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A B S T R A C T

We present a versatile open-source pipeline for simulating inhomogeneous reaction–diffusion processes in
highly resolved, image-based geometries of porous media with reactive boundaries. Resolving realistic pore-
scale geometries in numerical models is challenging and computationally demanding, as the scale differences
between the sizes of the interstitia and the whole system can lead to prohibitive memory requirements. The
present pipeline combines a level-set method with geometry-adapted sparse block grids on GPUs to efficiently
simulate reaction–diffusion processes in image-based geometries. We showcase the method by applying it to
fertilizer diffusion in soil, heat transfer in porous ceramics, and determining effective diffusion coefficients and
tortuosity. The present approach enables solving reaction–diffusion partial differential equations in real-world
geometries applicable to porous media across fields such as engineering, environmental science, and biology.
1. Introduction

Reaction–diffusion partial differential equations (PDEs) describe
transport and conversion processes in porous media across science and
engineering [1–4]. Examples include soil contamination in geology [5],
drug formulations using amorphous solid dispersion in pharmacy [6],
transport of reactants in packed bed catalysts [1,7], and biological
phenomena such as tissue patterning and morphogenesis [2,8–13].
The porous media in which these processes occur often have intricate,
irregular geometries.

These intricate geometries make constructing accurate numerical
models of transport processes in porous media challenging. To simplify
the problem, transport processes are often modeled by homogeniz-
ing the geometry [14–18] and using coarse-grained geometric factors
like tortuosity [19] and porosity. However, determining such factors
is a non-trivial task, and simplified homogenized models often lack
in accurately predicting reactive transport processes when geometric
heterogeneity is lost [20]. To numerically model transport processes in
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porous media more accurately, or to computationally determine coarse-
grained observables, the real-world geometry of the pores has to be
factored in.

Realistically modeling pores in a simulation, however, is challeng-
ing. One difficulty is that the surface of real-world irregular porous
media geometries cannot be described by a global parametrization.
Instead, an algorithmic surface representation has to be constructed
that can be either explicit, as, e.g., surface triangulation [21], or
implicit, as, e.g., phase fields [22,23] or level sets [24].

Another challenge in resolving real-world pore geometries in a
computer simulation is the difference in the length scales involved.
While the interstitial space is often on the order of micrometers, the
overall system size can be several orders of magnitude larger. A key
challenge with such multiscale simulations is that they usually demand
a lot of computer memory, limiting their feasibility and efficiency.

This memory requirement can be reduced in porous media sim-
ulations by taking advantage of the fact that only a fraction of the
3D space is of interest, and using a dense discretization is wasteful.
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Several methods allow for the placement of discretization points only
in regions of interest. A famous example is particle methods, where the
discretization points are not bound to any grid structure [25–27]. The
downside of lacking a grid structure, however, is that neighborhood
information is not readily available, requiring additional data structures
like cell lists [28] or Verlet lists [29]. Moreover, approximation of
spatial derivatives requires computationally expensive mesh-free meth-
ods like DC-PSE [30]. Hence, particle methods reduce the memory
requirement thanks to their geometrical adaptivity but increase the
computational cost due to their mesh-free structure.

A data structure that combines the geometrical adaptivity of particle
methods with the structured property of a grid is the sparse block
grid [31]. Similar to particle methods and in contrast to dense grids,
sparse grids enable the allocation of individual points in any subspace
of the domain as needed. In contrast to particle methods, however,
the points of a sparse grid are structured in Cartesian neighborhoods.
Therefore, compared to particles, the overhead for storing positional
information is smaller, neighborhood access becomes faster, and dif-
ferential operators can be approximated using standard grid-based
schemes. Furthermore, imposing boundary conditions on a sparse grid
is computationally simpler than doing so on particles. Summarizing,
owing to their grid-like structure and geometrical adaptivity, sparse
block grids represent a suitable candidate for discretizing porous media
geometries in a memory- and compute-efficient way.

Once the porous media geometry is numerically represented and
discretized efficiently, it can be used to simulate reaction–diffusion pro-
cesses. Reaction–diffusion processes can be described by PDEs, whose
evolution in time requires the numerical approximation of differential
operators. A wide range of methods for numerically approximating dif-
ferential operators exists [32], including finite element methods [33],
finite volume methods [34], finite difference methods [35], and spec-
tral methods [36]. Spectral methods cannot be adapted to sparse grids
without losing their computational advantages. Finite element and
finite volume methods can use adaptive, unstructured grids. Generation
of an unstructured grid for a given complex geometry, however, has
a high computational cost that might be justifiable when simulating
fluid flow but is disproportionate when simulating reaction–diffusion
processes. Thus, we use finite-difference methods and combine them
with sparse grids to solve reaction–diffusion PDEs with high memory
and computational efficiency and without the need for generating
unstructured meshes.

To further accelerate simulations of transport processes in porous
media, we take advantage of GPUs and parallelize our simulation
using the Open Framework for Particles and Meshes (OpenFPM) [37].
OpenFPM is well suited to our approach, as it provides a sparse-grid
data structure for which tightly coupled scalability to multiple GPUs
has been shown [31].

We extend the previous sparse block grid implementation by in-
corporating an implicit level-set algorithm for representing generic
surfaces. This enables simulations in three-dimensional (3D), non-
parametric, image-based geometries on distributed GPUs. The resulting
open-source pipeline covers the entire workflow for porous media
applications, from the segmentation of 3D sample images over the
generation of a computational representation to solving the PDEs in
the fully-resolved pore-scale geometries and visualizing the results. As
inputs, the present pipeline can handle different kinds of microscopy
images or micro-computed tomography scans (μCTs). From those, it
generates realistic pore-scale geometries using the implemented level-
set representation. On the process modeling side, we extend from
homogeneous reaction–diffusion models to also include inhomogeneous
reaction–diffusion processes, that is, to space-dependent diffusion coef-
ficients and locally varying reaction rates. These can vary in function
of the distance to the nearest interface, as that information is avail-
able from the level-set description of the geometry. We showcase the
resulting image-based simulation pipeline in two real-world examples:
2

inhomogeneous diffusion of fertilizer through soil and heat transfer in t
reticulate porous ceramics catalysts for renewable energy technology.
We also benchmark the computational performance, multi-GPU scal-
ability, and memory requirement of the present pipeline, comparing
with dense-grid approaches.

2. Methods

Numerical modeling of reaction–diffusion processes in porous media
requires a mathematical description of the process, a numerical descrip-
tion of the geometry, and a suitable data structure to discretize space.
We therefore first describe the governing equations and methods we
use to build predictive models of reaction–diffusion processes in the
image-based geometry of porous media. We also review the concepts
of tortuosity and effective diffusivity.

Reaction–diffusion processes are modeled by a PDE describing the
space–time evolution of a continuous concentration or density field. For
isotropic bulk reaction–diffusion processes this PDE is:
𝜕𝑢(𝒙, 𝑡)
𝜕𝑡

= 𝛁 ⋅ (𝐷(𝒙, 𝑡)𝛁𝑢(𝒙, 𝑡))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

diffusion

+ 𝑓 (𝑢(𝒙, 𝑡),𝒙, 𝑡)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

reactions

, (2.0.1)

here 𝑢(𝒙, 𝑡) is a scalar field at time 𝑡 (0 < 𝑡 ≤ 𝑡max) and position 𝒙
escribing an intensive quantity, such as concentration or temperature.
he diffusion domain 𝛺 is enclosed by a surface 𝜕𝛺, i.e., 𝒙 ∈ {𝛺 ⧵𝜕𝛺}.
(𝒙, 𝑡) is the diffusion coefficient as a function of space and time, and
(𝑢(𝒙, 𝑡),𝒙, 𝑡) is the reaction term, which can be a reactive boundary, a

inear combination of sources or sinks in the volume, both, or zero for
ure diffusion.

Diffusion through porous media is often inhomogeneous. For ex-
mple, the diffusivity can vary between different phases or when
olecules interact with the solid surface, leading to spatially varying

oefficients [38]. The reaction term covers sources and sinks that can
ary in space and time and depend on the current concentration via the
aw of mass action.

The solution of this PDE depends on the initial condition 𝑢(𝒙, 0), the
oundary conditions, and the geometry of the diffusion domain 𝛺.

