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We use a combination of unsupervised clustering
and sparsity-promoting inference algorithms to
learn locally dominant force balances that
explain macroscopic pattern formation in self-
organized active particle systems. The self-organized
emergence of macroscopic patterns from microscopic
interactions between self-propelled particles can be
widely observed in nature. Although hydrodynamic
theories help us better understand the physical
basis of this phenomenon, identifying a sufficient
set of local interactions that shape, regulate and
sustain self-organized structures in active particle
systems remains challenging. We investigate a classic
hydrodynamic model of self-propelled particles that
produces a wide variety of patterns, such as asters
and moving density bands. Our data-driven analysis
shows that propagating bands are formed by local
alignment interactions driven by density gradients,
while steady-state asters are shaped by a mechanism
of splay-induced negative compressibility arising
from strong particle interactions. Our method also
reveals analogous physical principles of pattern
formation in a system where the speed of the
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particle is influenced by the local density. This demonstrates the ability of our method
to reveal physical commonalities across models. The physical mechanisms inferred from
the data are in excellent agreement with analytical scaling arguments and experimental
observations.

1. Introduction
Systems of self-propelled particles can exhibit self-organized collective behaviour that leads to
the formation of complex spatio-temporal patterns. This phenomenon is ubiquitous in nature
and can be observed across all scales, ranging from the active self-assembly of the mitotic
spindle by microtubule (MT) and motor proteins [1] and the formation of rich vortex structures
in dense bacterial suspensions [2] to the directed and collective motion of cells in tissues [3]
and organoids [4] up to fish shoals and flocks of birds [5]. Recent interest has also shifted
towards the self-assembly of active and adaptive materials [6,7] and the use of microswimmers
in biomedical applications [8,9]. Despite the prevalence of self-organizing systems composed of
self-propelled particles, it remains difficult to identify a sufficient set of mechanisms that shape
and regulate pattern formation in active particle systems [1].

First insights into this type of self-propelled particle system were obtained by Vicsek et
al. [10]. They studied a minimal microscopic model of self-propelled particles at a constant
speed with local alignment interactions. At high particle density and low noise, they reported
a distinct phase transition from an unordered state to a flocking state with global order, where
the dynamics of the system is primarily determined by polar alignment interactions. Later,
derivations of hydrodynamic theories based on symmetry arguments, for example, by Toner
& Tu [5,11], gave a mean-field perspective on the physical mechanisms. Since then, both
microscopic and macroscopic systems have been shown to be able to form a wide range of
spatio-temporal patterns that may also be observed experimentally [12], including asters [13,14]
and moving density bands [15]. In parallel, theories derived by analytical coarse-graining of the
microscopic model [16] resulted in similar mean-field descriptions, where the parameters of the
coarse-grained model could be directly linked to the strength of the microscopic interactions
[17].

In recent years, machine learning has found wide applicability in the physical and life
sciences [18–21]. Data-driven techniques have been successfully applied to infer ordinary
differential equation (ODE) and partial differential equation (PDE) models from observatio-
nal data [21,22] and for algorithmic coarse-graining of microscopic systems of self-propelled
particles [23–25]. In the context of pattern-forming systems, these methods have also been
extended to identify the influence of control and bifurcation parameters on the dynamics of the
system [26,27]. In a different line of work, neural networks have been used to infer the activity
and temporal evolution of a system for a given orientation field in nematohydrodynamics [28].
Similarly, physics-informed neural networks, which use an assumed physical model in the form
of an ODE/PDE to structurally regularize a deep neural network [29], have been used to predict
model parameters and effective pressures for turbulent flows in dense bacterial suspensions
[30]. Finally, recent work has shown that reduced-order models, such as proper orthogonal
decomposition, can be used to extract coherent flow structures of velocity fields in bacterial
turbulence under various conditions [31].

Although data-driven methods have proven successful at inferring macroscopic models
or extracting coherent flow structures, they generally capture the average global dynamics
of the system. This is because they infer a global model that sufficiently describes the data
everywhere. However, they do not capture local differences in the microscopic interactions that
can explain the emergence of macroscopic heterogeneous patterns. What one would need for
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that is a method that infers a domain decomposition of the system into (a minimal set of) local
neighbourhoods of similar dynamics and identifies the relative importance of the terms of a
global model in each local neighbourhood. These terms constitute the locally dominant force
balances. They are sufficient to explain the dynamics within a local neighbourhood and provide
insight into the local contributions of the different terms that drive the dynamics in the region.
If in addition the global model is derived by analytical coarse-graining of a microscopic model,
it allows one to learn the microscopic origin of the observed dominant macroscopic principles.

We use an algorithm that builds on the work by Callaham et al. [32], who used a combination
of unsupervised clustering and a sparse principle components analysis (SPCA) to identify
the dominant components of a global model that drive the spatio-temporal dynamics in a
pre-defined local region. This is different from typical sparse regression approaches used for
model identification, as the goal here is to identify the local relative importance of terms [33]
in a pre-defined region equipped with full knowledge of the global model parameters. This
has successfully been applied in areas such as fluid dynamics, aerodynamics, neuroscience and
optics [32,34]. Here, we extend this approach by an improved model-selection process based on
computing more than just the leading principle component, to obtain clear Pareto fronts.

We then apply the data-driven method to the hydrodynamic mean-field description of
a self-propelled particle system with alignment interactions. The numerical experiments
demonstrate that the data-driven approach is capable of identifying mechanisms of pattern
formation that agree with analytical predictions obtained from asymptotic and linear stability
analysis. By then considering a slightly different model with density-dependent motility, we
report the identification of similar mechanisms of pattern formation. This suggests that the
present data-driven approach is robust enough to identify common physical principles across
active particle systems, even when the underlying microscopic rules are different. Therefore, we
believe that the presented approach can be used in a wide range of active matter systems to
probe the microscopic physical mechanisms driving the emergence of self-organized structures.

2. Methods
We review the hydrodynamic mean-field model of an active particle system, followed by
a description of the data-driven approach and the proposed model-selection procedure for
learning locally dominant force balances.

(a) Hydrodynamic model of self-propelled particles
We consider a classic system of self-propelled point particles with polar alignment interactions
that move at a speed w0 in the overdamped viscous limit [10]. In the absence of ‘leader particles’
and external forces, this model is capable of a phase transition to an ordered flocking state
with increasing particle density, highlighting the self-organized nature of the system [35]. The
hydrodynamic mean-field description of this system has been derived both from first princi-
ples [5,11] and by analytic coarse-graining [16,36,37]. The corresponding PDEs describe the
space-time evolution of a mass-conserved particle number density ρ and the polarity densityW = ρP, where the polarity P is an order parameter of the system describing the average local
orientation of particles. The polarity density W  hence both describes the local order in the
system and the velocity field by which the number density ρ is advected. This dual role is
crucial in determining the large-scale behaviour of the system [37]. Here, we consider the model
following Gopinath et al. [12] that is given by

(2.1)∂tρ = −∇ ⋅ (w0W − D∇ρ),
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(2.2)

∂tW + λ1(W ⋅ ∇)W = − [a2(ρ) + a4(ρ) |W |2 ]W + DWΔW − w0∇ρ
+ λ3∇|W |2 + λ2W(∇ ⋅W) .

