calculated the abundance of ZMYND8 and each

of the ZNF proteins in the Z3 module based on unique peptides.

In MBD2-GFP purifications from GATAD2B knockdown cells,

ZMYND8, ZNF532, ZNF592, and ZNF687 enriched to similar,

or even higher, levels compared to the control knockdown line.

In contrast, lower levels of ZMYND8 and proteins of the Z3

module were present in MBD2/NuRD purifications from the

GATAD2A knockdown line (Figure 2D, bottom), indicating that

GATAD2A is required for the association between ZMYND8

and NuRD.

To establish whether both GATAD2A and GATAD2B form

homodimers, we performed co-immunoprecipitation (coIP) ex-

periments with GFP-GATAD2A and mCherry-GATAD2B and

analyzed enriched proteins by western blot using antibodies

against tagged and endogenous GATAD2A and GATAD2B (Fig-

ure 2E). Indeed, purification of GFP-GATAD2A (indicated by G)

showed enrichment for endogenous GATAD2A, but not for

exogenous or endogenous GATAD2B, thus providing further ev-

idence for the formation of GATAD2A homodimers. Likewise,
Figure 2. ZMYND8 Interacts Only with the GATAD2A/NuRD Complex,

(A and B) LFQ-based GFP purification of GATAD2A and GATAD2B, respectively.

green, and blue, respectively.

(C) Direct comparison of the GATAD2A and GATAD2B purifications.

(D) Stoichiometry determination for NuRD subunits based on LFQ GFP purificatio

shRNA. As a control, purifications were performed using a scrambled shRNA cell

proteins in the MBD2 purifications. Error bars indicate SD. Two-tailed Student’s

(E) Co-immunoprecipitation of GFP-GATAD2A and mCherry-GATAD2B analyzed

indicated by G, R, or C, respectively.

(F) Schematic representation of the different GATAD2A and B mutants used for th

(G) GFP purifications of GATAD2B and different mutants of GATAD2A analyzed

(H) Purified GST-ZMYND8MYND was used to fish for the indicated GFP-fusion pr

See also Figure S2 and Table S1.
mCherry-GATAD2B purification (indicated by R) exclusively en-

riched for endogenous GATAD2B but failed to enrich for endog-

enous or exogenous GATAD2A.

Altogether, these data revealed that GATAD2A and GATAD2B

define mutually exclusive NuRD complexes, similarly to what

we have previously shown for MBD2 and MBD3 (Le Guezennec

et al., 2006). Furthermore, only GATAD2A-containing NuRD

complexes interact with the ZMYND8/Z3 module.

GATAD2A Has Conserved MYND Interaction Motifs
ZMYND8 exclusively interacts with GATAD2A/NuRD, which sug-

gests that ZMYND8 directly binds to amotif present in GATAD2A

that is lacking in GATAD2B. MYND domains are described to

recognize different proline-rich motifs, like PxLxP or PPPLF (An-

sieau and Leutz, 2002; Kateb et al., 2013; Liu et al., 2007). Verte-

brate GATAD2A contains three consensus PPPLF motifs, while

GATAD2B lacks these motifs (Figures 2F and S2E). To test

whether these motifs are required for the direct interaction with

ZMYND8, we generated a PPPLF-deletion mutant of GATAD2A

(GATAD2ADPPPLF). Furthermore, we generated a GFP-fusion

protein containing the PPPLFmotifs fused to a nuclear localiza-

tion sequence (NLS) (GATAD2APPPLF). As a control, we included

GATAD2ACR1, which entails the conserved region that interacts

with methyl-binding domain (MBD) proteins (Gnanapragasam

et al., 2011) (Figure 2F). All of these constructs show a

nuclear localization (Figure S2F). We transiently transfected

HEK293T cells with these constructs and prepared nuclear ex-

tracts. Western blot analyses of GFP purifications from these

extracts revealed that wild-typeGATAD2A binds ZMYND8, while

GATAD2B or GATAD2ADPPPLF failed to do so (Figure 2G).

In contrast, all proteins, except GFP-GATAD2APPPLF, interact

with the NuRD subunits MBD2 and MBD3. Although the expres-

sion level of GFP-GATAD2APPPLF was low, a specific interaction

with ZMYND8 is visible upon a longer exposure of the blot.

Similar results were obtained in SILAC-based GFP-affinity puri-

fications (Figure S2G).