.1. Tortuosity and effective diffusivity

The geometry of the diffusion space 𝛺 affects the diffusive disper-
ion as it restricts the path a molecule can take [39,40]. Especially in
he case of porous media with small interstitial space, a molecule has to
ove further on average to reach the same mean square displacement

s in free space, because it has to circumvent obstacles [41–46].
The ratio between the average path length ⟨𝐿d⟩ actually traveled by

diffusing molecule and the straight-line distance 𝐿s is called diffusive
ortuosity, 𝜏d [14,47]. The diffusive tortuosity 𝜏d can be expressed
n terms of the diffusion coefficient in a bulk volume relative to its
espective value in a tortuous medium [48], as

d =
(

⟨𝐿d⟩

𝐿s

)2
=

𝐷f
𝐷eff

, (2.1.1)

where 𝐷f is the intrinsic molecular diffusion coefficient and 𝐷eff the
ffective diffusion coefficient in the tortuous medium [19,46]. The
iffusive tortuosity or the effective diffusion coefficient of a material
re of fundamental interest in engineering and science, because they
an be used in macroscale models to make coarse-grained predictions
hat help design and conceptualize diffusion in a material [15,19].

Many porous media, however, are heterogeneous, and averaging ap-
roaches do not capture local variations in tortuosity and the resulting
nomalies [39,49]. Synthetic pore-scale models include tortuosity to
enerate periodic or stochastic networks of, e.g. cylinders or spheres.
owever, they do not reach the same level of heterogeneity as real-
orld geometries due to their artificial symmetry and lack of imperfect
ore connectivity [50].

Moreover, pore geometry also affects chemical reactions. In par-
icular, reactions at the interface depend on the surface area, which
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Fig. 1. Overview of the present image-based simulation pipeline. The first step is the segmentation of a 3D μCT or microscopy image (I) using the pixel-wise random-forest classifier
(II) from ilastik [53]. The binary segmentation mask is converted to an indicator function from which, on a dense grid (III), the level-set signed distance function (SDF) (IV) is
obtained using Sussman redistancing. Based on the SDF, a sparse block grid [31] geometry-adapted discretization is constructed (V). The sparse block grid data structure is then
distributed over potentially multiple GPUs using the open-source scalable computing software OpenFPM [37] (VI). Finally, simulation results are visualized using ParaView [54]
(VII).
can differ significantly between media of different grain and pore
sizes [51]. This is exploited when designing catalysts like packed beds
and reticulate porous ceramics, which have a highly tortuous geometry
with a large surface area [7,52].

Since characteristics like tortuosity, pore size, pore connectivity,
and surface area significantly impact both diffusion and reactions,
accurate predictive models of reaction–diffusion processes in porous
media require taking into account the real pore-scale geometry of a
given sample.

2.2. Level-set method for image-based geometry reconstruction

Real-world geometries for numerical models can be derived from 3D
images, such as light-microscopy volumes or micro-computed tomogra-
phy scans (μCTs). For simulating transport processes in image-derived
geometries, an algorithmic representation of the surface is required that
forms the boundary for the transported medium.

Several methods to numerically represent surfaces exist. Explicit
methods, like surface triangulation, directly discretize the surface by
creating a surface grid [21]. However, generating such unstructured
grids has a computational cost disproportionate to the cost of the
reaction–diffusion simulation [55]. Another disadvantage of these sur-
face grids is that they have to be re-generated when the geometry
deforms.

Alternatively, surfaces can be described implicitly by a higher-
dimensional function that takes a specific value at the location of the
surface. Implicit methods do not require an explicit discretization of the
surface and therefore enable the representation of arbitrary geometries
embedded in regular grids. Handling deformations also becomes more
straightforward with implicit methods, as no surface grid needs to be
moved.
3

The most prominent implicit surface methods are phase-field and
level-set methods. Phase-field methods belong to the class of diffuse-
interface models with broad applications for simulating interface prop-
agation in two-phase flows or mineral growth [56–58]. Phase-field
methods were first introduced by [22] and later extended to volume-
conserving phase-fields [23]. Phase-field methods represent the differ-
ent phases (e.g., solid vs. fluid) of the material by a density function
that varies smoothly around the interface. A main limitation of phase-
field methods is their high resolution requirement near the interface,
where the phase function changes rapidly [59]. Another issue is that the
sharpness of the interface is limited by an arbitrarily chosen interface
width parameter, leading to geometric inaccuracies and restrictions on
the time-step size [60,61].

Level-set methods [24] overcome both problems by using a
geometry-description function 𝜙 that has no additional physical mean-
ing. The only purpose of the level function 𝜙 is to represent the
interface as its zero iso-contour. A convenient choice for 𝜙 that is
sufficiently flat around the surface, allows for continuous differentia-
tion, and carries important geometric information is the signed-distance
function SDF:

𝜙SDF(𝒙) =
⎧

⎪

⎨

⎪

⎩

+𝑑 for 𝒙 ∈ 𝛺
−𝑑 for 𝒙 ∈ 𝑆∖𝛺
0 for 𝒙 ∈ 𝜕𝛺.

(2.2.1)

Here, 𝑑 is the Euclidean distance from 𝒙 to the closest point on the
boundary 𝜕𝛺 of a domain 𝛺 embedded in a space 𝑆. This implies that
|𝛁𝜙SDF(𝒙)| = 1 for all 𝒙.

The SDF is constructed for a geometry extracted from a 3D image.
The entire workflow, as illustrated in Fig. 1, starts from binary seg-
mentation of the image, classifying pixels into those that belong to
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𝛺 and those that do not. For pixel classification, we use the open-
ource software ilastik [53], which is based on trainable random-forest
lassifiers. The classification result is represented on the pixels by
binary indicator function. The SDF can be obtained from such an

mage-based indicator function by redistancing. A classic redistancing
lgorithm is the Sussman method [62], which finds the SDF as the
teady-state solution of the PDE

𝜕𝜙(𝒙, 𝛼)
𝜕𝛼

= 𝜎(𝜙(𝒙, 𝛼))(1 − |𝛁𝜙(𝒙, 𝛼)|) (2.2.2)

for large artificial ‘‘time’’ 𝛼. The smoothed sign function 𝜎 proposed
by [63] is:

𝜎(𝜙(𝒙, 𝛼)) = 𝜙(𝒙, 𝛼)
√

𝜙(𝒙, 𝛼)2 + |𝛁𝜙(𝒙, 𝛼)|2ℎ2
, (2.2.3)

where ℎ is the grid spacing, typically equal to the pixel size in the input
image.

Our implementation of Sussman redistancing for multi-CPUs on
a dense grid is available as part of the open-source OpenFPM C++
library. At the time of writing, our implementation computes 𝛁𝜙(𝒙, 𝛼)
in Eq. (2.2.2) using upwind finite differences of order 1, 3 (ENO), or 5
(WENO) [64]. Since the level-set method imposes the limitation that
neighboring interfaces must always be further apart than the width
of the finite-difference stencil used for Sussman redistancing, we use
first-order stencils for all results presented in this paper. They have the
smallest width (namely 1ℎ) and therefore provide the highest spatial
resolution for representing the geometry. We ensure a sufficiently
large distance between interfaces by filtering geometric features of
thickness ≤ 2ℎ from the binary indicator function before constructing
the level-set.

We also note that the SDF, while defining a mathematically sharp
(i.e., not diffuse) interface, is not uniquely defined at sharp corners.
During Sussman redistancing, rounding of corners with a radius of
curvature ≈ ℎ occurs. In image-derived geometries, however, this is
not usually a concern, since the images rarely display sharp corners,
due to the point-spread function of the imaging system. Moreover,
the rounding error of level-set redistancing is of order 𝑂(ℎ). For these
reasons, the error in the SDF converges with order one, as verified in
Fig. A.1.

In our approach, we use the SDF not only to describe the interface
geometry, but also to define consistent inhomogeneous diffusion coef-
ficients, restrict reactions to the surface, and imposes no-flux Neumann
boundary conditions for the diffusion. It can also be extended to
describe deforming geometries, which we do, however, not consider
here.

To obtain smoothly varying diffusion coefficients that depend on the
distance to the surface, we make 𝐷(𝒙) a functional of 𝜙SDF(𝒙), i.e.,

𝐷smooth(𝜙SDF(𝒙)) = 𝐷min +
𝐷max

1 + exp[−(𝛾1 + 𝛾2𝜙SDF(𝒙))]
, (2.2.4)

n the case where the minimum and maximum diffusion coefficients
𝐷min, 𝐷max) are known. The parameters 𝛾1 and 𝛾2 control the distance

of the transition region from 𝜕𝛺 and the smoothing length, respectively.
This transition region ensures that the diffusion coefficient can be
continuously differentiated by finite difference [65].