Equation (2.1) is an advection–diffusion equation transporting ρ with the self-propulsion speedw0 in the direction of the local particle orientation P. The scalar parameter D is a diffusion
constant to account for the thermal noise in the microscopic model.

Equation (2.2) is the transport equation for the polarity density, encapsulating the mean-field
effect of the alignment interactions between the particles. It is a generalized Navier–Stokes-type
equation, where the convective nonlinearity associated with λ1 accounts for the self-advection
of the particles and is determined by the microscopic properties of the model [37]. In fact,
this model is the first-order truncation of the classic Toner–Tu model keeping only one term
on the order of diffusion. The first term on the right-hand side of equation (2.2) models the
spontaneous polarization of moving particles. The scalar DW is a diffusion constant describing
the alignment interactions between particles as relaxation of the splay and bend moduli of the
polarity density field. The third and fourth terms on the right-hand side can be interpreted as
the effective hydrodynamic pressure, where w0∇ρ corresponds to the ideal-gas part and the
term associated with λ3 accounts for the pressure induced by the splay of the polarity field,
which again depends on the microscopic interactions between the particles [12]. The last term
associated with λ2 accounts for the nonlinear feedback between the polarity density W  and the
compressibility of the flow [16]. Following Gopinath et al. [12], we consider a parameterization
in which the self-propulsion speed w0 defines the scaling of both the particle movement and the
ideal-gas part.

Although there exist more elaborate active particle models [8], the above-mentioned minimal
model is able to capture several universal characteristics of active flows, such as the onset
of global order, large density fluctuations and spatio-temporal pattern formation [36]. Indeed,
depending on the choice of the parameters w0 and λi, equations (2.1) and (2.2) exhibit several
instabilities of the polarized homogeneous steady state. The polarity playing the dual role
of both a local order parameter and the density-advection velocity provides the necessary
nonlinear feedback for these instabilities, as the density controls the orientational order and
is itself advected by the order parameter [12]. This leads to the emergence of macroscopic
structures, such as moving density bands or radially symmetric asters, which have also been
observed in living systems [13–15]. Many works have identified the physical mechanisms of
pattern formation in these hydrodynamic equations [12,16,38–40]. Yet, it remains difficult to
determine the microscopic origins of those mechanisms [1], as even if the underlying model is
known, it is hard to identify a locally sufficient set of physical processes that can explain the
formation of macroscopic spatio-temporal patterns.

(b) Learning locally dominant force balances
We learn the locally dominant force balances for the dynamical system in equations (2.1) and
(2.2) following the approach introduced by Callaham et al. [32]. It is based on assuming that the
space-time dynamics of an intensive scalar field u(x, t) is given by

(2.3)∂tu(xi) + N (u(xi); ξ) = 0 ,

at discrete space-time points xi = (xi, ti), i = 0, …,N, sampled from a domain xi ∈ Ω ⊆ ℝn,ti ∈ [0,Tmax]. The nonlinear right-hand side N  contains the F differential operators with known
coefficients ξ = (λ1,w0, … ) of the given PDE model, thus

(2.4)N (u(xi); ξ) = ∑j = 1

F ξjfj(u(xi)) .

For equation (2.2), f1(xi) = (W(xi) ⋅ ∇)W(xi), and so on, such that F = 7.
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Given the fj alongside ξj and corresponding measurement or simulation data, we construct
the feature matrix Θ as

(2.5)

Θ =

∂tWx(x1) ξ1f1(x1) ⋯ ξFfF(x1)

⋮ ⋮ ⋱ ⋮
∂tWx(xN) ξ1f1(xN) ⋯ ξFfF(xN)

∈ ℝN × (F + 1).

The columns of Θ span the so-called equation space [32]. By construction, 1⊤θi = 0 for each
equation-space sample (i.e. row of Θ) θi = Θi, :. As W  has two spatial components, we stack thex- and y-components of the polarity vertically to infer locally dominant forces for both x and y.
Therefore, Θ = [Θx, Θy]⊤, where the subscripts denote the corresponding spatial components of
the vector quantities.

Inferring locally dominant force balances then corresponds to restricting the dynamics to
some subspace spanned by the axes of highest variance in the data [32]. In this interpretation,
we neglect terms of small local variance, as their contribution to the dynamics is minor. Thus,
the approach amounts to a localized active subspace method in equation space [33].

To identify regions of similar covariance, we feed columns of the matrix Θ as input features
to a Gaussian mixture model (GMM) to output K clusters ck, k = 1, …,K. These clusters thus
correspond to sets of points in space and time that exhibit similar dynamics. The number of
clusters K can be set from knowledge about distinct regions one wishes to separate in the
data or by initializing with an overcomplete set of clusters, followed by a post-processing step
in which clusters with identical identified models are merged as previously described [32].
The clustering could alternatively be performed using other clustering approaches, but GMMs
provide information about the local contributions of the functions fi in each cluster ck via the
fitted covariance matrices. This is valuable information, since a higher covariance along the
equation-space axis i in cluster k indicates that the model term fi contributes more to the local
dynamics in cluster ck. This allows for identifying the set of dominant terms that constitutes the
locally dominant force balance at all space-time points xi ∈ ck.

Deciding whether a term fi is dominant in a given cluster ck is done by thresholding the
covariance. Finding the optimal threshold is a difficult problem, especially since the covariance
matrices of all GMM components are dense. Callaham et al. [32] therefore proposed to only
look at a sparse approximation by the principle component that explains most of the observed
variance over Θk using SPCA. This provides a sparse and interpretable representation of the
axis of maximum variance to which the equation space can be restricted. Here, we take into
account more than just one principle dimension by solving the SPCA problem as a piecewise-
convex dictionary learning problem [41]

(2.6)Ck(α),Dk(α) = arg minC,D 1
2 Θk⊤ − CD F

2
+ α C

1

(2.7)s.t. Di, : 2 ≤ 1,

where Θk = Θk − Θ k, Θk⊤ = VΣU⊤ is the singular value decomposition (SVD), and Θ k the
column-wise mean of Θk. Moreover, C = V:r ∈ ℝ(F + 1) × r and D = (ΣU⊤):r ∈ ℝr × Nk are the rank-r
truncated approximations of the SVD of Θ⊤ [42]. Throughout this paper, we have chosen r = 6
as determined by the ‘elbow’ method on the reconstruction error of equation (2.6), which is
a common approach for determining a point of diminishing returns [43]. The constraint in
equation (2.7) is enforced to ensure that C does not become arbitrarily small, but also means
that the resulting matrices are no longer guaranteed to be orthogonal [41]. The term associated
to α enforces that the reconstruction of Ck(α) is sparse w.r.t. the matrix L1-norm, i.e. over the
elements in C. We use the implementation of the entire algorithm provided by SKLEARN [44].

