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Abstract 
Motivation: Accurate alignments between entire genomes are crucial for comparative genomics. However, computing 

sensitive and accurate genome alignments is a challenging problem, complicated by genomic rearrangements.  

Results: Here we present a fast approach, called chainCleaner, that improves the specificity in genome alignments by 

accurately detecting and removing local alignments that obscure the evolutionary history of genomic rearrangements. 

Systematic tests on alignments between the human and other vertebrate genomes show that chainCleaner (i) improves 

the alignment of numerous orthologous genes, (ii) exposes alignments between exons of orthologous genes that were 

masked before by alignments to pseudogenes, and (iii) recovers hundreds of kilobases in local alignments that otherwise 

would fall below a minimum score threshold. Our approach has broad applicability to improve the sensitivity and specifici-

ty of genome alignments. 

Availability: http://bds.mpi-cbg.de/hillerlab/chainCleaner/ or https://github.com/ucscGenomeBrowser/kent 

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

 

1 Introduction  

Whole genome alignments are of fundamental importance for compara-

tive genomic studies. Alignments between genomes of different species 

have been used to detect sequence conservation, which is a hallmark of 

purifying selection and identifies genomic regions with a biological 

function (Cooper, et al., 2005; Siepel, et al., 2005). Comparative ge-

nomics discovered that the majority of the evolutionarily conserved 

DNA sequences does not code for proteins (Birney, et al., 2007; Hillier, 

et al., 2004; Siepel, et al., 2005; Waterston, et al., 2002) and that a sizea-

ble portion of these conserved regions originated from exapted transpos-

on insertions (Lindblad-Toh, et al., 2011; Lowe, et al., 2007). Specific 

sequence conservation patterns were further used to predict the type of 

function that is encoded in this genomic region, which contributed to 

completing catalogs of coding and non-coding genes, uncovered con-

served transcription factor binding sites and regulatory elements, and 

detected regions where different molecular functions overlap (Lin, et al., 

2011; Lindblad-Toh, et al., 2011; Stark, et al., 2007). Furthermore, ge-

nome alignments are not only key to detect sequence similarity between 

species, but also to detect genomic differences that underlie phenotypic 

changes (Hiller, et al., 2012; McLean, et al., 2011; Pollard, et al., 2006; 

Prabhakar, et al., 2006; Prudent, et al., 2016). Finally, alignments are the 

basis to infer the evolutionary history of genomes by reconstructing 

ancestral genomes (Blanchette, et al., 2004a; Ma, et al., 2006).   

 

The accuracy of genome alignments critically affects the results of the 

comparative analysis. However, computing genome alignments is a 

complex and challenging computational task (Earl, et al., 2014). While 

standard sequence alignment only considers substitutions, insertions and 

deletions, genome alignment must additionally deal with genomic rear-

rangements such as duplications, translocations and inversions (Dewey, 

2012). A number of different genome alignment approaches have been 

developed (Angiuoli and Salzberg, 2011; Blanchette, et al., 2004b; Bray 

and Pachter, 2004; Brudno, et al., 2003a; Brudno, et al., 2003b; Darling, 

et al., 2010; Dubchak, et al., 2009; Frith and Kawaguchi, 2015; Grabherr, 

et al., 2010; Kent, et al., 2003; Paten, et al., 2011a; Paten, et al., 2011b; 

Paten, et al., 2008) that can be grouped into two main classes, hierar-

chical and local approaches (Dewey, 2012). Hierarchical alignment 

approaches first determine orthologous segments between the genomes 

that lack rearrangements and then align the bases in these segments. 

Local approaches first determine all local alignments and then filter them 

to find orthologous alignments.  
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The chain and net framework belongs to the class of local approaches 

(Kent, et al., 2003). The UCSC genome browser group routinely uses 

chains and nets to compute pairwise alignments between a reference and 

a query genome (Rosenbloom, et al., 2015). Several pairwise alignments 

between a reference and different query species can be combined into a 

multiple alignment with MULTIZ (Blanchette, et al., 2004b). This 

chain/net/MULTIZ pipeline has been used to create many multiple ge-

nome alignments, including an alignment between human and 99 other 

vertebrates (Rosenbloom, et al., 2015).  