For reactive transport processes that are restricted to one phase,
it is no longer necessary to discretize the entire 3D domain 𝑆 once
an implicit description of the diffusion space 𝛺 has been obtained as
a SDF. For example, we do not need grid nodes in the solid phase
when simulating diffusion in the fluid phase. To ensure computational
efficiency, we therefore aim to use a geometry-adaptive discretization
method that does not waste memory and computation where they are
4

not needed.
Fig. 2. Illustration of the resolution requirement of particle methods in porous media
geometries. Since operator kernels of particles in one interface must not overlap with
particles on neighboring interfaces, a sufficiently dense particle distribution is required.
This can be achieved by upsampling.

2.3. Discretization and numerical methods

For multi-scale simulations in porous media, geometry-adaptive
discretization data structures can significantly reduce memory require-
ments and computational costs. In particular, for processes that are
restricted to one phase, using a dense grid would be wasteful. As
mentioned in Section 1, particle methods are well suited for discretiz-
ing complex geometries, but require computationally expensive data
structures and methods to organize neighborhood information and
approximate differential operators [27,30].

The fact that operators are usually approximated over a neigh-
borhood of particles within a specific kernel radius adds a further
challenge for applications in porous media, where the interface surface
is not singly connected. In particular, particle interaction neighbor-
hoods must not overlap between different parts of the interface, as
illustrated in Fig. 2. This condition can only be guaranteed when pore-
scale structures are simplified or there is more than one particle per
pixel. In particular, for image-based geometries, the smallest distance
between two interfaces is one pixel. Thus, there have to be sufficiently
many particles per pixel to ensure that kernels will never overlap with
particles from a neighboring interface. This limits the use of mesh-
free particle methods for simulations in fully resolved porous media
geometries.

A data structure that combines the advantages of a structured grid
with the efficiency of geometry-adapted methods is the sparse block
grid [31]. It allows selectively allocating grid points in chunks to
the phase of interest, thus considerably reducing the memory and
computational overhead for discretizing sparse spaces.

Yet, sparse grids preserve the advantage of a grid data structure of
implying positional information and, thus, easily finding neighboring
points. Consequently, differential operators can be approximated using
standard finite-difference schemes, which is faster than operator ap-
proximation on particles. Furthermore, imposing boundary conditions
is simpler in finite-difference methods than in mesh-free particle meth-
ods. In particular, no mirror points in the other phase are required
to impose no-flux Neumann boundary conditions. Instead, the no-flux
condition is imposed within the finite-difference stencil. This is possible
because the index of each neighbor within the stencil is known due to
the grid structure, and the level-set function indicates on which side
of the boundary a neighbor point lies. In the GPU kernel, the functor
evaluating the finite difference is applied to all grid nodes. Within the
functor, a stencil is constructed, and it is checked whether a neighbor
is outside 𝛺. If it is outside, its value is set equal to that of the center
point so that the gradient between the center and that outside neighbor
is zero.

For determining whether a point lies outside or inside 𝛺, we store
he level-set function on the sparse grid, along with the intensive
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Fig. 3. Verification of the implementation of diffusion on a 2D unit disk with no-flux Neumann boundary conditions. The simulation is run until a final time 𝑡f inal = 0.025 when
the system is still far from steady state. The parameters are: 𝐷 = 1.0, Δ𝑡 = 1

8
ℎ2. (a) Visualization of the numerically computed concentration field at 𝑡f inal = 0.025 on a sparse grid

(inset zoom). The sparse grid has been created based on the analytical signed-distance function of the unit disk. Time and diffusion coefficient values are in arbitrary units. (b)
Convergence of the absolute error of the overall method in 𝐿2 (blue circles) and 𝐿∞ (red crosses) norms. Gray lines show the expected slopes for first- (dashed) and second-order
(solid) convergence.
scalar field 𝑢, the spatially varying diffusion coefficients, and the local
reaction rates. We numerically approximate the solution of Eq. (2.0.1)
with the diffusion coefficient given by Eq. (2.2.4) on the sparse grids
using a Forward-Time Centered-Space (FTCS) finite-difference scheme
of order two in space and order one in time. Although implicit time
integrating schemes are more stable and allow for larger time step
sizes, we use explicit time stepping as our focus is on GPU scalability
and computational efficiency. The matrix inversions and global com-
munication overhead incurred by implicit time stepping would quickly
become prohibitive for large and complex-shaped domains. As our
method addresses memory-limited problems, we chose the first-order
explicit Euler time-stepping scheme because it does not require storing
and communicating intermediate stages, as higher-order time-stepping
schemes do. No-flux boundary conditions at the interface are imposed
without a need for mirror points.

2.4. Parallel implementation using OpenFPM

The present pipeline uses sparse block grids as implemented in the
OpenFPM library for scalable scientific computing [31]. OpenFPM is a
C++ library for parallelizing particle- and mesh-based simulations [37].
To benefit from the automatic parallelization capabilities of OpenFPM,
we implement our simulation in C++ using the OpenFPM grid and
sparse-grid data structures. OpenFPM generates these data structures
at compile time using template meta-programming and thus hides
memory access and communication management from the applica-
tion, ensuring portability across CPU and GPU architectures [66]. This
greatly simplifies the implementation of the present simulation, as
demonstrated by the code examples in Appendix B. More code examples
and a full API documentation are available on the OpenFPM website,1
including a documentation of our Sussman redistancing implementa-
tion and example functors for solving reaction–diffusion PDEs on sparse
grids on the GPU.

In the sparse-grid implementation of OpenFPM, we use a uniform
chunk size of 8 grid points along each spatial dimension [31]. These
8 × 8 × 8 grid blocks are stored in an OpenFPM vector containing
C++ aggregates. The chunk position in the dense grid is cached with
an allocation mask for the grid points that are actually allocated in the
sparse grid. Chunks are only stored if they contain at least one allocated

1 At the time of writing: http://openfpm.mpi-cbg.de/.
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grid point. Hence, the fewer the points needed to represent a geometry
and the closer these points lie, the fewer chunks are required and,
consequently, the larger the memory savings of a sparse grid compared
to a dense grid implementation.

In addition to reducing memory requirements, sparse grids also
speed up the computation, as the finite-difference stencil only iterates
over actually allocated points. The higher the density of points within
an allocated chunk, the greater the thread efficiency on the GPU [31].

The sparse grid can be distributed across multiple GPUs by domain
decomposition into cuboidal sub-grids. In OpenFPM, the domain de-
composition is independent of the chunk boundaries of the sparse grid.
Inter-GPU communication is done using CUDA-supported asynchronous
MPI over the interconnect of the computer cluster [31].

Since OpenFPM provides backends for both CUDA and HIP [66],
our software implementation natively runs on GPUs from different
vendors (including both Nvidia and AMD) and is scalable to distributed
multi-GPU setups. Our implementation supports both 64-bit floating
point (FP64) numbers and 32-bit floating point (FP32) numbers on the
GPU. All results in this paper are obtained using FP32 precision, which
is supported by all consumer and data-center GPUs and is typically
faster [67].

Together, these design choices significantly accelerate fully resolved
pore-scale simulations in image-derived geometries of porous media, as
we demonstrate below.

3. Results

We verify the correctness of our implementation of the methods
explained in Section 2, showcase application examples to real-world
reaction–diffusion problems in porous media, quantify the parallel scal-
ability, and compare the GPU performance and memory requirement of
a sparse grid versus a dense grid.

3.1. Verification of the implementation

To verify the accuracy of the method and the convergence of the
discretization, we consider a benchmark case of homogeneous diffusion
of a scalar field 𝑢 according to Eq. (2.0.1) without reactions, sources,
or sinks, i.e., 𝑓 (𝑢(𝒙, 𝑡),𝒙, 𝑡) ≡ 0. We make the test case as relevant
as possible to the application of porous media, while still possess-
ing an analytical solution against which convergence can be verified.
Therefore, the test case includes a curved boundary embedded in a

http://openfpm.mpi-cbg.de/
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Fig. 4. Steps of the present image-based geometry reconstruction pipeline, visualized for an exemplary slice through the 3D volume of a CaCO3 packed bed [7]. (a) Segmented
μCT image showing the two phases with 45 μm voxel size [7]. (b) Image-based binary indicator function. (c) Redistanced level-set signed-distance function (SDF) (Section 2.2).
(d) Sparse block grid containing only points in the diffusion phase, reducing storage.
Cartesian sparse block grid, represented as a level set, with no-flux
Neumann boundary conditions as described in Section 2.3. Specifically,
we consider diffusion inside a 2D disk of radius 𝑅 = 1, represented
by a SDF and discretized using a sparse grid, as shown in Fig. 3a.
The governing equation in polar coordinates (𝑟 =

√

𝑥2 + 𝑦2 and 𝜃 =
atan(𝑦, 𝑥)) is:

𝜕𝑢
𝜕𝑡

= 𝜕2𝑢
𝜕𝑟2

+ 1
𝑟
𝜕𝑢
𝜕𝑟

+ 1
𝑟2
𝜕2𝑢
𝜕𝜃2

, (3.1.1)

with boundary condition
𝜕𝑢(𝑟, 𝑡)
𝜕𝒏

|

|

|

|𝑟=𝑅=1
= 0 (3.1.2)

and initial condition

𝑢(𝑟, 0) = 𝑟3

3
− 𝑟4

4
. (3.1.3)

The polar coordinates only serve to derive the exact analytical solution.
The actual simulation is done in Cartesian coordinates in 2D. The
analytical solution for this case, is derived in Appendix A.1 using the
method of manufactured solutions [68]. All numerical solutions are
compared against this exact solution in both the 𝐿2 and 𝐿∞ norms of
the absolute errors across all grid nodes, see Fig. 3b.