To further confirm that the MYND domain of ZMYND8 directly

interacts with the PPPLF motifs in GATAD2A, we expressed

GST-ZMYND8MYND in E. coli and purified the protein using gluta-

thione beads. Then, we incubated the bead-coupled protein with

nuclear extract containing GFP, GFP-GATAD2ACR1, or GFP-

GATAD2APPPLF. Only the combination of GST-ZMYND8MYND

with GFP-GATAD2APPPLF resulted in an interaction (Figure 2H).

Since GFP-GATAD2APPPLF does not interact with any other

NuRD subunit (Figures 2G and S2G), this is a direct interaction.
which Is Mutually Exclusive with GATAD2B-Containing NuRD

The Z3 module, NuRD, and BHC complex subunits are indicated in magenta,

ns from HeLa cells expressing MBD2-GFP and either a GATAD2A or GATAD2B

line. Bottom graph shows the normalized unique intensities of each of the ZNF

t test p values: *p < 0.05; **p < 0.005.

by western blot. GFP, red fluorescent protein (RFP), or control purifications are

e interaction study. An alignment of the PPPLV stretch is shown in Figure S2E.

by western blot.

oteins. Interactions were analyzed by western blot.
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In conclusion, the MYND domain of ZMYND8 directly interacts

with PPPLF motifs in GATAD2A.

ZMYND8 and MBD3 Occupy Active Promoters and
Enhancers Genome-wide
To investigategenome-widebinding sitesof ZMYND8andMBD3,

we performed chromatin immunoprecipitation sequencing (ChIP-

seq) (Figure 3A). Endogenous ZMYND8 ChIP-seq resulted in

�11,000 peaks. These overlap very well with anti-GFP ChIP-seq

targeting ZMYND8-GFP (Figure S3A). Furthermore, ChIP-seq

for ZMYND8 inZMYND8-KOcells confirmed that the endogenous

ZMYND8 antibody is specific (Figures S3A and S3B). The number

of ZMYND8 peaks detected in HeLa cells is lower compared to

MCF7 cells, a breast cancer cell line that overexpresses ZMYND8

(Shen et al., 2016).

Based on co-localization with histone marks, the ZMYND8

peaks can be divided into three clusters, one of which mainly

contains promoters (Figure 3B). RNA sequencing reveals that

most of these promoters are actively transcribed (Figure S3C)

and are marked by H3K4me3 and by H3K9, K14, and K27

acetylation (Figure S3D). The two other clusters mainly comprise

(super)enhancers (marked by H3K4me1, H3K27Ac, DNase1,

and lack of H3K4me3) (Figures 3B and S3D). Strikingly,

ZMYND8-bound loci aredepletedofDNAmethylation (Figure3C).

Both at promoters and enhancers, ZMYND8 shows a good

overlap with MBD3 and RCOR1 (Figure 3D). A GFP-tagged

version of ZNF687 also occupies ZMYND8 target genes, as

determined by ChIP-qPCR (Figure 3E). Given the presence of

many putative DNA-binding ZNFs in the Z3 module, we hypoth-

esized that this module may serve to recruit the NuRD complex

to at least a subset of its genome-wide binding sites. To address

this hypothesis, we used a ZMYND8-KO cell line along with a

ZMYND8-KO rescue cell line allowing doxycycline-inducible

expression of GFP-ZMYND8WT (Figure 4A). ChIP-qPCR re-

vealed that GFP-ZMYND8WT occupied the same binding sites

compared to endogenous ZMYND8, demonstrating the func-

tionality of the fusion protein (Figure 4B). The occupancy of

endogenous NuRD subunits GATAD2A, MBD3, and CHD4 on

target genes was neither significantly reduced in the ZMYND8-

KO cells nor increased in the rescue cells (Figures 4B

and S3E). A bandplot visualization of the average ZMYND8

and MBD3 occupancy of ZMYND8 target sites in control and

ZMYND8-KO cells, as determined by ChIP-seq, reveals that

while ZMYND8 is drastically reduced, MBD3 occupancy is

not affected (Figures S3F and S3G). In addition, both GFP-

GATAD2A and GFP-GATAD2B occupy ZMYND8 target genes

(Figure S3H). Using qRT-PCR, we found no difference in the

expression of ZMYND8 target genes in ZMYND8-KO versus
Figure 3. ZMYND8 and MBD3 Co-occupy Active Promoters and Enhan

(A) UCSC (University of California, Santa Cruz) browser screenshot showing co-loc