 

To build alignment chains, co-linear local alignments (aligning blocks) 

that occur in the same order on a reference and a query chromosome are 

“chained” together (Kent, et al., 2003). Aligning blocks in such a chain 

can be separated by big insertions or deletions, such as transposon inser-

tions that happened in either the reference or query. Aligning blocks can 

also be separated by genomic regions where the reference and query 

sequence does not align to each other. For example, such an un-aligning 

region can be a diverged intron that is flanked by conserved exons, 

which overlap aligning blocks. Finally, aligning blocks can be separated 

by regions where the reference or the query genome underwent a rear-

rangement, such as an inversion or translocation. Alignments of the 

rearranged region are not co-linear with up- and downstream aligning 

blocks of this chain, however they can form a separate chain.  

 

While chains represent alignments to orthologous and paralogous regions 

in general, alignment nets attempt to capture only orthologous align-

ments. Nets are a hierarchical collection of chains or parts of chains that 

are organized in different levels. To build this hierarchical structure, one 

starts by taking all aligning blocks of the top-scoring chain as the level 1 

net. Then, entire or parts of lower-scoring chains can fill the non-

aligning regions (gaps) in the top-level net, becoming a level 2 net. This 

procedure iterates until all chains are processed (Kent, et al., 2003). 

Thus, while a single locus in the reference genome can overlap aligning 

blocks of several different chains, a locus can overlap at most one align-

ing block of a single net. The hierarchy of nets should ideally represent 

the order and number of the genomic rearrangements, which allows 

reconstructing the evolutionary rearrangement history (Ma, et al., 2006). 

For example, an inversion breaks co-linearity and results in two nested 

nets. The first (level 1) net aligns the locus upstream and downstream of 

the inversion and has a gap overlapping the inverted region. The inverted 

region would align in the reverse orientation in the second (level 2) net 

that fills this gap in the level 1 net (Figure 1A). Similarly, a translocation 

would align as a second level net. However, the requirement that a locus 

in the reference can overlap at most one net implies that nets cannot 

represent duplications in the query genome (Kent, et al., 2003). 

 

A key feature of the net-building algorithm is that it takes all aligning 

blocks of the top-scoring chain as the top-level net. This implies that if 

the top-level chain contains, for example, non-orthologous alignments 

between the reference and the query genome, these alignments will be-

come aligning blocks in the top-level net. Since nested lower-scoring 

chains can only fill gaps in a higher-scoring net, the nested chain could 

be broken into a number of smaller nets (Figure 1). This can lead to 

situations where nets do not represent the correct rearrangement history, 

for example by inflating the number of rearrangements that occurred 

(Figure 1). 

 

In the following, we refer to aligning blocks in a top-level “breaking 

chain” that break a nested lower-scoring chain (“broken chain”) as chain-

breaking alignments (CBAs, Figure 2A). We define two types of CBAs. 

True CBAs need to be removed from the breaking chain in order to result 

in nets representing the correct rearrangement history (with the limitation 

that nets cannot represent duplications in the query genome). These 

removed alignments then form a new chain and can become a new nest-

ed net. In contrast, false CBAs should not be removed from the breaking 

chain, because this chain results in a net that already represents the cor-

rect rearrangement history. 