Like in the later applications, the time step size in the convergence
study is adapted with the grid spacing. In particular, we fulfill the
stability condition for diffusion in 2D,

Δ𝑡 < 1
2max𝐷

1
Δ𝑥−2 + Δ𝑦−2

, (3.1.4)

by setting Δ𝑡 = 1
8ℎ

2 for isotropic grid spacings Δ𝑥 = Δ𝑦 = ℎ and
constant diffusion coefficient 𝐷 = 1.0.

For the smallest grid size of 32 × 32 nodes, the disk’s diameter is
covered by approximately 16 grid nodes. The simulation is run until a
final time of 𝑡f inal = 0.025 for all resolutions when the system is still far
from steady state.
6

In order to separately quantify the error in solving the diffusion PDE
in the domain and the error introduced by initial Sussman redistancing
of the level set, we use the exact SDF for testing the PDE solver and,
in addition, test the redistancing alone against the exact SDF. The
convergence of the SDF error from redistancing alone is first-order, as
shown in Fig. A.1.

For the finite-difference scheme used here, we expect first-order
convergence in time and second-order convergence in space. The
boundary conditions are imposed with first-order accuracy, as the
curved boundary is approximated by the piecewise constant edge of the
sparse grid, as illustrated in the inset of Fig. 3a. This is, however, not
a limitation of the level-set method as such, which could in principle
be used to approximate surface normals and curvature for higher-
order boundary treatment. In the present workflow, however, we aim
to benefit from GPU acceleration and sparse memory data structures,
favoring a regular mesh. Moreover, since we use first-order Sussman
redistancing, as described in Section 2.2, the error in the boundary
conditions is not limiting. We therefore expect a convergence order be-
tween one, as dictated by the time stepping and Sussman redistancing,
and two, as dictated by the spatial derivatives. This is confirmed in the
convergence plot in Fig. 3b, where the empirical order of convergence
is about 1.5, verifying the correctness of our implementation.

3.2. Generating real-world geometries from 3D images

We next illustrate the workflow of the present pipeline to go from
a 3D image of a porous medium to a usable simulation domain. An
overview of the full pipeline is provided in Fig. 1. Fig. 4 shows the
workflow for the case of a fluid-filled CaCO3 packed bed. The seg-
mented μCT images (Fig. 4a, voxel size 45 μm) were kindly provided
by Prof. Jörg Petrasch (Michigan State University, College of Engineer-
ing) [7]. Our pipeline then first converts the binary segmentation to
an indicator function {−1, 1} (Fig. 4b). This is then used as an input
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Fig. 5. 3D visualization of the sparse-grid level-set representation of the geometry from Fig. 4d. Left: full block; Right: clipped block with SDF values overlaid in color.
Fig. 6. Simulation of fluorescence recovery after photobleaching (FRAP) in a CaCO3 packed bed for determining the diffusive tortuosity and effective diffusivity using the present
pipeline. (a) Simulation snapshots of FRAP in the 3D image-based geometry of the porous medium with 𝐷 = 1.0mm2∕s. (b) Simulation snapshot of FRAP in a bulk box of the same
domain size with 𝐷 = 0.55mm2∕s. To obtain the same recovery speed by free diffusion as in the porous structure, the diffusion coefficient had to be reduced by a factor of 1.82,
thereby quantifying the diffusive tortuosity. (c) FRAP curves showing the normalized mass in the initially bleached box for diffusion in the porous geometry with 𝐷 = 1.0mm2∕s
and diffusion in the box with 𝐷 = 1.0mm2∕s and 𝐷 = 0.55mm2∕s. The effective diffusion coefficient 𝐷eff = 0.55mm2∕s was obtained by least-squares fit of the FRAP curve in the
box to that in the porous medium.
to Sussman redistancing to generate the level-set SDF representation
of the interface (Fig. 4c) as described in Section 2.2. Based on this
SDF, the sparse block grid is generated by only inserting points in the
diffusion phase, e.g., in regions where 𝜙SDF > 0. The SDF is then only
stored restricted to those points, leading to a sparse geometry-adapted
representation (Fig. 4d). Allocation, however, is chunkwise meaning
that a group of 8dims (with dimensions dims) points belonging to one
chunk is allocated when a chunk contains at least one inserted point.
A 3D visualization of the sparse-grid SDF is shown in Fig. 5.

3.3. Calculation of effective diffusion coefficient and tortuosity

The effect of the pore geometry and topology on the diffusion
dynamics is of interest in many applications [15,69,70] and is often
studied in pore-scale numerical simulations [71–73], as experimental
determination is time-consuming and difficult [43]. The effect of spa-
tial hindrance by a porous geometry on the diffusion of a molecule
can be captured by an effective diffusion coefficient, which is re-
lated to the molecular diffusion coefficient by the diffusive tortuos-
ity (Eq. (2.1.1)). While tortuosity causes an increase in diffusivity
in advection-dominated systems, known as Taylor diffusion [74], the
effective diffusivity of diffusion-dominated processes in tortuous ge-
ometries is smaller than the molecular diffusivity in free space [40,42,
50,75,76].

Over the past century, several theoretical and empirical correlations
have been postulated that relate diffusive tortuosity 𝜏 to material
7

d

porosity 𝜓 . Many of them have the form

𝜏d = 𝜓−𝑁 , (3.3.1)

with different exponents 𝑁 depending on the type of material [1,77–
79]. For instance, it was shown that Eq. (3.3.1) for 𝑁 = 2 fits
experimental data of diffusion in low-density alumina and silver pellets,
where diffusion is controlled by macropores [1]. High-density pellets,
where Knudsen diffusion and micropores dominate, however, could not
be described by Eq. (3.3.1) [1]. This demonstrates that the quality
of correlations like Eq. (3.3.1) hinges on the similarity between the
geometry in question and the geometry used during the fitting process.
The CaCO3 packed bed studied here has low density, with only ≈50%
of the sample belonging to the solid phase. We, therefore, expect
the effective diffusion to be determined by the macropore tortuosity.
However, the porosity used in formulas like Eq. (3.3.1) is an average
value over (some parts of) a material, which does not account for size
limits of the interstitial space and for poor pore connectivity.

Tortuosity–porosity relations have been comprehensively reviewed
[14,46] and further refined by numerical simulations [19,50,80]. For
granular media, like the CaCO3 packed bed, Huang [50], for example,
found in random-walk particle simulations in synthetic geometries that
the tortuosity can best be correlated with the porosity 𝜓 by the linear
combination [81]

𝜏d = 𝜓 + 𝛽(1 − 𝜓), (3.3.2)

with 𝛽 = 1.65.
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In order to use the present pipeline to directly measure the tor-
tuosity and effective diffusivity of a given porous geometry, we sim-
ulate fluorescence recovery after photobleaching (FRAP). FRAP is an
experiment widely used in biology to determine effective diffusion
coefficients in cells and tissues [40]. While FRAP experiments are not
possible for inorganic solids, the simulation of FRAP in the respective
image-derived geometry can still be done with the present pipeline
and used to numerically determine the tortuosity. We illustrate this by
simulating FRAP in the image-based reconstruction of the fluid phase
of the CaCO3 from Section 3.2 with 𝐷 = 1.0mm2∕s (Fig. 6a). We then
compare the so-simulated diffusion dynamics with diffusion in a bulk
3D box of the same edge length (Fig. 6b). Fitting (least squares) the
free-space diffusion dynamics to those simulated in the porous medium,
an effective diffusion coefficient of 0.55 μm2∕s is found in the porous
medium (Fig. 6c). According to Eq. (2.1.1), the diffusive tortuosity thus
is:

𝜏d = 𝐷
𝐷eff

=
1.0mm2∕s
0.55mm2∕s

= 1.82. (3.3.3)

This means that diffusive transport is only about half as efficient in
the fluid phase of a CaCO3 than in a free-space bulk box.