H3K4me3 and H3K9,14Ac. Note that the signal for ZMYND8 is strongly reduced

(B) Heatmap centered on ZMYND8 peaks ± 5 kb. Cluster 2 contains mostly prom

(C) DNA methylation analysis for ZMYND8 peaks or random genomic regions, d

(D) Heatmap showing the genome-wide overlap between ZMYND8 and its intera

(E) ChIP-qPCR analysis of GFP-ZNF687 ChIP on ZMYND8 target genes. WT, wil

**p < 0.005.

See also Figure S3 and Table S2.
control or rescue cells (Figure 4C). Finally, to investigate the

global effects of knocking out ZMYND8 on transcription, we per-

formed RNA sequencing (RNA-seq) on control, ZMYND8-KO,

and GFP-ZMYND8WT rescue cells. Interestingly, we observed

significant upregulation of genes that have ZMYND8 binding at

their enhancers and, especially, that super-enhancers show

induced expression (Figure 4D). These observations are consis-

tent with a recent report (Shen et al., 2016).

In conclusion, although ZMYND8 and NuRD share a large

number of genome-wide binding sites, the ZMYND8/Z3 module

does not serve to recruit NuRD to non-methylated target sites in

the genome, at least not in steady-state asynchronous cells.

Furthermore, genetic deletion of ZMYND8 has only mild effects

on gene expression of its target genes.

ZMYND8 Recruits GATAD2A/NuRD to Sites of DNA
Damage
Since we did not observe a clear role for ZMYND8 in recruiting

NuRD to its target genes in steady-state asynchronous cells, we

focused on a more dynamic system. Earlier work from us and

others revealed that the NuRD complex accumulates at sites

of DNA DSBs (Larsen et al., 2010; Polo et al., 2010; Smeenk

et al., 2010) and that this process requires the recruitment of

ZMYND8 (Gong et al., 2015). Since ZMYND8 exclusively inter-

acts with the GATAD2A-containing NuRD complex, we tested

whether ZMYND8 and GATAD2A are recruited to DSBs. Endog-

enous ZMYND8, as well as endogenous and GFP-tagged

GATAD2A, was rapidly (<5 min) recruited to sites of laser-

induced DSBs that were marked by phosphorylated H2AX

(gH2AX) (Figure 5A; Figure S4A). Knockdown of GATAD2A or

genetic deletion of ZMYND8 resulted in the loss of signal in laser

tracks, demonstrating the specificity of the used antibodies

(Figures 5A and S4B). To address whether ZMYND8 is involved

in GATAD2A/B recruitment, we made use of our ZMYND8-KO

cells (Figure 4A). Recruitment of GATAD2A to laser-induced

DSBs was significantly reduced in ZMYND8-KO cells compared

to control cells (Figures 5B and 5C). To monitor GATAD2B

recruitment, we induced expression of GFP-GATAD2B in both

ZMYND8-KO and control cells. We could detect rapid recruit-

ment of GFP-GATAD2B to laser-induced DSBs (Figure 5D).

However, in contrast to GATAD2A, recruitment of GFP-

GATAD2B was not affected by the loss of ZMYND8 (Figures

5D and 5E), while DSB levels, as measured by gH2AX forma-

tion, were comparable in ZMYND8-KO and control cells.

Next, we tested whether the ZMYND8-GATAD2A interaction is

required for recruitment of the NuRD complex to DSBs. To

this end, we used our inducible MBD2-GFP cell lines with stable

shRNA-mediated knockdown of either GATAD2A or GATAD2B
cers

alization of ZMYND8 andMBD3 on theADAM15 promoter, which ismarked by

in ZMYND8 knockout cells (ZMYND8_KO).

oters, whereas clusters 1 and 3 consist of enhancers.

ivided into promoters and enhancers.

ctors MBD3 and RCOR1.

d-type. Error bars indicate SD. Two-tailed Student’s t test p values: *p < 0.05;
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Figure 4. ZMYND8 Depletion Does Not Affect NuRD Recruitment and Only Mildly Affects Transcriptional Output of Target Genes

(A) Schematic representation of the cell lines used for the ChIPs in (B). All three cell lines were doxycycline (Dox) treated to correct for any Dox-induced artifacts.

(B) Endogenous ChIPs for ZMYND8, GATAD2A, MBD3, CHD4, and RCOR1 in control, ZMYND8-KO, and rescue cell lines.

(C) qRT-PCR analysis of ZMYND8 target genes.