The presented SPCA-based active subspace selection is in stark contrast to the global hard
thresholding of the operators when determining the set of active processes. As we are interested
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in identifying the locally dominant forces in the system, the scales of importance differ locally
[32]. Therefore, finding locally optimal thresholds would be a combinatorially hard problem,
which would require a exhaustive search without a guarantee to reflect the dynamics in the
data. In contrast, the present method automatically detects local regions of similar dynamics in
a data-driven fashion, which reduces the thresholding problem to one of identifying a sparsity
parameter α for the SPCA, which can be done in a principled fashion using concepts from
Pareto-optimality [22].

(c) Model selection
Inspection of the optimization problem in equation (2.6) makes clear that the solution will
depend on the choice of the sparsity-promoting parameter α. It is used to balance the accuracy
of the model against its complexity, acting as an inductive bias that assumes the dynamics can
be locally well approximated by the balance of a few dominant terms. For some αmin, we obtainCk(αmin) ≈ V:r, 0 > r ≤ F + 1 with a low residual, while a value above αmax results in the sparsest
(but trivial) model Ck(αmax) = 0 with a high reconstruction error. While we are able to determineαmax analytically for classic LASSO (least absolute shrinkage and selection operator) problems
with convex penalties [21], such estimates cannot be obtained for equation (2.6), as it depends
on a dictionary D. Thus, determining α requires repeated evaluation of the objective over a wide
range of α values, resulting in a so-called α-path that can be used for model selection.

We construct the regularization path over a fixed interval [αmin,αmax] containing 400
log-equidistant points to achieve sufficient resolution. The interval bounds (here: αmin = 10−4,αmax = 102) are empirically determined to cover the entire range from a full to a nearly empty set
of model terms (see appendix B). They are kept the same for all experiments of a given model.
For each cluster ck, we evaluate the reconstruction error, denoted by ϵk(α), along the α-path
as the residual of equation (2.6). From this, we select α using Pareto analysis. Pareto analysis
considers trade-offs between multiple objectives, which here are the fitting error and the model
complexity. The Pareto front in this two-dimensional space (error versus complexity) is the set
of all points for which neither objective can be further improved without worsening the other
objective. These points are called Pareto optimal [45]. They provide the best trade-off between
reconstruction accuracy and model complexity. We select α by plotting the Pareto front in the
space of the reconstruction error ϵk(α) versus the number of non-zero model components (active
terms). As we are interested in selecting a sparse model, we follow Ref. [22] and select a point
along the Pareto front where the error sharply decreases. If no such point exists, we select the
elbow of the Pareto front (see appendix B).

The above-mentioned model-selection procedure determines a potentially different α for
each cluster ck, since the required penalization strength depends on the cluster-specific data.
This is different from the global α used by Callaham et al. [32], which was based on the globally
ignored model terms. We found the global criterion difficult in practice, as it was hard to
identify a clear selection point in many cases, or it resulted in nearly empty model supports.
While the use of a global α would accelerate the model-selection procedure, it would also
ignore the local relative importance of model terms, since the global α is dominated by the
GMM components of the largest magnitude. We also find that the use of the reconstruction
error as a selection criterion is justified, as it measures how well the structure of the data in
equation space is approximated by the chosen principle directions Ck(α). In theory, forward
simulation could provide another way of model selection, as it allows directly assessing the
predictive quality of a model. In contrast to predictive inference algorithms such as SINDy
(sparse identification of nonlinear dynamics) [18,19], or black-box simulation algorithms [28],
however, the local nature of the present method hampers forward simulation for validation
and model selection. This is because the estimated active subspaces are restricted to irregularly
shaped spatio-temporal clusters, across which the models might be discontinuous. This makes
global forward simulation hard, and local per-cluster simulation or domain-decomposition
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approaches would have to use non-trivial boundary or interface conditions to account for
cross-cluster influences. Therefore, we propose to use the reconstruction error for model
selection, as it does capture locally varying information yet remains computationally tractable.

3. Results
We apply the presented method to infer locally dominant force balances underlying the
formation of moving bands and asters obtained from numerical simulations of the hydro-
dynamic model in equations (2.1) and (2.2). As discussed in the previous section, we first
decompose the spatio-temporal domain into distinct non-overlapping clusters using a GMM.
For each region marked by the cluster index, we employ SPCA to infer locally dominant
components of the global model driving spatio-temporal organization in the localized region.
We apply our inference strategy to the hydrodynamic models with and without density-
dependent motility to assess the role of varying particle speed in shaping emergent patterns.

(a) Moving density bands
We first consider the self-organized dynamics of moving density bands that manifest as
wave-like solutions of the hydrodynamic PDEs. These types of structures can also be observed

w
0
 = 0.5, l = 0.2

50

(a)

(b)

(c)

(d)

1000 200

c
k

y

w
0 

= 0.4, l = 0.4

50

1000 200

y

w
0
 = 0.25, l = 0.25

50

1000 200
x

y

y

y

y

y

y

y

50

1000

Cluster x-component Inferred balance model

200

50

1000

Numerical validation

200

50

1000 200

50

1000 200
x

50

1000 200

50

1000 200
x

ρ ρ

∂ tW

a 2
(ρ

)
a 4

(ρ
)

(W
 · 
∇

)W ∆W

∇
|W

|2
W

(∇
 · 
W

)

∇
ρ

1.10

1.05

1.00

0.95

0.90

0 50 100 150 200 250

1.15 ck

x

0 50 100 150 200 250

x

0 50 100 150 200 250

x

ρ

0.05

0.00

0.25

W
x

∂
t
W

x ∂ X ρ

0.20

0.15

0.10

0.02

0.01

0.00

–0.01

–0.02

0 50 100 150 200 250

x

0.02

0.90

0 1 2

Cluster index c
k

3

0.95 1.00 1.05

Density ρ

1.10 1.150.01

0.00

–0.01

–0.02

–0.03

Figure 1. Clusters and the corresponding local dominant models for three different parameterizations of equations (2.1) and
(2.2) in the convection-dominated regime forming moving density bands. (a–c) Each row corresponds to a parameter set
(a: w0 = 0.5, λ = 0.2; b: w0 = 0.4, λ = 0.4; c: w0 = 0.25, λ = 0.25). Reading from left to right: (i) visualization of the
data in the two-dimensional simulation domain [0, 256] × [0, 96] at the last data point in time (colour: number density ρ,
arrows: polarity density W ); (ii) identified clusters of similar dynamics for the x-component of W  (colour: cluster indexck); (iii) inferred dominant force-balance models in each cluster (filled squares highlight the active components and colours
correspond to different clusters); (iv) numerical validation of the minimal pattern-forming model in equation (3.2) starting
from the same initial condition. (d) Line profiles of the data (ρ, W  and temporal derivative of W  and ∂xρ) along x (fory = 20), coloured by cluster membership, for w0 = 0.5, λ = 0.2. The arrow indicates the direction of motion of the density
bands. The colour bars for density ρ and cluster membership ck are in the bottom-right corner for the whole figure. The
symbol in the top-left corner of a panel identifies the visualized field.
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in in vitro reconstitutions of self-propelled molecules, such as in dense actin motility assays,
where moving band-like structures emerge and persist over several minutes [15].