This result agrees well with the value from Eq. (3.3.2). In particular,
for the sample porosity of 𝜓 = 0.39 as determined in Ref. [7], Eq. (3.3.2)
predicts 𝜏d = 1.40, which is about 23% lower than what we obtain with
ur FRAP simulation. The difference is in agreement with the finding
n Ref. [50] that, due to unconnected pores, the real medium has a
arger tortuosity than the synthetic geometries for which Eq. (3.3.2)
as fitted. But even the tortuosity obtained by simulations in μCT-based

geometries most likely still underestimates the real hindrance to the
molecular diffusion, as it ignores interactions with micropores that are
not resolved in the μCTs images [38].

3.4. Application example 1: Inhomogeneous diffusion of fertilizer in soil

Understanding how solutes migrate through soil is of significant
interest to several fields, including agriculture and environmental sci-
ence [82–84]. For example, fertilizer and pesticides used in agriculture
are desired in specific regions where they protect and nourish the crops
but undesired in other areas, where they pollute groundwater [85,86]
as a source of drinking water for many communities [87,88]. There-
fore, fertilizer application is ideally properly planned. To help farmers
manage fertilizer application and prevent a buildup of excess chemicals
in the soil, it is often a prerequisite to understanding diffusive transport
in porous soil. This is our first application example where we showcase
the use of the present computational pipeline.

When transport processes in soil are driven by steep concentration
gradients, they are diffusion dominated, i.e., the Péclet number is small,
and advection can be neglected. Modeling diffusion in the soil is not
trivial, as the diffusive path of a molecule is not only hindered by
macropore tortuosity of the porous soil structure, but in addition, the
molecules can get trapped in micropores at the solid surfaces and
chemically react with molecules in the solid phase [38,72].

We therefore simulate fertilizer diffusion in soil by inhomogeneous
diffusion of a concentration field in the fluid phase of a packed bed of
CaCO3 particles, using the image-based geometry reconstruction from
Fig. 5. In the simulated scenario, a fertilizer dissolved in the liquid
enters from one face of the simulation domain and diffuses through
the interstitial fluid phase between the solid CaCO3 grains with an
inhomogeneous diffusion coefficient that models diffusive hindrance
by micropores close to the surface. In particular, 𝐷𝜖(𝒙) = 𝐷𝜖(𝒙) with

olecular diffusion coefficient 𝐷 = 1.0mm2∕s, microporosity 𝜖 = 1 in
he fluid, 𝜖 = 0 in the solid. This follows the successful approach of
ocally modulating diffusion by a phase-dependent factor 𝜖(𝒙) to model
oundary effects [1,89–91]. Different from previous works, however,
e introduce a continuously differentiable transition zone between

he phases, which depends on the distance 𝜙 (𝒙) to the fluid–solid
8

SDF g
Fig. 7. Mass conservation during inhomogeneous diffusion of fertilizer through the
fluid phase of a CaCO3 packed bed. The average increase in normalized total mass is
7.91 × 10−10 per time step, thereby lying within the numerical round-off tolerance of
he single-precision (FP32) arithmetics used.

nterface according to Eq. (2.2.4). We here use smoothing parameters
1 = 𝛾2𝜙min, 𝜙min = min𝒙∈𝛺 𝜙SDF(𝒙), and 𝛾2 = 4ℎ. Also, in the

present application, 𝜖 only represents microporosity at length-scales
below the μCT resolution, whereas the macroporosity 𝜓 , resolved by
the imaging, is explicitly modeled by the level-set function and the
geometry-adapted sparse grid. Therefore, diffusion within macropores
is simulated directly, while the hindrance by unresolved micropores at
the solid surface is homogenized into an inhomogeneous diffusion con-
stant, following the classic upscaling approach. This fertilizer diffusion
model can also readily be applied to contaminant diffusion.

Fig. 8 shows snapshots of the fertilizer diffusion simulation. It can be
seen that the diffusion front becomes increasingly fuzzy over time. The
increasing roughness of the diffusion front is caused by local variations
in spatial hindrance and imperfect pore connectivity, i.e., the tortuos-
ity of the porous geometry. Therefore, volume-averaged diffusion on
the macroscale appears effectively anomalous. This anomalous behav-
ior cannot be captured by geometry-averaging models with effective
constants, demonstrating the importance of taking into account the
pore-scale geometry.

We test the accuracy of our implementation of the no-flux Neumann
boundary conditions and the smoothed inhomogeneous diffusion coef-
ficient by monitoring the conservation of mass during the simulation.
The results in Fig. 7 show that the total mass is conserved to within
the numerical round-off tolerance of the time-stepping scheme, as the
simulation is done using single-precision arithmetics on the GPU. The
average increase in normalized total mass per time step is 8×10−10, and
he total increase after 106 time steps is 8 × 10−4.

We next compare the memory requirements and simulation GPU
imes of a dense-grid implementation with the sparse-grid version used
n this application example. The results for different grid resolutions
re given in Table 1. The dense grid is an OpenFPM block grid data
tructure with all chunks fully occupied. Using the sparse block grid re-
uces the number of grid points in this particular example by 50% from
50×106 points to 75×106 points. Memory requirements are reduced by
2%, from 2.62 GB to 2.04 GB. This reduction is less than 50% due to
he additional bookkeeping data structures of the sparse block grid, and
ecause a chunk of 8 × 8 × 8 points is allocated whenever there is at
east one point inside it, resulting in allocation of 77% of all chunks in
his example. The GPU time (excluding communication) and wall-clock
ime (including all necessary communication) per time step for the
parse block grid is around 4.47 ms and 4.48 ms, respectively, for the
ighest resolution on a single Nvidia A100 GPU. This is 13% faster than
he dense grid implementation with 5.11 ms and 5.13 ms, respectively,
n the same GPU. The speedup of a sparse over a dense grid in this
xample is modest because stencil operations are only performed for
ense-grid points that lie in the fluid phase, requiring only one if

ondition more on a dense grid than on a sparse grid. Despite the CaCO3
acked-bed sample being a rather dense geometry, however, the sparse

rid offers some advantage, mainly in memory usage.
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Fig. 8. Simulation snapshots after 0, 4×105, and 106 time steps of a simulation of inhomogeneous diffusion of fertilizer in the fluid phase of a CaCO3 packed bed. In the simulated
scenario, the fertilizer dissolved in the fluid enters from one face of the simulation domain and diffuses through the fluid phase with an inhomogeneous diffusion coefficient that
models hindrance by micropores at the CaCO3 surfaces. This causes the diffusion front speed to depend on the locally varying pore geometry. The black vertical line indicates the
location of a flat front with homogeneous speed for comparison.
3.5. Application example 2: Heat conduction through reticulate porous
ceramics

Another process that a reaction–diffusion PDE can describe is heat
conduction through a solid. Heat conduction in porous media is rele-
vant in many applications, ranging from thermal energy storage [92]
to building insulation [93]. A class of materials with particularly ben-
eficial characteristics for high-temperature applications are Reticulate
Porous Ceramics (RPCs). RPCs play a role in applications including
solar-thermal and thermo-chemical reactors for renewable energy tech-
nology [94], radiant burners [95], and gas filters [7,96]. We use this
as a second application showcase for the present simulation pipeline.

We therefore simulate diffusive heat conduction through the solid
phase of a RPC sample with heat dissipation at the surfaces. The
μCT images of an RPC sample of size 1216 × 1016 × 941 voxels
with a resolution of 30 μm/voxel were kindly provided by Prof. Jörg
Petrasch (Michigan State University, College of Engineering) [52,97].
We segmented the images using the pixel-wise random-forest classifiers
from ilastik [53] and obtained the SDF of the solid phase using the
approach described in Section 3.2. In the simulated scenario, heat
diffuses through the RPC solid phase with a distributed heat sink at
the solid surface. Using the level-set SDF, it becomes straightforward to
constrain the heat sink to the surface as a reaction term (see Fig. 9b,c).