(D) Expression analysis of genes with a ZMYND8 peak on their promoter or nearby enhancer. The y axis shows fold change in ZMYND8-KO over control cells.

The p values were determined using a two-tailed Student’s t test. Error bars in (B and C) indicate SD. Two-tailed Student’s t test p values: *p < 0.05.

See also Figure S3 and Table S2.
(Figure S2C). The rapid recruitment of MBD2-GFP was signifi-

cantly reduced by knockdown of GATAD2A but was unaffected

by depletion of GATAD2B (Figures 5F and 5G). Importantly,

DSB induction, as monitored by gH2AX, was comparable in

these cells. Assessment of the MBD2-GFP recruitment in the

ZMYND8-KO cells confirmed our hypothesis that MBD2 is,

at least partially, recruited via the ZMYND8-GATAD2A axis (Fig-

ures 5H and 5I). Finally, we sought to address whether the ZNF

proteins are involved in the DNA damage response. Local irra-

diation, indeed, revealed that ZNF687-GFP is rapidly recruited

to laser-induced DSBs (Figure 5J). Furthermore, siRNA-medi-

ated knockdown of ZNF687 impaired the recruitment of GFP-

CHD4 to DSBs (Figures 5K and 5L). These findings highlight a

sequential recruitment model for the MBD2/NuRD complex,
790 Cell Reports 17, 783–798, October 11, 2016
which specifically depends on the ZMYND8/ZNF-GATAD2A

axis.

The MYND Domain in ZMYND8 Regulates Its
Recruitment to Sites of DNA Damage
Previous studies have revealed an important role of poly(ADP-

ribose) (PAR) in the accumulation of CHD4 (Chou et al., 2010;

Luijsterburg et al., 2012; Polo et al., 2010) and MBD2 (Sun

et al., 2016). Although the recruitment of both these proteins is

stimulated by ZMYND8 (Figure 5) (Gong et al., 2015), ZMYND8

itself was reported to be recruited to sites of DNA damage

through histone acetylation (Gong et al., 2015). To further inves-

tigate these findings, we performed functional rescue experi-

ments in our ZMYND8-KO cells. In contrast to control cells, we
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found that ZMYND8-KO cells failed to recruit endogenous CHD4

to sites of DNA damage (Figures 6A and 6B). Re-expression of

ZMYND8WT and ZMYND8DBROMO fully rescued CHD4 recruit-

ment, while ZMYND8DMYND failed to do so (Figures 6A and 6B).

Analysis of the GFP-ZMYND8 mutants also showed that recruit-

ment of ZMYND8 to sites of DNA damage critically depends on

its MYND domain (Figures 6A and 6B). These findings show that

ZMYND8 recruitment itself, as well as its ability to interact with

and recruit the NuRD complex, is fully dependent on its MYND

domain, which is in line with our mass spectrometry (MS) data

(Figure 1F). To test whether the association of ZMYND8 with

the NuRD complex is further induced by DNA damage, we per-

formed LFQ GFP purifications of MBD3 and ZMYND8 in the

absence and presence of the DSB-inducing agent phleomycin.

This revealed that the stoichiometry of the ZMYND8/NuRD

interaction does not change upon induction of DNA damage

(p < 0.01; Figures S5C and S5D).

Contrary to our findings, a previous study from the Miller

lab reported that ZMYND8 recruitment is mediated through

histone acetylation and involves its BROMO domain (Gong

et al., 2015). Based on these results, we first confirmed

whether our ZMYND8DBROMO is defective in binding histone

acetylation. Indeed, in vitro binding assays confirmed that our

ZMYND8DBROMO mutant fails to bind acetylated histone tails,

while endogenous and GFP-ZMYND8WT were proficient in doing

so (Figures 6C and 6D). In an attempt to resolve this discrepancy,

we transiently expressed the ZMYND8DBROMO mutant from the

Miller lab and could, indeed, confirm that this protein does not

accumulate at sites of DNA damage (Gong et al., 2015) (Fig-

ure S4E). Although we did note that this mutant tends to misloc-

alize in the cytoplasm when expressed at higher levels, we could

still detect an interaction with other NuRD subunits in pull-down

experiments from nuclear extracts, suggesting at least partial

functionality of the mutant. However, the human ZMYND8

gene encodes at least 20 protein-coding transcripts, many of

which produce large proteins containing all the functional

ZMYND8 domains. We used a different isoform of ZMYND8 (iso-

form 17, 1,054 amino acids [aa]; ENST00000458360) compared

to the one used by Miller (isoform 1, 1,186 aa;

ENST00000396281). The discrepancy in the BROMO-depen-

dent recruitment of ZMYND8 observed in the two studies may

be explained by the use of different ZMYND8 isoforms.