We numerically solve for equations (2.1) and (2.2) (see appendix A) with λ1 = λ2 = λ3 = λ, for
three different parameterizations of the model PDEs (figure 1a–c). In the numerical solution,
an initially homogeneous state starts forming high-density spots that move in the direction of
mean orientational order. Through diffusion, the regions expand normally to the direction of
motion until they span the length of the simulation domain [12]. This results in the formation of
high-density bands that move through a disordered background at a speed that scales linearly
with the microscopic self-propulsion speed w0 [38]. Different realizations of these non-equili-
brium steady-state structures can be seen in figure 1a–c for the same initial condition but shown
for three different parameters of the model. The ordered high-density regions are enclosed by
two sharp wave fronts in both density and polarity, as seen in figure 1d for a density band
moving in the direction denoted by the arrow.

In the data of the numerical solutions, we identify the time interval in which the high-den-
sity structure is formed and advected in a stable manner over an extended time horizon
(approximately 50 000 simulation time steps). Multiple time points are collected as described
in appendix A, and the data are used to compute the feature matrix Θ. The spatio-temporal
samples θi = Θi, : are decomposed into Kband = 4 clusters by the GMM. The identified clusters of
similar covariance, and hence similar local dynamics, are shown in the second column of figure
1a–c, where the cluster index (represented by colour) increases from the high-density regions
to the low-density regions. We find that the clusters decompose the spatio-temporal domain
into well-defined symmetric regions, where cluster 0 contains the ordered high-density phase,
1 and 2 the sharp wave fronts at the interfaces between the two phases and 3 the unordered
background. As the solution is invariant in the y-direction, i.e. ∂tW y = 0, the y-components ofW  are always assigned to the unordered background cluster (not shown). Moreover, we find
that clusters 1 and 2 divide the wave fronts approximately at the inflection points of the polarity
density W , as seen in figure 1d, thus capturing the local gradients of the spatial and temporal
dynamics.

Performing SPCA in each of the identified clusters, we find a sparse approximation on the
local directions of maximal variance according to the Pareto fronts shown in figure 9. The
resulting locally dominant force balances are shown in the third column of figure 1a–c. For all
three parameterizations of the PDE, comparable local mechanisms are identified that depend
on the microscopic interactions through a2(ρ) and a4(ρ) and on the density gradient ∇ρ. This
shows the robustness of the method against perturbations in the system parameters. In fact,
the dynamics in the high-density regions (blue cluster 0 in figure 1a–c) can be described by a
steady-state equation depending on the spontaneous polarization terms as

(3.1)0 = −[a2(ρ) + a4(ρ)|W |2]W .

This local model in cluster 0 is independent of the temporal evolution ∂tW , since the change
in polarity density is concentrated around the wave fronts (see figure 1d). This observation
is consistent with previous work [12], since the high-density region can be interpreted as the
homogeneous steady-state solution of equations (2.1) and (2.2). For a spatially homogeneous
polarity W  and constant density ρ0, as seen in figure 1d, the system possesses two stable steady
states: P = 0 if ρ0 ≤ ρc and P = −a2 (ρ0)/a4 (ρ0)eθ for ρ0 > ρc, where eθ is the direction of broken
symmetry. At a microscopic scale, the polarization terms arise from the cooperative effect of
many filaments interacting through alignment interactions, where at the critical density the
transition to an ordered state occurs and all particles align [16]. As such, the homogeneously
polarized case directly reflects the local force-balance model, where we observe the onset of
collective motion through strong particle interactions.

The high-density regions are separated from the unordered (unpolarized) background by
steep wave fronts, the local dynamics of which are assigned to clusters 1 and 2 (orange and
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green in figure 1). In these regions, the locally dominant force balance is given by the dynamic
model:

(3.2)∂tW = −[a2(ρ) + a4(ρ)|W |2]W − w0∇ρ .

The inferred model captures the order–disorder transition of the system through alignment
interactions. This is reflected in the appearance of the spontaneous polarization terms a2(ρ)
and a4(ρ), which lead to the emergence of the ordered phase above the characteristic densityρc [12]. The importance of polar alignment interactions for the formation of the density bands
has previously been identified in silico through particle simulations and in vitro experimental
studies [15]. The identified local model also captures correctly that the wave fronts are advected
in the direction of mean orientational order owing to the arising density gradient ∇ρ. This
coupling of W  and ρ gives rise to the convective nature of the ordered state [12,38], and the
density dependence is also captured in travelling-wave solutions derived from microscopic
models [16]. We also identify a similar driving mechanism in the disordered background
(cluster 3), which includes an additional diffusive term.

Similarly to the data-driven model in equation (3.2), previous work has described the
moving bands as a soliton solution, i.e.

(3.3)∂tW = − a2(ρ) + a4(ρ) |W |2ρ2 W − w0∂xρ ,

where the nonlinear polarization terms provide the dispersion to generate the wave structure
[12,16]. The local dominant components identified by the data-driven (equation (3.2)) strategy
agree with the aforementioned analytical model derived through asymptotic analysis [16].

The local force balances inferred here can be linked to a convection-mediated density
instability of the homogeneous steady state, which coincides with the onset of moving density
bands [12]. This instability originates from the tendency of the system to build local order
through a2 and a4, together with the convective coupling of ρ and W  through w0. The resulting
effective pressure difference leads to the advection of the ordered phase, as also identified here
from the data.

The model in equation (3.2) contains all terms present in any of the clusters, except for the
(weak) background diffusion term. As such, it constitutes the minimal union model for this
system. Numerically solving this minimal pattern-forming model confirms that it is sufficient to
form moving density bands (see rightmost column of figure 1a–c), despite being much simpler
than the governing equations (2.1) and (2.2). These observations are consistent with previous
results showing that moving density bands form also in the absence of convective nonlinearities
[12].

(b) Asters
Next, we consider the self-organized emergence of a defect in the polarity density field W .
These structures, referred to as asters, are also observable in living systems, for example, in
the mitotic or meiotic spindle [1,13], and they have also been reconstituted in vitro [13,14] and
in silico [46] in minimal systems involving only MTs and motor proteins with local alignment
interactions. The emergence of topological defects is also increasingly studied, owing to their
potentially governing contribution to tissue morphogenesis [47,48]. In the model of equations
(2.1) and (2.2), the emergence of an aster is characterized by the appearance of a topological
defect of index (charge) −1 in the polarity density field W  with a radially symmetric density
profile with a maximum at the defect center. The polarity magnitude |W |2 decays exponentially
with radial distance to the defect core [12].