Fig. 9d shows snapshots of the simulation. The initial temperature
distribution (left) is uniform, except for a sphere of radius 235ℎ in
the center, where the temperature is higher. From here, temperature
diffuses radially outwards with a diffusion coefficient of 𝐷 = 0.1mm2∕s.
Heat is dissipated at the solid surface, which acts as a sink with rate
𝑓 (𝒙) = 0.1 s−1 for 𝒙 ∈ 𝜕𝛺. Starting from a spherically symmetric initial
condition, the temperature distribution becomes increasingly asymmet-
ric and irregular over time (Fig. 9d, middle), although a homogeneous
diffusion coefficient is used. Like in Section 3.4, the diffusion front
velocity is inhomogeneous (cf. white circle in Fig. 9d, right) due to the
spatially varying tortuosity and heterogeneous pore connections in the
RPC sample, as well as the local variations in surface area impacting
heat flux due to the surface dissipation. This heterogeneity can only be
captured when considering the pore-scale geometry.

We again compare the computational cost of the present sparse-
grid implementation with that of a dense block grid in a domain of
1216 × 1016 × 941 grid cells. This shows a significant reduction in
allocated memory and GPU time as summarized in Table 1. This is
because the RPC solid phase is truly sparse, filling only about 9% of the
space, with points spread over 21% of the grid chunks. The number of
mesh nodes in the sparse grid is thus reduced to 108 from the 1.2 × 109
of a full grid, which is an 11-fold reduction. This significantly reduces
the memory requirement from 20.3 GB (dense) to 4.2 GB (sparse).

Again, the reduction in memory requirement is less than in the
number of grid points, due to the 8 × 8 × 8 chunk size of the
9

sparse block grid. The GPU time (excluding communication) and wall-
clock time (including all necessary communication) per time step for
the sparse grid are around 3.79 ms and 4.12 ms, respectively, for the
highest resolution on two Nvidia A100 GPUs connected via NVLink.
This is 76% faster than the dense grid implementation with 16.68 ms
and 16.97 ms, respectively, on the same two GPUs. Compared with the
example from Section 3.4, this demonstrates that a sparser geometry
leads to better performance gains.

3.6. Performance and scalability

We benchmark computational performance of our code for different
grid resolutions and on different numbers of GPUs. All benchmarks are
performed on A100-SXM4 GPUs of the taurus computer of TU Dresden,
which has 8 GPUs per compute node. GPUs within a node are connected
by NVLink, whereas individual nodes are connected by 200 Gb/s Infini-
band. We use Nvidia’s Unified Communication - X Framework (UCX), as
integrated into OpenMPI, with the SKIP_LABELLING option enabled,
since the grid nodes do not move.

We first measure how the memory requirements and wall-clock
times scale with problem size for both dense and sparse grids. The
results are given in Table 1 and Fig. 10. In this benchmark, ‘‘dense grid’’
refers to a fully occupied (i.e., all chunks are allocated) OpenFPM block
grid data structure. The grid resolution is successively halved along
one dimension at a time, so the expected scaling is linear (solid line in
Fig. 10). Although the fully occupied chunks of the dense grid enable
better thread efficiency on the GPU than the partly filled chunks of the
sparse grid, Fig. 10 confirms that the sparse grid scales almost as well
as the dense grid, and both scale almost linearly.

We also benchmark the parallel scalability of the code when dis-
tributing the problem over an increasing number of GPUs. The results
for both weak (problem size increases proportional to GPU count2) and
strong (constant problem size) scaling are shown in Figs. 11 (for the
CaCO3 case) and 12 (for the RPC case). In both figures, the wall-clock
times include communication and are averaged over all GPUs and 80
time steps, excluding the first 50 steps of GPU warm-up. For both ap-
plication cases, good scalability is observed up to 8 GPUs. As expected,
weak scaling is better than strong scaling. This is because in strong scal-
ing the computation time per GPU reduces with increasing GPU count,
causing the communication overhead to grow and eventually become
limiting. This is exacerbated when using more than a single compute
node, i.e. from 8 to 16 GPUs, requiring communication across nodes via

2 We scale problem size by scaling the size of the background mesh. The
number of actually allocated nodes in the sparse grid depends on the geometry,
but never deviated more than 1% from linear scaling.
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Fig. 9. Diffusive heat conduction with distributed surface sink in a sample of reticulate porous ceramics. (a) Surface rendering of the image-based reconstruction of the solid
phase represented as a sparse-grid level set. (b) Magnification of one exemplary pore with the level-set SDF shown in color to demonstrate the intricate shape of the pores. (c)
Heat-sink rate around the same pore to show how dissipation is restricted to the surface of the solid phase by the level-set function. (d) Simulation snapshots shown as volume
renderings in a clipped domain with temperature shown by color (arbitrary units). The initial condition is a spherical heat source at the center of the domain (left). From here,
heat spreads through the solid with heat dissipation at the surface (middle, right). The diffusion front significantly deforms over time due to heterogeneous pore connections and
the local variations in surface dissipation. The white circle indicates the location of a symmetric front with homogeneous speed for comparison.
Table 1
Comparison of memory requirements and wall clock times for one iteration (including
all necessary communication) for a dense versus sparse grid implementation of the
present pipeline in the two application examples. The sparser the geometry (on the
8 × 8 × 8 chunk level), the larger the savings afforded by the sparse grid, as less
grid chunks are allocated. The wall clock times are averages over 100 time steps per
GPU, each after 31 steps of GPU warm-up, which are excluded from the averages. The
estimator of the standard deviation of the mean (i.e., the standard error) is given after
the ±. All tests are performed on Nvidia A100-SXM4 GPUs using FP32 precision.

Case Grid size Dense grid Sparse grid

DRAM Time/step DRAM Time/step
(GB) (ms) (GB) (ms)

CaCO3 531 × 531 × 531 2.62 5.126±0.001 2.04 4.484 ± 0.001
(1 GPU) 266 × 531 × 531 1.33 2.714±0.024 1.11 2.578 ± 0.025

266 × 266 × 531 0.67 1.487±0.016 0.59 1.507 ± 0.000
266 × 266 × 266 0.34 0.852±0.000 0.32 0.873 ± 0.000

RPC 1216 × 1016 × 941 20.26 16.972±0.001 4.24 4.117 ± 0.009
(2 GPUs) 608 × 1016 × 941 10.26 8.739±0.001 2.54 2.622 ± 0.006

608 × 508 × 941 5.13 4.422±0.003 1.48 1.765 ± 0.001
608 × 508 × 471 2.57 2.355±0.002 0.84 1.028 ± 0.003

he interconnect network. Taken together, these measurements show
hat our implementation of the present pipeline scales as expected for
ifferent problem sizes and numbers of GPUs.

. Discussion and conclusions

We have presented a GPU-accelerated simulation pipeline for solv-
ng inhomogeneous reaction–diffusion PDEs in real-world, image-based
eometries of porous media. Quantitatively understanding the pore-
cale dynamics of reaction–diffusion processes is relevant to applica-
ions where homogenization or volume-averaging would not be in-
ormative. We have demonstrated this by direct numerical simulation
f fertilizer diffusion in soil and heat conduction in reticulate porous
eramics. In both examples, pore-scale processes such as micropore
dhesion or surface heat dissipation could easily and accurately be
10
included in the simulation. The geometry-adapted sparse grid level-
set discretization used in the presented pipeline was able to efficiently
and effectively cope with the wide spectrum of scales present in fully
resolved geometries of porous media.

The implementation of the present pipeline included extending the
GPU implementation of distributed sparse block grids [31] to incor-
porate a level-set method for image-based modeling. The resulting
workflow takes microscopy or μCT images as input, from which it
generates realistic 3D geometries and represents them as a sparse
level-set. On the process modeling side, we extended the capabil-
ities of the scalable OpenFPM framework for scientific computing
to include space-dependent diffusion coefficients and locally varying
reactions. Together, these contributions enabled fully resolved simula-
tions of inhomogeneous reaction–diffusion processes in non-parametric,
image-based geometries of porous media.

After benchmarking the correctness and convergence of the imple-
mentation, we showcased the pipeline in two real-world examples. In
the first example, we numerically solved an inhomogeneous reaction–
diffusion PDE in a sparse grid that discretized the fluid phase of a
CaCO3 particle-packed bed. For this example, the sparse grid reduced
the memory requirement by 22% and the runtime by 13% compared to
a dense grid. In the second example, we simulated heat conduction with
distributed surface dissipation in the solid phase of reticulate porous
ceramics. Reticulate porous ceramics are extremely sparse, and the
gain from using a sparse block grid was, therefore, higher than for the
CaCO3 particle-packed bed. In particular, the memory requirement was
reduced 4.8-fold, and the simulation runtime was reduced by 76%.