Considering the previously reported involvement of PAR

chains in NuRD subunit recruitment, we askedwhether ZMYND8

recruitment is PAR dependent. This could reconcile our results

with previous studies and possibly explain how both PAR and

ZMYND8 could stimulate the recruitment of CHD4 and MBD2
Figure 5. ZMYND8 Recruits GATAD2A-Containing NuRD Complex to S

(A, B, D, F, H, J, and K) (Immuno)fluorescence microscopy on cells 5 min after trea

with DNA damage. (C, E, G, I, and L) Quantifications of (B), (D), (F), (H), and (K).

(A) Staining for endogenous ZMYND8 in control and ZMYND-KO cells.

(B and C) Staining of endogenous GATAD2A in control and ZMYND8-KO cells.

(D and E) Visualization of GFP-GATAD2B in control and ZMYND8-KO cells.

(F and G) Recruitment of MBD2-GFP in control, GATAD2A, or GATAD2B knockd

(H and I) MBD2-GFP enrichment in control and ZMYND8-KO cells.

(J) ZNF687-GFP accumulation upon laser-induced DNA damage.

(K and L) DNA damage recruitment of GFP-CHD4 in siLuc and siZNF687 cells.

Error bars indicate SEM. Two-tailed Student’s t test p values: **p < 0.005; ***p <
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(Chou et al., 2010; Luijsterburg et al., 2012; Polo et al., 2010;

Sun et al., 2016). Local irradiation experiments revealed that

the recruitment of GFP-ZMYND8WT was completely abolished

by the treatment of cells with poly(ADP-ribose) polymerase

(PARP) inhibitor KU-0058948. Control experiments confirmed

the complete loss of PAR chain formation under these conditions

(Figures 7A and 7B). Our analysis clearly indicates that the

ZMYND8 isoform 17 is functional and able to restore CHD4

recruitment to sites of DNA damage and does not require

BROMO-mediated binding to acetylated histones for its recruit-

ment to sites of DNA damage. Instead, we show that recruitment

of this ZMYND8 variant fully depends on the MYND domain and

requires the formation of DNA damage-induced PAR.

NuRD Subunits Regulate DSB Repair by Homologous
Recombination
To address whether NuRD subunits are required for DSB repair,

we performed several functional assays. Previous studies have

reported roles for NuRD components in DSB repair by homolo-

gous recombination (HR) (Gong et al., 2015; Pan et al., 2012;

Sun et al., 2016). This prompted us to test sensitivity for

PARP inhibition, which is a measure of defective HR (McCabe

et al., 2006). Knockdown of ZNF687, GATAD2A, or GATAD2B

rendered cells highly sensitive to increasing concentrations of

PARP inhibitor, suggesting a defect in HR (Figure 7C). We subse-

quently used the DR (direct repeat)-GFP reporter for HR activity,

whichmeasures theHR-dependent repair of a nuclease-induced

DSB, resulting in the restoration of a functional gfp gene (Pierce

et al., 1999). Flow-cytometric analysis of GFP fluorescence

showed that knockdown of either CHD4 or ZMYND8 significantly

reduced HR, although not to the same extent as core HR factor

BRCA2 (Figure 7D). To validate these findings, we assessed the

formation of RAD51 filaments in laser track experiments, since

DNA-bound RAD51 mediates strand invasion and DNA transfer

during HR. Analysis of irradiated cells showed that ZMYND8

knockout cells displayed moderately reduced recruitment of

RAD51 compared to control cells, explaining the reduced HR ef-

ficiency (Figures 7E and 7F).

In summary, these findings suggest overlapping and unique

roles of NuRD complex subunits in regulating HR-mediated

DSB repair.

DISCUSSION

In this study, we have investigated the molecular nature and

functional consequences of the interaction between ZMYND8

and the NuRD complex, which was previously reported to be
ites of DNA Damage

tment with a laser to induce DNA double-strand breaks. gH2AX indicates sites

own cells.

5.10�6. See also Figure S4.
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Figure 6. MYND Domain of ZMYND8 Is Required for Recruitment to Sites of DNA Damage

(A) (Immuno)fluorescence microscopy of cells 5 min after laser-induced DSBs showing endogenous CHD4 in control and ZMYND8-KO cells. Rescue effect of

different GFP-fused ZMYND8 mutants is assessed.