We generate data for three parameterizations of equations (2.1) and (2.2) that lead to the
formation of stable asters. Data are collected until a quasi-steady state is reached, as detailed
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in appendix A. Visualizations of the data at the last time point are shown in figure 2a–c for
the three different parameter sets, respectively. Owing to the radial symmetry of asters, we
find that Kaster = 3 is sufficient to capture the distinct local regions. Using more clusters breaks
the radial symmetry in the zonation but identifies the same dynamics (see appendix B). The
resulting domain decompositions for the x- and y-components are visualized in the second and
third columns of figure 2a–c. The GMM automatically identifies the two length scales through
which the aster is defined [12]: cluster 0 (blue) approximately encloses the core of the aster
until |W |max, and cluster 1 (orange) captures the characteristic length of the exponential decay
until |W |2 ≈ 0. Finally, cluster 2 (green) contains all points outside the aster in the unordered
background.

The identified locally dominant force balances for the three clusters are shown in the
rightmost column of figure 2a–c with the corresponding Pareto fronts shown in figure 10.
Similar models are identified across parameterizations. In the aster core, we find a minimal
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model dominated by the spontaneous polarization terms a2 and a4, as well as the coupling
of the flow to the compressibility of the polarity proportional to λ2. As such, strong particle
interactions in the dense center of the aster lead to the onset of negative compressibility that
stabilizes the structure, which can also be seen in the line profiles of figure 2d. This is analo-
gous to the mechanism found in microscopic models of motor-driven cytoskeletal assemblies,
where motor proteins pausing at filament ends generate the active stresses required to pull the
filaments together and form asters [46]. The same has also been observed experimentally in
vitro, where motor proteins concentrate at the aster center [14,49].

In contrast to the moving density bands described in §3a no sparse support for the
model outside of the aster core is found. Therefore, combining all identified terms across
clusters recovers the full model, and we find no minimal global model in this case. The
domain decomposition given by the identified clusters, however, helps understand the physical
mechanisms. In cluster 1, containing the density-decay region of the asters (orange in figure 2),
the spontaneous polarization terms a2 and a4 are sufficient to stabilize the ordered state at high
densities through strong alignment interactions. The particles are driven towards the high-den-
sity region by the self-advection associated to λ1 in equation (2.2), as well as by the density
gradient and the splay-induced pressure proportional to w0 and λ3, respectively. This sufficient
model closely agrees with previous analytical results [12,38], which identified a linear instabil-
ity where the onset of negative compressibility is controlled by the lowering of the effective
pressure of the system owing to collective motion for λ3 > 0 [12]. The orientational order then
causes a flow velocity toward the high-density regions and, thus, a concentration of particles at
the aster cores [37]. As the values of all λi depend on the microscopic interactions of the particles
with λi ∝ w0

2 [37], this shows how the mechanism directly depends on the particle interactions in
the high-density region. In the numerical experiments, the self-advection of the particles plays
a critical role in the formation of asters. When λ1 = 0, the system undergoes a transition towards
the formation of ‘streamers’ and vortices [12] (see figure 7), which provides an explanation
for the presence of the term in the locally dominant forces of cluster 1. We also observe in
numerical experiments (not shown, since in perfect agreement with Gopinath et al. [12]) that
asters cannot form for w0 = 0, independent of the initialization and the value of λ. We also
confirm that the characteristic exponential length scale of the aster asymptotically depends onw0, as previously observed [12]. In the present method, this is directly reflected in the identified
cluster sizes. In figure 3a, we show that higher w0 shrink the overall size of the aster but do not
significantly influence the size of the core (dashed line). The fraction of data points assigned to
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Figure 3. Influence of the self-propulsion speed w0 on the two length scales of the asters at steady state. (a) Line profile
of the squared polarity magnitude |W |2 across the center of the asters in x-direction for λ = 1.6 and different w0 (inset
legend). The black dashed line indicates how the size of the aster core shrinks only minimally for higher w0, while the outer
radius of the asters reduces. (b) The fractions of data points assigned to each of the three clusters (colours, see colour bar in
figure 2) for three different λ (symbols, inset legend) confirms that higher w0 lead to overall smaller asters with similar core
sizes, independent of the value of λ (symbols, inset legend).
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‘aster’ clusters (clusters 0 and 1, blue and orange) decreases proportionally for higher w0 (figure
3b), independent of the value of λ (inset legend). This indicates that the stress exerted on the
aster depends on particle density, with increasing self-propulsion speeds w0 resulting in higher
stresses. Higher particle densities moving in the direction of mean orientational order induce
stronger splay deformations owing to stronger alignment interactions. The resulting negative
compressibility causes the asters to contract by pulling particles closer towards the center to
accommodate for the increased splay in the system.

The importance of the local density gradient has also been experimentally observed in
aster-forming molecular systems composed of MTs interacting with motor proteins. There, the
density gradient corresponds to the motor concentration gradient, as motors walk along MTs
oriented according to W . Coarse-grained hydrodynamic models of such molecular systems are
similar to the model in equations (2.1) and (2.2) [39]. It has been demonstrated that in these
systems, the stabilization of asters occurs through flows proportional to W  driven by motors
walking along the MT. A motor speed w0 > 0 thus brings MTs closer together and promotes
aster formation [39]. It has also been pointed out that the steady-state equation for W  resembles
a vector-Poisson equation with a source term proportional to ∇ρ [40]. Thus, the non-zero
polarity field induces a flow toward the center of the aster that leads to radial alignment of MT.

Finally, the dynamics in the dilute unordered background (cluster 2, green in figure 2) is
described by the terms associated to a2, DW and λ3, where a sub-characteristic density ρ < ρc
results in W = 0, and λ3 plays a similar role as in cluster 1. Interestingly, we observe the
appearance of the diffusive relaxation term ΔW  in this cluster across all three parameteriza-
tions, indicating that the microscopic thermal noise is mostly significant in the unordered
phase. In microscopic simulations, the noise has been shown to be important to form larger
and denser asters [46]. Our results are in agreement with this since diffusion is the dominant
transport mechanism for particles in the unordered phase until they get ‘drawn in’ by an aster.

Interestingly, none of the local force-balance laws in the present case contains the time
derivative ∂tW . We believe that this is because the asters form very rapidly, within just a
few time points. The data are therefore dominated by the quasi-steady state, where the asters
stabilize their size and structure. Moreover, we find that a model can only be stably inferred
if the data exhibit strong patterning. We quantify this by repeating the experiments withλ = 1.6 (as in figure 2c) for a wide range of self-propulsion speeds w0 ∈ {0.05, 0.10, …, 0.30}. The
resulting Pareto fronts and the respective selected models are shown in figure 11 and listed in
table 1. While the overall trends and inferred models remain similar, the models for w0 ≤ 0.15
fail to identify the density gradient ∇ρ, and model selection in cluster 1 becomes difficult
owing to exponentially decaying Pareto fronts. With higher self-propulsion speeds (w0 > 0.15),
we stably recover models in agreement with figure 2. Owing to the influence of w0 on the
magnitude of splay deformations, we believe that pronounced dynamic instabilities in the data
aid robust model identification.