 

Apart from obscuring the rearrangement history, true CBAs can have 

other undesirable consequences. First, true CBAs can mask alignments 

between exons of orthologous genes, for example, if the breaking chain 

contains alignments to a processed pseudogene. In the case shown in 

Figure 1C, the pseudogene alignments reveal numerous gene-

inactivating mutations, from which one would incorrectly infer gene loss 

(Supplementary Figure 2). Second, since low scoring nets are less likely 

to represent an orthologous alignment, one often filters out nets with a 

score below a minimum threshold (Kent, et al., 2003). Consequently, if 

the broken chain is broken into a number of smaller nets, some of these 

individual nets can fall below the score threshold and would be incor-

rectly filtered out. This is shown in Figure 1C, where several orthologous 

aligning blocks are missed in the final genome alignment. Together, true 

CBAs impair both the specificity and sensitivity of genome alignments. 

 

Given that the accuracy of genome alignments is crucial for comparative 

genomics, we developed a fast method, called chainCleaner, to detect 

and remove true CBAs from the breaking chains. chainCleaner relies on 

a score ratio that accurately distinguishes true from false CBAs. We 

systematically tested this method on vertebrate genome alignments at a 

variety of evolutionary distances and show that chainCleaner improves 

the alignment of many orthologous genes and rescues nets that would 

otherwise be incorrectly filtered out. 

2 Methods 

2.1 chainCleaner detects and removes true CBAs 

Our method chainCleaner takes a set of alignment chains as input and 

removes CBAs from these chains. The rationale of chainCleaner is the 

following: If the part of the broken chain that surrounds the CBA repre-

sents an orthologous alignment and a single rearrangement, then the 

local score of the broken chain should be higher than the score of the 

CBA (Figure 2B). This is in contrast to the scores of the entire chains, 

where, by definition, the breaking chain scores higher than the broken 

chain. Using the chain-scoring scheme developed in (Kent, et al., 2003), 

we compute the score of the CBA and the scores of the broken chain 

parts upstream and downstream of the CBA (Figure 2B). Then, we ob-

tain the ratio between the minimum score of the upstream/downstream 

broken chain parts and the score of the CBA. For true CBAs, this ratio 

should be > 1, while it should be < 1 for false CBAs. Given the set of 

chains, chainCleaner computes the score ratio for every observed CBA 

and removes those CBAs where the score ratio is above a certain thresh-

old.  
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Fig.  2 Terminology and illustration of the score ratio. (A) Scheme: The “breaking 

chain” contains an isolated local alignment that breaks the “broken chain” into several 

nets. (B) Illustration of the ratio between the minimum score of the upstream and down-

stream broken chain parts and the score of the CBA. We use a modified scoring scheme 

analogous to a local alignment score (always ≥0) to score the CBA. 

2.2 chainCleaner implementation 

chainCleaner was implemented in C using data structures and functions 

from the UCSC Kent source code that efficiently handle chains and nets 

(Kent, et al., 2003). As a result, chainCleaner runs typically less than 10 

minutes for mammalian-sized genomes, and less than 3 minutes for 

smaller genomes. chainCleaner requires as input a chain file and the 

genome sequences (2bit format).  

 

First, chainCleaner nets the chains using chainNet and removes all indi-

vidual nets with a score lower than 3000. Then it parses the fill and gap 

lines of the nets and uses the chain identifier (id field) to obtain a linked 

list of “breakInfo” objects. These objects store the identifiers, pointers to 

the breaking and broken chain, the coordinates of the CBA and the coor-

dinates of non-aligning regions (gaps) upstream and downstream of the 

CBA. The latter coordinates correspond to the two regions where parts of 

the broken chain fill the gaps in the net that corresponds to the breaking 

chain. chainCleaner does not consider cases where the individual nets 

resulting from a single broken chain are at different levels since these 

Fig.  1 Chain-breaking alignments (CBAs) in mammalian genome alignments.  

UCSC genome browser illustrations show GENCODE genes and alignment chains/nets between human and horse, mouse or cow. Boxes in the chains/nets represent local aligning 

blocks.  

(A) A genomic inversion results in two overlapping chains. Two CBAs (highlighted in red) break the lower level chain, representing a single inversion event, into three separate nets, 

which would imply that three inversion events happened. Both CBAs are very low scoring (lastz score <2400) and thus are likely random alignments that just arise by chance (Supple-

mentary Figure 1). Removing both CBAs results in a single net that correctly indicates a single inversion.  