(B) Quantification of (A). Error bars indicate SEM. Two-tailed Student’s t test p values: *p < 0.05; **p < 0.005.

(legend continued on next page)
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sub-stoichiometric (Smits et al., 2013). Our work revealed that

ZMYND8 bridges the GATAD2A/NuRD complex to three ZNF

proteins, ZNF532, ZNF592, and ZNF687, each of which contains

a large number of putative DNA-binding ZNFs. Therefore, we hy-

pothesized that this so-called Z3 module may serve to recruit

GATAD2A/NuRD complexes to non-methylated target sites in

the genome. Indeed, ChIP-seq for ZMYND8 andMBD3 revealed

a substantial overlap of genome-wide binding sites, mostly

active enhancers and promoters. However, ChIP-seq and

ChIP-qPCR experiments in ZMYND8 knockout and rescue cell

lines revealed that loss of ZMYND8 does not result in a loss of

NuRD from its target genes. Based on these results, we hypoth-

esized that the ZMYND8-GATAD2A/NuRD interaction is particu-

larly important for an immediate recruitment to target genes that

become induced or repressed following a stimulus. Future

studies should shed further light on the kinetics and the impor-

tance, if any, of the ZMYND8-GATAD2A/NuRD interaction for

NuRD-mediated transcription regulation in different cellular con-

texts. Support for the dynamic function of ZMYND8 is provided

by its rapid poly(ADP-ribose)-dependent recruitment to DSBs.

Once recruited, ZMYND8 contributes to the efficient recruitment

of GATAD2A and CHD4, without an appreciable impact on

GATAD2B. Efficient recruitment of MBD2 was also dependent

on ZMYND8-GATAD2A, but not GATAD2B, suggesting a

sequential recruitment model for these NuRD subunits through

the ZMYND8-GATAD2A interaction. The genetic interdepen-

dencies of NuRD subunit recruitment to DSBs was often partial,

arguing that several mechanistically distinct NuRD recruitment

mechanisms contribute to its roles in the DSB response (Luijster-

burg et al., 2012; Smeenk et al., 2010). We consistently observed

defects in DSB repair by HR upon the loss of several distinct

NuRD subunits, suggesting an important role for the NuRD com-

plex in this repair pathway. Additional mechanistic studies will be

required to unravel the unique and overlapping roles of individual

NuRD subunits in DSB repair.

ChIP-seq experiments revealed a striking genome-wide corre-

lation between ZMYND8/NuRD and active promoters and en-

hancers marked with H3K4me3 or H3K4me1 and histone acety-

lation marks (Figure 3B). ChIP-seq provides correlative data, and

observed signals are derived from thousands of asynchronously

dividing cells. However, expression analysis of ZMYND8/NuRD

target genes revealed that NuRD bound genes tend to be highly

expressed (Figure S3C). This positive correlation between

NuRD and gene expression has also been observed by others

(Shimbo et al., 2013; Whyte et al., 2012). Nevertheless, RNA-

seq in ZMYND8 KO cells revealed a slight increase in expression

of genes that are regulated by a nearby ZMYND8-bound (super)

enhancer. This indicates that ZMYND8/NuRD mildly represses

and, thus, fine-tunes expression of these genes, which is in

agreement with two recent publications (Li et al., 2016; Shen

et al., 2016). In any case, these observations force us

to reconsider the textbook description of the NuRD complex as

an exclusive transcriptionally repressive complex (Baymaz
(C) Histone peptide pull-down experiment in HeLa nuclear extracts, revealing enri

determined by western blotting.

(D) Histone peptide pull-down experiment in HeLa nuclear extracts expressing th

See also Figure S4.
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et al., 2015; Reynolds et al., 2013; Whyte et al., 2012). To investi-

gate the exact function of the NuRD complex in regulating gene

expression, time course experiments in which NuRD recruitment

to target genes canbe inducedneed tobe designed. Such exper-

iments will allow deciphering of the exact order of events and the

transcriptional output following NuRD recruitment.