(c) Density-dependent motility
In this section, we demonstrate the robustness of our method in identifying universal mecha-
nisms shaping the emergence of complex structures using a more general model that allows
for particle motility to be influenced by density [36]. Despite, the slight change in the rules of
the microscopic world, the corresponding coarse-grained model exhibits emergent structures
such as asters and moving bands discussed in the previous section. This provides an opportu-
nity to evaluate if our data-driven approach can reveal common physical principles shaping
these structures. For this, it is important that the method is able to efficiently detect potential
redundancies in a specified model, regardless of how insignificant their influence might be.

We demonstrate this here by considering a second model of self-propelled particle flows,
different from the one presented in §2a. In this second model, the particle speed depends on the
local density as ν(n) = v0e−λn + v1, where n is the number of particles within a given interaction
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radius. The scalar constants v0 ≫ v1 > 0 define the dilute and crowded limiting velocities. The
choice of λ > 0 controls the exponential decay and can lead to the emergence of crowding effects
at high densities. It has been shown that the model system is also capable of forming moving
density bands and asters [36]. Here, we consider the system for low λ such that the physics
is approximately in the same regime and show that the method is capable of identifying the
redundant model terms and returns similar physical mechanisms.

Also for this model, a mean-field PDE description has been derived [36] for the density
field and the local alignment/polarization density field. The dynamics of the mean-field number
density ρ is given by

(3.4)∂tρ = −∇ ⋅ νW − Dr∇ρ ,

with diffusion constant Dr, while the equation for the polarity density contains additional
operators arising from the density dependence of the speed ν(ρ)

(3.5)

∂tW + γ
16ϵ (W ⋅ ∇)(νW) = 1

2γρ − ϵ W − γ2

8ϵ |W |2W − 1
2∇(νρ) + 3γ

16ϵ∇(ν |W |2 ) −

γ
32ϵν∇|W |2 − 3γ

16ϵW∇ ⋅ (νW) − γ
8ϵνW(∇ ⋅W) − γ

8ϵν(W ⋅ ∇)W + DrΔWW ,

depending on the alignment strength γ and the thermal fluctuations ϵ. The diffusion term
accounting for the relaxation of the bend and splay moduli is only included for reasons of
symmetry and numerical stability. For λ = 0, the additional terms depending on ν vanish, and
the model reduces to the hydrodynamic model in equation (2.2).

We consider two parameterizations of the model in equations 3.4 and (3.5) that form moving
density bands and asters visualized in the leftmost panel of figure 4a,b. Compared to the
simpler model from the previous sections, the structures are less regular, which is due to the
now-present crowding effects. Applying the same data-driven algorithm for inferring locally
dominant force balances for the moving density band with Kband = 4 as before, we find the
domain decomposition shown in the remaining panels of figure 4a. Similar to the case in §3a,
cluster 0 (blue) localizes the high-density region of the travelling band and cluster 1 (orange) the
flank of the band. The unordered background is also again contained in its own cluster (here
cluster 2, green). In contrast to the results in figure 1 we find an additional cluster localized to
the y-component of the polarity density W y. We believe this is due to crowding effects, where
the number density in the ordered region starts to form a clump (black arrows) that moves with
the band, such that ∂tW y ≠ 0. Analysing the inferred locally dominant balance models in figure
4c, we find similar mechanics as in equation (3.2), where the high-density region stabilizes
and orders owing to alignment interactions, and gets convected through density gradients (see

Table 1. Selected models for the aster experiments in §3b. The rows correspond to the different model parameterizations
with λ = 1.6 and w0 = {0.05, 0.10, 0.15, 0.20, 0.25, 0.30}. The columns show the models obtained for each cluster, where
the cluster numbering is as in figure 2. We denote the identified model terms by their respective coefficients according to
equation (2.2).

parameterization model cluster 0 model cluster 1 model cluster 2w0 = 0.05, λ = 1.6 a2, a4, λ2 λ1, a2, a4, λ3, λ2 a2,a4, λ3w0 = 0.10, λ = 1.6 a2, a4, λ2 λ1, a2, a4, λ3 λ1, a2, λ3w0 = 0.15, λ = 1.6 a2, a4, λ2 a2, a4, λ3 a2,DW , λ3w0 = 0.20, λ = 1.6 a2, a4, λ2 λ1, a2, a4,w0, λ3 a2,DW , λ3w0 = 0.25, λ = 1.6 a2, a4,DW , λ2 λ1,a2, a4,w0, λ3 a2,DW , λ3w0 = 0.30, λ = 1.6 a2, a4, λ2 λ1, a2,a4,w0, λ3 a2,DW ,w0, λ3
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cluster 2, green) as well as the density-velocity coupling. In contrast to the simpler model
considered in the previous sections we do not find a steady-state minimal model, as the data
contain no region that can be seen as a steady-state solution in the local reference frame of
cluster 0.

Interestingly, we also identify ∇(ν|W |2) as an additional term driving band motility. This
term is similar to the term associated with λ3 in equation (2.2), which now also depends on
the change in the particle speed ν(ρ). As such, it not only accounts for the splay deformations
but also for the local crowding behaviour. We, therefore, hypothesize that this term governs
the crowding effects that lead to the formation of the moving clump in the density band since
this causes gradients in the polarity magnitude |W |2. We validate this hypothesis by numerical
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solutions as shown in figure 5. Again, the minimal pattern-forming model in equation (3.2)
is sufficient to form moving band structures, even when using a density-dependent particle
speed. The band shape is more regular and comparable to that of the model with constant
self-propulsion speed. The minimal model can therefore not account for the observed clumping
behaviour in the full model. Including the term ∇(ν|W |2) into the minimal model, however, is
sufficient to reproduce the clump crowding behaviour observed in the full model. This suggests
that initially small gradients in the local particle density ρ will lead to a positive feedback loop,
where particles in the more dense region slow down. This effect gets amplified through the
influx of new particles, which effectively leads to the observed crowding behaviour.

We next consider the formation of asters in the model with density-dependent motility. The
results are summarized in figure 4b. We find a similar domain decomposition as in §3a with
cluster 0 (blue) capturing the cores of the asters, cluster 1 their shell and cluster 2 the unordered
background. In contrast to figure 2, the interface region between an aster and the background
is also assigned to cluster 0. We believe this is because multiple asters now form in the domain.
This is supported by the result in figure 8, where we only use the right-hand side third of the
domain to infer the clusters. This portion of the space only contains one aster. Then, cluster 0 is
again only assigned to the aster core.