(B) A chain-breaking alignment in the top-level chr3 chain breaks the lower level chr5 chain, representing a 4.1 Mb translocation, into two separate nets. Removing this chain-breaking 

alignment results in a single net, which spans the full BTBD8 and its neighboring genes. The red block aligns a retroposed GAPDH pseudogene that likely was inserted independently 

into this locus in both human and mouse.  

(C) Several CBAs break the chr9 minus strand chain that aligns NCOA7 to its ortholog in cow. These CBAs align parts of NCOA7 to a putative nuclear receptor coactivator pseudogene 

in cow. The orthologous alignments of two NCOA7 exons are masked by these pseudogene alignments, which harbor numerous gene-inactivating mutations (Supplementary Figure 2). 

For the MULTIZ genome alignment, alignment nets were filtered for strong “syntenic alignments” (netFilter –syn from the UCSC source code (Kent, et al., 2003)), which removes two 

of the incorrectly broken nets (blue arrows). As a result, the MULTIZ alignment contains gene-to-pseudogene alignments and misses orthologous alignments (blue box). Removing the 

CBAs would keep the entire lower level chain as one syntenic net. 
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cases typically involve more than one breaking chain. It also does not 

consider cases where the entire breaking chain is nested inside the bro-

ken chain, as the resulting score ratio would be < 1 by definition (the 

CBA score then equals the score of the entire breaking chain). To assure 

that the broken chain likely represents an orthologous alignment, chain-

Cleaner only considers broken chains with a score higher than 50000. 

For mammalian alignments, where chain scores are generally higher, we 

used 75000 as a threshold (parameter -minBrokenChainScore 75000).  

 

Then chainCleaner loops over all CBAs, and uses the chain-scoring 

scheme developed in (Kent, et al., 2003) to compute the score of the 

CBA and the score of the part of the broken chain in the gap upstream 

and downstream of the CBA (see Figure 2B). This scoring scheme iter-

ates over all aligning blocks and adds the scores of all local ungapped 

alignments and a cost that penalizes the gap between two adjacent blocks 

depending on the gap size in the reference and query assembly (Kent, et 

al., 2003). We noticed that a CBA can comprise several aligning blocks 

spread over a larger region. The score of the CBA can then be negative, 

for example if the CBA comprises one solid and one weak aligning block 

that are separated by a large distance. To avoid underestimating the score 

of the CBA, we scored CBAs with a modified scoring scheme that is 

analogous to a local alignment score. This modified scheme also iterates 

over all aligning blocks and but records the maximum and sets the score 

to 0 if it falls below 0. Then, we compute the ratio between the minimum 

score of the upstream and downstream broken chain parts and the score 

of the CBA. If this score ratio is above a user-given threshold (2.5 by 

default, which gives consistently high precision and sensitivity; see 

Results), chainCleaner removes the CBA from the breaking chain. By 

default, chainCleaner does not consider CBAs that score higher than 

100000.  

 

For each removed CBA, a new chain is created that gets a new chain ID. 

This new chain can become a new net if it fills a gap and is above a 

minimum score threshold. Since a breaking chain can have more than 

one CBA in close proximity, chainCleaner updates the size of the up-

stream and downstream gap in the breakInfo structures and iteratively 

tests if further CBAs should be removed. In addition, chainCleaner also 

tests if a pair of CBAs should be removed together (parameter -doPairs). 

Considering pairs allows removing CBAs that are very close to each 

other, in which case the score of the upstream or downstream part of the 

broken chain would not be very high (Supplementary Figure 5). We 

recompute the chain score for all breaking chains where CBAs have been 

removed. The output of chainCleaner is a cleaned and score-sorted chain 

file, and a file in bed format that lists the coordinates and information of 

each removed CBA.  