Finally, the mammalian NuRD complex contains a striking

number of protein paralogues such as MBD2/3, MTA1/2/3,

HDAC1/2, CHD3/4, and GATAD2A/B. These paralogues are

vertebrate specific, as Drosophila NuRD only contains one

GATAD2, CHD, MTA, and HDAC protein, for example. Appar-

ently, during evolution, multiple NuRD subunit paralogues with

distinct biological functions evolved. In this study, we have

shown that the GATAD2A and GATAD2B paralogues define

mutually exclusive NuRD subcomplexes. Furthermore, only

GATAD2A interacts with the ZMYND8/Z3 module. Currently, it

is not clear yet whether and which of the other NuRD subunit

paralogues form hetero- or homomers and, thus, how many

different functional compositions of the NuRD complex exist.

In the future, paralogue-specific affinity purifications will surely

shed more light on the biochemical and functional diversity of

NuRD, which should be classified as a family of closely related

protein complexes rather than a single biochemical entity.

EXPERIMENTAL PROCEDURES

Cloning

ZMYND8 isoform 17 was cloned into pEGFP-C3 (Clontech). This isoform is

referred to as ZMYND8WT throughout this study (Supplemental Information).

GFP-ZMYND8WT and GFP-ZMYND8dBROMO mutant (isoform 1) constructs

were kindly provided by Kyle Miller. GFP-GATAD2A was PCR amplified from

a construct kindly provided by Dr. Imre Berger and cloned into the pEGFP-

C3 vector. pcDNA5-FRT-TO-GFP constructs were created by Gateway clon-

ing (Thermo Fisher Scientific). pCMV-mCHERRY-p66B was generously pro-

vided by Dr. Rainer Renkawitz and formed the template for PCR of GATAD2B.

The ZMYND8 MYND domain was GST tagged in vector pRPN256NB.

Cell Culture and Generation of Stable Cell Lines

Hek293T, U2OS, HeLa Kyoto, or HeLa FRT-TO cells were grown according

to standard protocols. Generation of stable inducible lines, shRNA-mediated

knockdown lines, and CRISPR (clustered regularly interspaced short palin-

dromic repeat) knockout cell lines, as well as details about SILAC culturing

and siRNA transfections, can be found in the Supplemental Experimental Pro-

cedures. U2OS cells stably expressing GFP-CHD4 were previously described

(Smeenk et al., 2010).

Nuclear Extract Preparation

Nuclear extracts (NEs) were prepared essentially as described previously

(Dignam et al., 1983).

GFP Affinity Purification

GFP purifications were performed essentially as described previously (Bay-

maz et al., 2014).

MS

Liquid chromatography-tandem MS (LC-MS/MS) measurements were per-

formed as described previously (Kloet et al., 2014).
chment of ZMYND8 and TAF3 on a variety of modified histone-tail peptides, as

e indicated GFP-tagged ZMYND8 mutants.
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(B) Quantification of (A).

(C) Survival assays of GATAD2A and GATAD2B knockdown HeLa cells and siZNF687-treated U2OS cells. siBRCA2 is a positive control.

(legend continued on next page)
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MS Data Analysis

Raw data were analyzed using the MaxQuant software package, Perseus, and

R (Cox et al., 2014; Cox and Mann, 2008; Tyanova et al., 2016). Details about

data analyses are described in the Supplemental Information. Processed MS

data can be found in Table S1.

ChIP-Seq

Details about chromatin preparation and ChIP, such as antibodies, can be

found in Supplemental Experimental Procedures. X-linking of cells was per-

formed using disuccinimidyl glutarate (DSG) and formaldehyde. Library prep-

aration was performed using the KAPAKit andNextflex adaptors. Purified DNA

was analyzed by deep sequencing on the Illumina GAIIx or Illumina HiSeq2000

genome analyzers.

Library Sequencing and Data Analysis

Reads were mapped to hg19 (NCBI build 37) using BWA, allowing one

mismatch. Peak-calling was performed with the MACS 2.0 tool. ZMYND8

peaks and their assigned target genes are listed in Table S2.

The Python package used for K-means clustering and generation of heat-

maps and bandplots is available at http://simonvh.github.io/fluff/ (Georgiou

and van Heeringen, 2016). R was used to generate bandplots.

Available RCOR1 ChIP-seq data in HeLa S3 (GSM1104353) were used

to generate heatmaps (Zhang et al., 2013). DNA methylation was analyzed us-

ing ENCODE (Encyclopedia of DNA Elements) dataset GSM999337. The ChIP-

seq datasets for H3K4me1, H3k27ac, DNase I, and P300 were retrieved from

the ENCODE data repository site (http://genome.ucsc.edu/ENCODE/).