The inferred locally dominant force balances in figure 4d confirm the appearance of ∇(νρ)
and the spontaneous polarization terms, which were both were identified as the most important
terms in the model with constant particle speed. These same terms have also been found as the
key pattern-formation drivers by others, where it was shown that ∇(νρ) acts as an ordering field
for W  at steady state [36]. It is also responsible for the so-called clustering instability that leads
to the formation of a crowded phase in the asters [36]. In the background cluster 2, we also find∇(ν|W |2), which is similar to λ3 in equation (2.2) with additional crowding effects. This suggests
that the pattern emerges by a similar mechanism of lowering the effective pressure in the aster
cores owing to strong particle interactions, which results in the onset of splay-induced negative
compressibility. The additional dependence on the gradient of ν(ρ) indicates that the process
is also influenced by the local crowding behaviour. As particles are driven closer together, the
speed in the center of the aster approaches v1. This effectively ‘traps’ the particles in the region
of the core, where the local interactions lead to their alignment. Interestingly, we observe the
phenomenological appearance of the coupling to the compressibility of the polarity only in the
shell regions, but not in the cores of the asters. This, however, might be an artefact of the outer
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Figure 6. Reconstruction error for different rank-r truncations by minimizing the objective in equation (2.6) over the whole
domain for w0 = 0.05 and λ = 1.6 (aster case). Different lines correspond to different choices for the sparsity-promoting
parameter α in SPCA (inset legend). Blue diamonds give the reference reconstruction error of rank-r truncated SVD, which
perfectly coincides with SPCA for α = 0 and reconstructs to machine precision with full-rank approximation (not shown),
validating the correctness of the SPCA algorithm implementation.
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parts of the shell being assigned to cluster 0, since in the cropped case with a single aster (see
figure 8), W∇ ⋅ (νW) appears directly after the spontaneous polarization terms controlling the
order–disorder transition.

Taken together, these observations show that despite the mathematical differences between
the models in equations (2.1) and (2.2) and in equations (3.4) and (3.5), the emerging spatio-tem-
poral structures form by similar mechanisms and that the method correctly ignored potentially
redundant terms. In both models, propagating bands are formed by local alignment interactions
driven by gradients in number density, while steady-state asters are shaped by a mechanism of
splay-induced negative compressibility arising from strong particle interactions.

4. Discussion and outlook
We have extended the method of Callaham et al. [32] by using higher-dimensional model
selection, leading to Pareto fronts with a clear selection point. We have demonstrated that the
resulting algorithm is able to infer locally dominant components of a global model describing
active particle systems. Using a combination of unsupervised clustering with GMMs and SPCA,
we decomposed space and time domains into regions exhibiting similar dynamics.

We looked at the dynamics of two distinct non-equilibrium structures that can also be
observed in in vitro experimental studies, namely moving density bands and asters. Our
findings indicate that moving density bands are sustained through the dynamic interplay
between spontaneous polarization components leading to local particle alignment and density
gradients that stably propel the band. On the other hand, asters are shaped through negative
compressibility generated by strong particle alignment interactions. The resulting orientational
order on the macroscale then leads to flow towards high-density regions, drawing in more
particles. Furthermore, comparing the identified mechanisms with those obtained for a more
detailed model of an active particle system with density-dependent motility enabled us to
identify physical commonalities across the two models and shows that the method effectively
ignores the redundant terms.

Importantly, the results obtained here only required data from numerical solutions of
hydrodynamic mean-field models, which could either have been derived analytically or
found using model discovery algorithms. Yet, decomposing them into regions of similar
local dynamics and inferring minimal models of the locally dominant forces, we were able
to bridge the gap back to the microscopic origins of the involved processes and provide
mechanistic explanations for several previous observations in the literature, both theoretical
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Figure 7. Numerical solution of the hydrodynamic equations in equations (2.1) and (2.2) with w0 = 0.2 and λ = 1.8 (same
as figure 2b) but setting λ1 = 0. The quasi-steady state solution (see appendix A) forms a vortex instead of an aster.
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and experimental. We therefore believe that the presented method ideally complements classic
asymptotic or linear stability analysis in providing information about local dominant force
balances, pattern-forming instabilities and the underlying physical mechanisms in self-organ-
ized active matter. For this reason, the present study considered macroscopic hydrodynamic
data. However, we believe that it should be possible to extend the presented approach also to
microscopic data comprising trajectories of agents or particles interacting according to a given,
but potentially large, set of rules. The feature matrix Θ would then consist of the individual
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forces acting on each particle at a given point in time, and a set of locally dominant forces (or
interaction rules) could be identified within each cluster.

Naturally, data-driven approaches are limited by the identifiability of the model given the
data. For example, we found that for very small microscopic self-propulsion velocities, the
influence of the density gradient ∇ρ asymptotically vanishes. In those cases, we find exponen-
tially decaying Pareto fronts for the clusters, rendering model selection challenging. Overall, we
observed a correlation between the robustness of the data-driven inference and the magnitude
of splay deformations. The method is more robust in regions of parameter space that contain
pronounced dynamic instabilities. It is therefore important in practice to always inspect the
Pareto fronts of the inference algorithm before interpreting the results.

We expect that model selection and proper inspection of the Pareto fronts becomes even
more important when using noisy data. To explain the key concepts of the presented analy-
sis method we considered noise-free synthetic data. However, real-world experimental data
almost always contains noise or uncertainties. Therefore, future work should explore how the
identification of model terms is influenced by the effective smoothing of the distribution of the
observable owing to additive noise in the data, which will propagate into the computation of
the feature matrix. It might then be interesting to explore ideas from robust statistics, such as
stability selection [50]. Stability selection has already been shown to be robust to noise and to
varying sample sizes in global PDE learning problems, and it enabled their use on real-world
experimental data [21,23].

In the models discussed in this work, hydrodynamic interactions between particles were
ignored. Introducing such interactions is another promising direction to explore, given that
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many microswimmers generate vorticity in their vicinity to move, thereby affecting neighbour-
ing swimmers [37]. Another example of a system where long-range hydrodynamic coupling
exists is confined mixtures of motor proteins and MT polymers. In such globally coupled
systems, transient phenomena such as wrinkling instabilities have been experimentally
observed [51] and theoretically described [52]. Such transient phenomena will challenge
methods that aim to infer a global model. However, the presented spatio-temporal clustering
approach with an overcomplete set of clusters should be able to identify transient phenomena
as distinct clusters in time. This might provide another avenue towards the mechanistic
understanding of such phenomena.

Notwithstanding these limitations of the present approach, we believe that data-driven
modelling approaches hold great potential for enhancing our mechanistic understanding of
active and self-organized matter. In particular, the combination with classic first-principles
modelling and other data-driven methods [21,53] is promising for getting closer to a multi-scale
understanding of the physics of morphogenesis and pattern formation in living biological
systems directly from experimental data.
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Appendix A. Numerical solver details
We present the details of the numerical algorithms and their parameterizations used to generate
the data from the numerical solution of the two models studied here.