 

2.3 Alignments between exons of orthologous genes 

To determine the score ratio threshold, we downloaded the coordinates 

of Ensembl coding genes from the UCSC genome browser “ensGene” 

table for human (hg38 assembly), horse (equCab2), cow (bosTau4), 

mouse (mm10), opossum (monDom5), platypus (ornAna1), chicken 

(galGal4), lizard (anoCar2), frog (xenTro3) and zebrafish (danRer10). 

We used liftOver to map these genes from bosTau4 to bosTau8, ornAna1 

to ornAna2 and xenTro3 to xenTro7. For testing chainCleaner on inde-

pendent species, we used rat (rn6), guinea pig (cavPor3), rabbit 

(oryCun2), dog (canFam3), Tasmanian devil (sarHar1), zebra finch 

(taeGut2), duck (anaPla1), Chinese softshell turtle (pelSin1), fugu (fr3) 

and medaka (oryLat2). One-to-one orthologs were downloaded from 

Ensembl Biomart (Kinsella, et al., 2011). Then, we tested for all aligning 

blocks in all chains if a block aligns an exon of a human gene to its 

ortholog in the query species. For each human exon for which this was 

the case, we obtained the coordinates and the chain identifier.  

 

2.4 Training set of true and false CBAs  

We used chainCleaner with parameter –suspectDataFile to obtain the 

coordinates and score ratios of all chain-breaking alignments, without 

removing any of them and without considering pairs of CBAs. Then we 

overlapped all CBAs with coordinates of the genic regions (defined as 

the region between the first and last coding exon with an orthologous 

alignment for this gene) and the coordinates of the exons that align to the 

ortholog. As illustrated in Figure 3B, a true CBA overlaps the genic 

region and breaks the orthologous chain. A false CBA overlaps an 

alignment between exons of orthologous genes and breaks a lower-level 

chain that is unlikely to represent an orthologous alignment (Figure 3C).  

 

 

Fig 3: Exons that align between orthologous genes are used to obtain a training set of 

true and false chain-breaking alignments. 

(A) Illustration of exons that align between orthologous genes: Genes with the same color 

are 1:1 orthologs. Only coding exons are considered. The top-level chain aligns the three 

exons of the red gene to its ortholog, however this chain also aligns exon 2 and 3 of the 

blue gene to a potential paralog (purple). The lower level chain aligns exon 1 and 3 of the 

blue gene to its ortholog. Note that exon 2 of the blue gene and exon 1 of the yellow gene 

align, but neither of them align to the ortholog.  

(B) A CBA that is located between the first and last exon of a gene and breaks the chain 

that represents the orthologous alignment (lower level chain here) is considered to be a 

true CBA. Before removing this CBA, the orthologous exon alignments of the blue gene 

are located on two separate nets. After removing this CBA, all orthologous exon align-

ments are located on a single net, which increases the maximum number of aligning 

exonic bases (alignment coverage) observed for a single net.  

(C) An alignment between an exon of an orthologous gene that breaks a lower level chain 

is considered to be a false CBA. In this case, the top-level chain represents the ortholog 

alignment. Removing this CBA decreases the alignment coverage.  

 

2.5 Pairwise genome alignments 

The human hg38 genome assembly was used as the reference genome. 

The examples in Figure 1 show chains and nets as computed by the 

UCSC genome browser group. For all other tests, we computed pairwise 

alignment chains/nets using lastz (Harris, 2007) version 1.03.54 and 
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doBlastzChainNet.pl (part of UCSC Kent source code) with default 

parameters (chainMinScore 1000, chainLinearGap loose). We integrated 

running chainCleaner and highly-sensitive local alignments (Hiller, et 

al., 2013) into the doBlastzChainNet.pl pipeline script. To align placental 

mammals, we used the alignment parameters K=2400 L=3000 Y=9400 

H=2000 and the lastz default scoring matrix (HoxD70). To align non-

placental mammals, we used K=2400 L=3000 Y=3400 H=2000 and the 

HoxD55 scoring matrix. For non-placental mammals, we also used high-

ly-sensitive local alignments (Hiller, et al., 2013) with lastz parameters 

K=1500 L=2500 and W=5 to find co-linear alignments in the un-aligning 

regions that are spanned by local alignments (gaps in the chains). We 

filtered all local alignments for a minimum alignment quality by keeping 

only those alignments where at least one ≥30 bp region has ≥60% se-

quence identity and ≥1.8 bits of entropy as described in (Hiller, et al., 

2013).   