For both application examples, we also benchmarked how the com-
putational cost scales with problem size and with the number of GPUs
used. We showed that the present implementation scales approximately
linearly with problem size on a single GPU (CaCO3) and on two GPUs
(RPC). Parallelizing over more GPUs, we found almost perfect weak
scaling and very good strong scaling when using up to 8 GPUs on the
same compute node. As expected, the communication overhead became
limiting when distributing the simulation across multiple nodes, as we
showed for 16 GPUs distributed across 2 compute nodes.
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Fig. 10. Plots of the data from Table 1 comparing the wall-clock times per time step and the memory requirements for dense (red stars) and sparse (blue circles) block grids on a
fixed number of GPUs. Error bars show the standard error; solid lines denote linear scaling. (a) Inhomogeneous diffusion in a CaCO3 particle-packed bed on a single Nvidia A100
GPU. (b) Heat conduction in reticulate porous ceramics on 2 Nvidia A100 GPUs connected via NVLink.

Fig. 11. Strong and weak parallel scaling of the present implementation on multiple GPUs (#), simulating inhomogeneous diffusion in a CaCO3 particle-packed bed. The wall
clock times are averaged over GPUs and over 80 time steps after 50 steps of GPU warm-up, which are excluded from the averages. All measurements are performed on Nvidia
A100 GPUs using FP32 precision. In the plot, blue circles denote strong and red stars weak scaling. Lines show the ideal scaling (solid: strong, dashed: weak). Error bars in the
plot and error values in the table give the standard error.

Fig. 12. Strong and weak parallel scaling of the present implementation on multiple GPUs (#), simulating heat conduction in reticulate porous ceramics (RPC). The wall clock
times are averaged over GPUs and over 80 time steps after 50 steps of GPU warm-up, which are excluded from the averages. All measurements are performed on Nvidia A100
GPUs using FP32 precision. In the plot, blue circles denote strong and red stars weak scaling. Lines show the ideal scaling (solid: strong, dashed: weak). Error bars in the plot
and error values in the table give the standard error.
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In macroscopic homogenized models, the impact of a porous geom-
etry on diffusive transport processes can be accounted for by material-
dependent constants like tortuosity and effective diffusivity. These
constants are thus of great interest, but obtaining them experimentally
is cumbersome [98–100]. We have therefore shown how the present
image-based simulation pipeline enables determining effective diffu-
sion coefficients and tortuosity numerically by simulating FRAP in the
transport phase of the diffusion space.

While most currently available image-based simulation pipelines
for transport processes in porous media involve commercial software
[101], such as Avizo [102], Ansys [103], or COMSOL [104], the
pipeline presented here is entirely free and open-source. The code is
written in C++ using the OpenFPM library.

A current limitation of the present pipeline is the accuracy of the
boundary approximation, which is first-order. This is not an intrinsic
limitation of the level-set approach, though, which would allow for
higher-order boundary treatment by accounting for surface normals
and/or curvature. Our approach, however, only requires regular com-
putations on a sparse grid, which is conducive to GPU acceleration as
was the main goal here. While other methods for imposing boundary
conditions, like immersed boundary and immersed interface methods,
require transport phases on both sides of the interface [105], this is
not the case for the present inhomogeneous diffusion model, where the
interface is the actual domain boundary. Finally, penalization methods,
which modify the force terms in the momentum equation to account
for boundary effects, only apply to flow problems [106]. Therefore,
we use the SDF to detect the boundary location and impose boundary
conditions within the finite-difference stencil, which is well suited for
solving reaction–diffusion PDEs, as it is mass-conserving and allows
for reactive boundaries. Furthermore, the SDF can directly be used to
represent inhomogeneous diffusion coefficients, as shown here.

Obtaining a SDF by level-set redistancing, however, can cause nu-
merical dissipation of the interface geometry. We largely avoided this
by using Sussman redistancing, which is interface-preserving [62,107]
and has a discretization error that converges with the correct order
(Fig. A.1). Our implementation of Sussman redistancing, however, is
currently limited to a dense grid without GPU acceleration, generating
a one-off computational overhead at the beginning of a simulation.
Although this is not a bottleneck for reactive transport simulations
in static geometries, future work will explore whether Sussman redis-
tancing can directly be performed on a sparse grid with GPU accel-
eration for simulations in dynamic geometries. Addition and deletion
of points in a sparse grid on the GPU, however, is not efficient, as it
requires semaphores to avoid race conditions as well as restructuring
or reallocation of memory. Another advantage of performing Sussman
redistancing on the host is that its memory capacity is not limited
to the DRAM of the GPU. Moreover, our implementation of Sussman
redistancing is parallelized for multi-CPU, enabling the computation of
SDFs in large grids that need not fit the memory of a single compute
node.

Finally, the current parallel implementation of the present pipeline
is limited to explicit time-integration methods. Benefiting from the im-
proved numerical stability of implicit schemes, which allow for larger
time-step sizes, would require addressing their larger communication
overhead.

Future work will also include applying the present pipeline to
other kinds of porous media. In particular, biological tissues could
be good candidates, as they tend to have irregular shapes and are
porous (e.g., the mineral matrix of bone [108], fibrocartilaginous
structures [109] like meniscus [110], bile-canalicular networks in the
liver [111,112], and the extracellular matrix between cells [113]). In
all of these porous media, reaction–diffusion processes are essential
to transport water, nutrients, metabolic products, and molecules with
regulatory or signaling function. In addition, spatial tissue pattern-
12

ing by graded concentration fields during embryonic development is
controlled by a complex interplay between geometry and reaction–
diffusion processes [2,11,114–117]. The increasing availability of high-
resolution 3D microscopy images of biological tissues provides a unique
chance for understanding the organizational principles of morphogene-
sis [12,114,118]. We, therefore, anticipate that the generic and efficient
computational pipeline presented here will also find application in this
field.
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Appendix A. Additional verification results

We provide here below additional information about the analytical
solution used in the convergence tests, as well as about the convergence
of our implementation of Sussman redistancing of the level-set function.

A.1. Exact solution for diffusion inside a 2D disk using the method of
manufactured solutions

We derive the exact solution of the test case used to verify our
pipeline in Section 3.1. For this, we use the method of manufactured
solutions [68]. The test case considers homogeneous diffusion of a
scalar field 𝑢 inside a 2D unit disk with no-flux Neumann boundary
onditions and diffusion coefficient 𝐷 = 1.

A general solution of Eq. (3.1.1) proposed in the literature for this
ase is [119]:

(𝑟, 𝑡) =
(

𝑟3

3
− 𝑟4

4

)

e−𝐵𝑡. (A.1)

We verify that this fulfills the boundary condition:
𝜕𝑈 (𝑟, 𝑡) |

| =
𝜕𝑈 (𝑅, 𝑡)

= (𝑅2 − 𝑅3)e−𝐵𝑡 = 0 . (A.2)

𝜕𝒏 |

|𝑟=1 𝜕𝑟
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Fig. A.1. Convergence plot of Sussman redistancing for the level-set of the unit ball in
D. The 𝐿2 (blue circles) and 𝐿∞ (red crosses) norms of the absolute error in the SDF
cross the entire narrow band of width 4ℎ are plotted. Both show the expected linear
onvergence with the grid spacing ℎ for a fixed time-step size. The upwind gradient

computed during iterative reinitialization of the level-set function is approximated using
first-order finite differences.

In order to find the particular solution that also fulfills the initial
condition, the method of manufactured solutions adds a reaction term
𝑓 (𝑟, 𝑡) [68]. For this, we write Eq. (3.1.1) as an operator

𝐿(𝑢) = 𝜕𝑢
𝜕𝑡

− 𝜕2𝑢
𝜕𝑟2

− 1
𝑟
𝜕𝑢
𝜕𝑟

− 1
𝑟2
𝜕2𝑢
𝜕𝜃2

= 0. (A.3)

nd find 𝑓 (𝑟, 𝑡) by applying the operator to 𝑈 (𝑟, 𝑡):

(𝑟, 𝑡) = 𝐿(𝑈 )

= 𝜕𝑈
𝜕𝑡

− 𝜕2𝑈
𝜕𝑟2

− 1
𝑟
𝜕𝑈
𝜕𝑟

− 1
𝑟2
𝜕2𝑈
𝜕𝜃2

=
(𝐵
4
𝑟4 − 𝐵

3
𝑟3 + 4𝑟2 − 3𝑟

)

e−𝐵𝑡.

(A.4)

Using this reaction term in the governing equation, the problem has
the exact solution given in Eq. (A.1). The scalar constant 𝐵 can be
arbitrarily chosen and controls the gradient steepness of the initial
concentration field. We choose 𝐵 = 20, which provides an initial
concentration field with smooth gradients and values suitable to be
dealt with by single-precision arithmetics.