A1. Hydrodynamic model of self-propelled particles
The results presented in §3a,b use data generated by numerically solving the hydrodynamic
model in equations (2.1) and (2.2). We use the same parameter configurations as Gopinath et al.
[12], which specifically includes setting λ1 = λ2 = λ3 =: λ as well as D = DW = 1. This allows us to
use the published phase diagrams for this case [12] as guidance in determining the parameter
sets for which bands and asters are expected to form. For the spontaneous polarization terms,
we use the form a2(ρ) = 1 − ρ/ρc and a4(ρ) = 1 + ρ/ρc with ρc = 1, following Mishra et al. [38].
The governing equations are numerically solved in the OpenFPM framework for scalable
scientific computing [55] using fourth-order finite differences on a two-dimensional regular
Cartesian grid of 128 × 128 points for the asters and 256 × 96 points for the moving den-
sity bands with resolution Δx = 1 and periodic boundary conditions in all directions. Time
integration is done using the explicit Euler method with an additional correction step based
on the trapezoidal rule with time-step size Δt = 0.02. Data are generated and stored every 2500
simulation time steps. The time Δtdata = 2500Δt is the data time step used for the data-driven
inference. The initial conditions are ρ0U − π, π , with initial density ρ0 = 1.07 and U a uniform
distribution, and W(t = 0) = 0.
Furthermore, we use the following parameters:
Density bands: The data consist of 21 data time points in the dynamic regime of the moving
density band with Tstart = 68Δtdata and Tend = 88Δtdata. The model parameters are (i) w0 = 0.5,λ = 0.2; (ii) w0 = 0.4, λ = 0.4; (iii) w0 = 0.25, λ = 0.25.
Asters: We collect data time points until the systems reach a quasi-steady state, defined by
∂tW ≤ 10−4, or a maximum of 200 000 simulation time steps. The model parameters are (i)w0 = 0.15, λ = 1.2; (ii) w0 = 0.2, λ = 1.8; (iii) w0 = 0.3, λ = 1.6.
We construct the feature matrix in equation (2.5) from the numerical solution data by approx-
imating all spatial derivatives using forth-order finite differences. The first column, ∂tW , is
obtained directly from the corrector step of the numerical solver.

A2. Model with density-dependent motility
The results presented in §3c use data generated by numerically solving equations (3.4) and
(3.5) for the parameters studied by Farrell et al. [36]. The equations are numerically solved
in the OpenFPM framework [55] using second-order finite differences over the two-dimen-
sional domain Ω = [0,10]2 discretized with a regular Cartesian grid of 200 × 200 points. Periodic
boundary conditions are used in both directions. Time integration uses an explicit Euler scheme
with a corrector step based on the trapezoidal rule with time step Δt = 10−3. Data for inference
were stored every 500 time steps, thus Δtdata = 500Δt. The density at time 0 is constant ρ0 = 30,
and the initial condition for the polar density is W(t = 0) = ρ0(cos ζ, sin ζ)⊤, ζ ∼ U(−π, π). We
compute the speed as ν(ρ) = v0exp {−λπR0

2ρ} + v1. The feature matrix Θ is constructed as before,
but with second-order finite differences.
Furthermore, we use the following parameters:
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Density bands: The data consist of 21 data time points after the density band has formed
with Tstart = 89 ⋅ Δtdata and Tend = 109 ⋅ Δtdata. The model parameters are v0 = 2, v1 = 0.1, λ = 10−5,γ = 0.16, R0 = 1, ϵ = 2, Dr = 0.4.
Asters: The data consist of 21 data time points in the quasi-steady state betweenTstart = 370 ⋅ Δtdata and Tend = 390 ⋅ Δtdata. The model parameters are v0 = 2, v1 = 0.0, λ = 0.05,γ = 0.16, R0 = 1, ϵ = 2.08, Dr = 0.02.

Appendix B. Experimental details
We provide the hyperparameters of all components of the machine-learning framework used in
this paper. We always choose 1 as the random seed for both the GMM and SPCA. All computer
codes used are freely available at the following URL/DOI: https://rodare.hzdr.de/record/2386.

B1. GMM
The GMM is trained with three reinitializations until convergence with tolerance 10−3 and
a maximum of 100 iterations (which in our experiments was never reached) using the expect-
ation-maximization algorithm [56] implemented in SKLEARN [44]. The centers of the clus-
ters are initialized by k-means clustering. The number of clusters K is chosen based on the
desired spatial decomposition as Kaster = 3 and Kband = 4 for both hydrodynamic models. Higher
numbers result in finer domain decompositions with the same spatial characteristics. As such,
they do not yield additional information about the physics of the system. Algorithmically, K
could therefore be determined in a post-processing step, where initially too-many clusters are
merged if the identified dominant force balances within them are equal [32]. In the present
work, however, we fixed the number of clusters manually from prior knowledge.

B2. Sparse PCA
We compute the first r = 6 principle components for each cluster Θk, k = 0, …,K − 1. The rank-r
truncation is chosen based on the reconstruction error. This is illustrated in figure 6, where
the reconstruction error (as the square of the Frobenius norm) is plotted versus r for different
values of the sparsity-promoting SPCA parameter α. For small α > 0, we find an elbow in the
curve at r = 6, which we use for the experiments throughout the paper. Higher regularizationsα move the elbow to lower r, limiting the possible reconstruction error. We use r = 6 to ensure
correct asymptotic behaviour over a wide range of regularizations during model selection. We
also find that the choice of r does not significantly influence the model paths or the identified
minimal models. Higher r mainly improve the possible reconstruction error (limited by the
SVD), leading to clearer selection points in the Pareto front. We minimize the objective in
equation (2.6) using alternating coordinate descent, for which we observe lower final recon-
struction errors and better-resolved Pareto fronts than for the least-angle regression optimizer
[57], albeit at higher computational cost. We use the implementation from sᴋʟᴇᴀʀɴ [44] with an
absolute tolerance of 10−6 and a maximum of 1000 iterations (which was never reached in our
experiments). The final model for a given regularization α and cluster ck is the set union of all
active terms of the principle directions Ck(α).

B3. Pareto fronts
Pareto fronts are obtained for inspection by evaluating the residual of equation (2.6) on a
log-equidistant grid of 400 points over (figures 7 and 8) α ∈ [10−4, 102]. The only exception is §3c,
where we use α ∈ [10−4, 104] to obtain the full Pareto front. The residual is plotted versus the
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number of active terms in the final model of a cluster ck . We then select the point on the Pareto
front that has the steepest descent with at least two non-zero components, since a force balance
requires at least two terms. If there is no such model, we use elbow selection. We always report
the selected model with the lowest error. The Pareto fronts used for model selection in §3a are
shown in figure 9, those for §3b in figures 10 and 11 and those for §3c in figure 12.
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