 

2.6 Filtering nets 

We used chainNet (Kent, et al., 2003) to obtain nets from a set of chains. 

However, chainNet approximates the score of “sub-nets” (nets that come 

from a part of a chain and fill a gap in a higher-level net) by the fraction 

of aligning bases. While this approximation is overall quite accurate, it 

can lead to a bias in case the aligning blocks of a chain are not equally 

distributed. Therefore, we implemented a new parameter –rescore in 

chainNet that computes the real score of each subnet. The netFilter pro-

gram (Kent, et al., 2003) filters nets according to specified criteria and 

applies a recursive filtering, which removes all nested nets if their parent 

is removed. We found that in certain cases recursive filtering removes 

high-scoring nested nets (Supplementary Figures 19, 20). Therefore, we 

implemented a non-nested filtering procedure that considers and filters 

each net individually, adjusting the net level in case a parent net is re-

moved but not a net nested within. 

3 Results 

3.1 The score ratio distinguishes true from false CBAs 

In order to distinguish true from false CBAs based on a score ratio 

threshold, we need a labeled training set of CBAs. Given that the true 

evolutionary history is generally unknown for real genomes, we included 

only alignment chains that span coding genes in our training set, because 

coding genes have three desirable properties. First, gene orthology can 

be determined independent of genome alignments. Here, we only used 

coding genes that are annotated as 1:1 orthologs in Ensembl (Herrero, et 

al., 2016). While the gene tree based approaches used to determine 1:1 

orthology relationship are accurate, these annotations are inferred and 

thus are not the ground truth (see Supplementary Figure 9). Second, 

many coding exons align even over large evolutionary distances (Clarke, 

et al., 2012), which implies that truly orthologous alignments can be 

obtained also for distant species. Third, conserved genes maintain a co-

linear exon order, which results in chains where aligning blocks repre-

sent conserved exons.  

 

For each coding exon in the reference species, we determined whether it 

overlaps an aligning block of a chain that aligns this exon to an exon in 

the annotated 1:1 ortholog (Figure 3A). This chain is called “orthologous 

chain” with respect to this gene. A CBA that breaks an orthologous chain 

between the first and last aligning exon of the orthologous gene is con-

sidered to be a true CBA. As illustrated in Figure 3B, such a CBA results 

in two separate nets that align exons of the 1:1 ortholog. Removing this 

CBA would lead to a single net that spans the entire gene. A CBA that 

aligns an exon to an exon of the 1:1 ortholog and breaks a lower level 

chain is considered to be a false CBA. As illustrated in Figure 3C, such a 

CBA is an orthologous alignment and should not be removed. In order to 

determine score ratio thresholds that can be applied to alignments be-

tween species of various evolutionary distances, we computed alignment 

chains between human (reference) and the following nine query ge-

nomes: horse, cow, mouse, opossum, platypus, chicken, lizard, frog and 

zebrafish. These query species cover different clades within the verte-

brates and their evolutionary distance to human ranges from 0.32 (horse) 

to 2.2 (zebrafish) substitutions per neutral site. 