A.2. Convergence of Sussman redistancing

In Fig. A.1, we present a convergence plot of our implementation of
Sussman redistancing of the level-set SDF of the unit ball in 3D using
first-order upwind finite differences. The expected order of convergence
is achieved as soon as the geometry is well resolved.

Appendix B. Code examples

We provide code examples illustrating the benefits of the OpenFPM-
based implementation of our simulation pipeline. The complete source
code of the present implementation is available under the GNU General
Public License 3.0 (GPLv3) at https://git.mpi-cbg.de/mosaic/software/
parallel-computing/openfpm and https://git.mpi-cbg.de/mosaic/reac
tiondiffusion_imagebased_porousmedia.git with examples and docu-
mentation at http://ppmcore.mpi-cbg.de/doxygen/openfpm/index.ht
ml. For demonstration, we only show a few code examples here.

To construct a regular, dense grid in OpenFPM, the grid and domain
size, ghost layer thickness, and the data-types and sizes of the grid
properties have to be defined first. If the sparse will be created based
on this dense grid, also the decomposition for the distribution has to
be defined. Then, the grid can be allocated.
13

c

Listing 1: Distributed dense Cartesian grid construction.
// Grid type with property aggregate,

// here just one FP32 that will carry the level-set

function

typedef aggregate<float> props;

// Decomposition for distribution

typedef CartDecomposition<dims,float, CudaMemory,

memory_traits_inte, BoxDistribution<dims,float> > Dec;

typedef grid_dist_id<dims, float, props, Dec >

grid_in_type;

// Instantiate distributed regular grid

grid_in_type g_dist(sz, box, ghost);

The indicator function obtained from the segmentation mask is
loaded onto the grid and reinitialized as a SDF using Sussman re-
distancing, which we implemented as a class template in OpenFPM.
Code examples and documentation for this implementation are avail-
able at http://ppmcore.mpi-cbg.de/doxygen/openfpm/example_sussm
an_images_2D.html. Here, we show a snippet of the constructor and
how to use it. Iterative redistancing is performed on a temporary grid
allocated inside the class with the same domain decomposition as
the input grid. Therefore, the fields needed during the redistancing
to store the intermediate level-set function, 𝜙𝑛, its upwind gradient,
𝛁𝜙𝑛, and the sign of the initial 𝜙, sign(𝜙0), as well as the required
host layers for inter-process communication, are hidden from the user.
n our application, the input grid has only one property, namely the
re-redistancing level-set function.

Listing 2: Sussman redistancing class snippet.
emplate <typename grid_in_type,

ypename phi_type=double>
lass RedistancingSussman

ublic:
RedistancingSussman(grid_in_type & grid_in,

Redist_options<phi_type> &redistOptions) :

redistOptions(redistOptions),

r_grid_in(grid_in),

g_temp(grid_in.getDecomposition(),

grid_in.getGridInfoVoid().getSize(),

Ghost<grid_in_type::dims, long int>(3))
...

Listing 3: Loading the indicator function from a file onto the grid.
/ Initialize grid with (image-based) indicator function

oad_pixel_onto_grid<PHI_FULL>(g_dist,

ath_to_zstack, stack_dims);

For running Sussman redistancing, options such as the maximum
umber of iterations and the convergence tolerance can be passed in the
tructure Redist_options during class instantiation. Redistancing is
hen executed by calling the method run_redistancing with the
ndices of the input and output properties as template arguments.

Listing 4: Sussman redistancing instantiation and execution.
/ Instantiation of Sussman-redistancing class

edistancingSussman<grid_type, float>
edist_obj(g_dist, redist_options);

/ Run Sussman redistancing

edist_obj.run_redistancing<PHI_IN, PHI_OUT>();

Based on the resulting SDF, the sparse grid can be constructed by
nserting points only within the diffusion domain, i.e., for points at
hich lower_bound < 𝜙SDF < upper_bound. Here, lower_bound

nd upper_bound are the minimal and maximal values of 𝜙SDF within
he diffusion domain, depending on the type of level-set function
hosen and the phase considered.
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Listing 5: Obtain a sparse grid based on the SDF.
// Create a sparse grid with four FP32 properties and same

// decomposition Dec as dense grid

typedef aggregate<float, float, float, float> props_sparse

;

typedef sgrid_dist_id_gpu<dims, float, props_sparse,

CudaMemory, Dec> sparse_grid_type;

sparse_grid_type g_sparse(sz, box, ghost);

// At this stage, the sparse grid is still empty. Now, we

can loop

// over the dense grid and insert points in the sparse

grid if they

// lie inside the diffusion domain

template <typename T>

static bool is_diffusionSpace(const T & phi_sdf,

const T & lower_bound, const T & upper_bound)

{

const T EPSILON = std::numeric_limits<T>::epsilon

();

const T _b_low = lower_bound + EPSILON;

const T _b_up = upper_bound - EPSILON;

return (phi_sdf > _b_low && phi_sdf < _b_up);

}

auto dom = grid.getDomainIterator();

while(dom.isNext())
{

auto key = dom.get();

if(is_diffusionSpace(grid.template get<

PHI_SDF_FULL>(key),

b_low, b_up))

{

sparse_grid.template
insertFlush<PHI_SDF_SPARSE>(key) =

grid.template get<PHI_SDF_FULL>(key);

}

++dom;

}

The computations to be run on the sparse grid on the GPUs are
defined as a functor. C++ functors are object-like functions, which
OpenFPM can pass to the GPU as CUDA or HIP kernels. We demonstrate
this exemplary for the case of inhomogeneous diffusion with explicit
time stepping.

Listing 6: Defining the functor for inhomogeneous diffusion on the
GPU.

auto epsilon = std::numeric_limits<float>::epsilon();
auto func_inhomogDiffusion =

[dx, dy, dz, dt, d_low, epsilon]

__device__ (

float & u_out, // field out

float & D_out, // diffusion coefficient out

float & phi_out, // sdf of domain out

CpBlockType & u, // field in

CpBlockType & D, // diffusion coefficient in

CpBlockType & phi, // sdf of domain in

auto & block, int offset, int i, int j, int k)

{

// Stencil

// Field

float u_c = u(i, j, k);

float u_px = u(i+1, j, k);

float u_mx = u(i-1, j, k);

... // and so on for y and z

// Signed distance function

float phi_c = phi(i, j, k);

float phi_px = phi(i+1, j, k);
14

float phi_mx = phi(i-1, j, k);
... // and so on for y and z

// Diffusion coefficient

float D_c = D(i, j, k);

float D_px = D(i+1, j, k);

float D_mx = D(i-1, j, k);

... // and so on for y and z

// Impose no-flux boundary conditions

if (phi_px <= d_low + epsilon)

{u_px = u_c; D_px = D_c;}

if (phi_mx <= d_low + epsilon)

{u_mx = u_c; D_mx = D_c;}

... // and so on for y and z

// Interpolate diffusion constants between points

float D_half_px = (D_c + D_px)/2.0;

float D_half_mx = (D_c + D_mx)/2.0;

... // and so on for y and z

// Compute concentration of next time point

u_out = u_c + dt *
(1/(dx*dx) * (D_half_px * (u_px - u_c)

- D_half_mx * (u_c - u_mx)) +

... // and so on for y and z);

// Diffusion coefficient and SDF out=in

D_out = D_c; phi_out = phi_c;

};

To solve the diffusion equation over time, this functor and the sparse
grid containing the initial condition are downloaded to the GPUs,
where they are executed using the convolution functor conv3_b with
ghost layers communicated between GPUs in a multi-GPU setting.

Listing 7: GPU convolution functor for sparse grids
// Copy from host to GPU

g_sparse.template hostToDevice<CONC_N, CONC_NPLUS1,

IFFUSION_COEFFICIENT, PHI_PHASE>();

/ Ghost layer communication of the signed distance

function

/ and the inhomogeneous diffusion coefficient

/ The SKIP_LABELLING option is only allowed for static

geometries

_sparse.template ghost_get<DIFFUSION_COEFFICIENT,

PHI_PHASE>

(RUN_ON_DEVICE | SKIP_LABELLING);

while(iter <= iterations)

{...

// Update concentration values in ghost layer

g_sparse.template ghost_get<CONC_N>

(RUN_ON_DEVICE | SKIP_LABELLING);

// Convolve functor with sparse grid on GPU

g_sparse.template conv3_b<CONC_N,

DIFFUSION_COEFFICIENT,

PHI, CONC_NPLUS1, DIFFUSION_COEFFICIENT, PHI_PHASE, 1>

({0, 0, 0},

{(long int) sz[x]-1, ... // and so on for y and z},

func_inhomogDiffusion);

...}
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