RNA-Seq

RNA was purified using the QIAGEN RNeasy Mini Kit. rRNA was removed us-

ing the Ribo-Zero rRNA Removal Kit (Illumina). cDNA was synthesized while

retaining strand identity. The paired-end reads were aligned to hg19 using

the Genomic Short-read Alignment Program (Wu andWatanabe, 2005), allow-

ing one mismatch. Aligned reads were analyzed using BamTools API 1.0.2

(Barnett et al., 2011). Differential expression analysis was performed using

the Cufflinks v2.1.1 package (Trapnell et al., 2010) by FPKM (fragments of kilo-

base per exon per million fragments mapped) on the human RefSeq transcript

database (Pruitt et al., 2014).

UV-A Laser Micro-irradiation

Cells were grown on coverslips and sensitizedwith bromodeoxyuridine (BrdU).

When required, cells were simultaneously induced with doxycycline. The

growth medium was replaced by Leibovitz’s L15 medium with 10% fetal calf

serum (FCS) and penicillin-streptomycin (pen-strep), and cells were kept at

37�C. For micro-irradiation, the cells were treated with a pulsed nitrogen laser

(16 Hz, 364 nm, Micropoint Ablation Laser System; Andor) that was focused

through a Leica 403 HCX Plan Apo 1.25-0.75 oil-immersion objective.

The laser output power was 72. On average, 50 cells were micro-irradiated

(2 iterations per pixel) within 5 min, using Andor IQ software (Andor). For

details, see Supplemental Information.

Histone Peptide Pull-Downs

Histone peptide pull-downs were performed as described previously (Vermeu-

len et al., 2010).

Cell-Cycle Profiling

For cell-cycle analysis, cells were fixed in 70% ethanol, followed by DNA stain-

ing with 50 mg/mL propidium iodide in the presence of RNase A (0.1 mg/ml)

(Sigma). Cell sorting was performed on a BD LSR II flow cytometer (BD Biosci-

ences) using BD FACSDiva Software (version 5.0.3; BD Biosciences). Quanti-

fications were performed using Flowing Software.
(D) Bar graph showing HR efficiency in siRNA-mediated knockdown cells as mea

genes. Expression of I-SceI induces a DNA double-strand break, and repair of th

(E) Formation of RAD51 foci in control or ZMYND8-KO cells.

(F) Quantification of (E).

Error bars indicate SEM. Two-tailed Student’s t test p values: *p < 0.05; **p < 0.0
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Immunofluorescent Labeling and Image Acquisition

Immunofluoresecent labeling was carried out as described previously (Luij-

sterburg et al., 2012). Details can be found in the Supplemental Experimental

Procedures.

Images were acquired on a Zeiss Axio Imager M2 wide-field fluorescence

microscope using a 633 Plan Apo (1.4 NA) oil-immersion objective (Zeiss)

and an HXP 120 metal halide lamp used for excitation. Images were recorded

using ZEN 2012 software and quantified using ImageJ.

HR Assay

U2OS cells containing the DR-GFP reporter were used tomeasure the repair of

I-SceI-induced DSBs by HR as described previously (Pierce et al., 1999). For

more details, see Supplemental Experimental Procedures.

PARP Inhibitor Survival

U2OS cells were transfected with small interfering RNA (siRNA) and, after

48 hr, trypsinized, seeded, and exposed to PARP inhibitor KU-0058948

(AstraZeneca) at the indicated concentration. After 7 days, the cells were

stained with methylene blue. Colonies containing more than 20 cells were

scored.

Statistical Methods

The p values in SILAC-based GFP affinity purifications were calculated

using significance B in Perseus. Specific interactors in LFQ-based GFP

affinity purifications were determined using an adapted two-tailed Student’s

t test in the Perseus software (permutation-based false discovery rate

[FDR] with 250 randomizations); s0 and FDR are indicated in the graphs.

For ChIP-qPCR and qRT-PCR, p values were determined using two-

tailed Student’s t tests on technical triplicates of one of the representa-

tive experiments. For micro-irradiation experiments, mean and SEM were

determined based on more than 40 cells per condition divided over multi-

ple experiments. The p values were calculated using two-tailed Student’s

t test.

ACCESSION NUMBERS

The accession number for raw and processedMSdata reported in this paper is

PXD: PXD003856. These data have been deposited in the ProteomeXchange

Consortium via the PRIDE partner repository (Vizcaı́no et al., 2016). The acces-

sion number for all high-throughput sequencing data reported in this paper is

GEO: GSE79836.
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