 

We found that the score ratio distribution is significantly different be-

tween true and false CBAs (Wilcoxon test: P < 9e-15 for all species 

pairs; Figure 4). Using the ratio to classify CBAs, we obtained an area 

under the Receiver Operating Characteristics curve (AUC) of ≥0.89 for 

all species, except the human-zebrafish pair (AUC 0.76, Figure 4). The 

lower performance for human-zebrafish is a consequence of the addi-

tional whole genome duplication that happened in teleosts (Amores, et 

al., 1998), which produces many paralogous chains that differentially 

lost genes and complicates orthology assignment (see Supplementary 

Figure 9). Nevertheless, even for human-zebrafish, a sensitivity of 55% 

at a high specificity of 98% can be achieved. We conclude that the score 

ratio clearly distinguishes true and false CBAs.  

 

Given that there are many more false than true CBAs, we searched for a 

score ratio threshold that achieves a high precision. Precision is defined 

as the proportion of true CBAs of all CBAs that exceed the defined 

threshold and would be removed by chainCleaner. We found that a score 

ratio threshold of 2.5 consistently achieves a high precision for all nine 

species pairs (Figure 4). Overall, using this threshold, 97% of the CBAs 

that chainCleaner removes are true CBAs (97% precision) and 76% of 

all true CBAs in our training set are removed (76% sensitivity). Since 

false CBAs overlap exons and true CBAs are mostly intronic, we further 

simulated the evolution of a 3 Mb genomic segment without any genes to 

exclude the possibility that the score ratio mainly distinguishes coding 

from non-coding alignments. Using a threshold of 2.5, we obtained a 

sensitivity of 65% and a high precision of 92% (Supplementary Figure 

14). Therefore, we used a threshold value of 2.5 for all subsequent anal-

yses.  

3.2 chainCleaner improves nets representing orthologous 

gene alignments  

After applying chainCleaner to the chains of the nine species pairs, we 

determined the effect of removing CBAs on the alignments of 1:1 

orthologs. We defined alignment coverage of a given gene as the sum of 

all exonic bases that align to the ortholog in a single net. Then, we de-

termined the maximum alignment coverage by considering all individual 

nets that align exons of this gene to its ortholog. Figure 3B illustrates the 

case where a true CBA breaks the orthologous chain into two nets, each 

aligning ~50% of the total exonic bases. Removing this CBA will lead to 

a single net that aligns all exons, which increases the maximum align-

ment coverage. In contrast, removing a false CBA reduces the maximum 

alignment coverage (Figure 3C). Therefore, if chainCleaner correctly 

removes true CBAs, the maximum alignment coverage should increase 

for many genes. 
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As shown in Table 1A, chainCleaner improved the maximum alignment 

coverage of a total of 447 genes (examples are shown in Supplementary 

Figures 3-9), while decreasing the coverage of only nine genes (Supple-

mentary Figures 9-13). To test chainCleaner on species that have not 

been used above for determining the score ratio threshold, we aligned 10 

additional vertebrates and found that the maximum alignment coverage 

increased for 326 and decreased for only three genes (Table 1B). This 

validates that chainCleaner achieves a high precision in removing true 

CBAs, which improves nets that represent orthologous gene alignments.  

 

 

Fig. 4: The score ratio distinguishes true from false chain-breaking alignments. 

The score ratio differs significantly between true and false CBAs. One-dimensional 

scatterplots show the score ratio of the CBAs in our training set, the horizontal line is the 

median. For clarity of visualization, we capped very high score ratios at a maximum value 

to avoid plotting ratios up to 15,639 for cow. Receiver operating characteristics (ROC) 

curves compare the sensitivity achieved at a certain specificity. The area under the ROC 

curves show that this score ratio distinguishes true from false CBAs. ROC curves were 

plotted with pROC (Robin, et al., 2011). The cross indicates the performance at a score 

ratio threshold of 2.5.  

3.3 chainCleaner results in individual nets with more align-

ing orthologous genes  

Until here we have only considered CBAs that are located in genic re-

gions between the first and last coding exon of a gene. However, true 

CBAs also occur in intergenic regions, where they can break chains, 

which align orthologous genes that occur in a conserved order in both 

species. Removing these CBAs is expected to lead to longer nets with a 

higher number of aligning orthologs (illustrated in Supplementary Figure 

15). To confirm this, we compared nets before and after applying chain-

Cleaner and determined the maximum number of orthologous genes that 

align on individual nets. We used alignments between exons of 1:1 

orthologs to assure that only orthologous gene alignments were consid-

ered. Applying chainCleaner to the alignments of the human genome to 

nine other vertebrates, we found that the maximum number of aligning 

orthologs increased for a total of 203 nets (Supplementary Figure 16) 

and decreased for only three nets (Table 2, Supplementary Figures 17). 

This shows that chainCleaner results in nets with a higher number of 

aligning orthologous genes. 

A  

 

Number of genes where max. alignment coverage 

Query species increases decreases 

Horse 25 0 

Cow 44 1 

Mouse 42 0 

Opossum 82 2 

Platypus 62 1 

Chicken 67 2 

Lizard 40 0 

Frog 57 2 

Zebrafish  28 1 

Sum 447 9 

B  

Rat 51 1 

Guinea pig 32 1 

Rabbit 33 0 

Dog 31 0 

Tasmanian devil 18 0 

Zebra finch 71 1 

Duck 23 0 

Chinese softshell turtle 29 0 

Fugu 17 0 

Medaka  21 0 

Sum 326 3 

 

Table 1: Number of genes where the maximum alignment coverage increases or 

decreases after applying chainCleaner for species used for training (A) and testing 

(B). Alignment coverage is the sum of all exonic bases that align to the ortholog in 

a single net (illustrated in Figure 3B and C).  

 

 

Number of nets where number of aligning orthologs 

Query species increases decreases 

Horse 22 0 

Cow 37 0 

Mouse 27 0 

Opossum 53 0 

Platypus 8 0 

Chicken 26 1 

Lizard 7 0 

Frog 19 1 

Zebrafish  4 1 

Sum 203 3 

Table 2: Number of individual nets where the number of aligning 1:1 orthologs 

increases or decreases after applying chainCleaner.  

3.4 chainCleaner keeps aligning blocks in high-scoring nets  

As shown in Figure 1C, true CBAs can break a chain into individual nets 

and some of these nets are filtered out because their score is below a 

minimum threshold. We expected chainCleaner to produce longer nets, 



chainCleaner improves sensitivity and specificity of genome alignments 

which should result in more aligning bases in nets above a score thresh-

old. To test this, we determined how many bases overlap aligning blocks 

of high-scoring nets, before and after applying chainCleaner. As shown 

in Table 3A, chainCleaner adds between 111 kb (zebrafish) and 1.3 Mb 

(opossum) in aligning blocks in nets exceeding a score threshold of 

100,000. Consistent results were found when we applied a score thresh-

old of 200,000 (Table 3B) or the UCSC “syntenic net” thresholds (Kent, 

et al., 2003) (Table 3C, Supplementary Figure 18). This shows that 

chainCleaner improves pairwise genome alignments by removing true 

CBAs, which in turn leads to additional alignments that pass the net 

score filter and thus a higher sensitivity.  

A 

    

kb in aligning blocks in nets scoring > 100000  

Query spe-

cies after chainCleaner before chainCleaner difference 

Horse 1,720,962 1,720,300 662 

Cow 1,446,590 1,445,969 621 

Mouse 1,033,929 1,033,560 369 

Opossum 381,810 380,496 1,314 

Platypus 162,353 161,778 574 

Chicken 116,118 115,653 466 

Lizard 83,863 83,746 117 

Frog 54,822 54,575 247 

Zebrafish  29,507 29,395 111 

B 
   

 

kb in aligning blocks in nets scoring > 200000  

Query spe-

cies after chainCleaner before chainCleaner difference 

Horse 1,703,626 1,702,679 947 

Cow 1,429,550 1,428,465 1,085 

Mouse 1,022,979 1,022,485 495 

Opossum 371,890 370,534 1,356 

Platypus 146,770 146,432 338 

Chicken 110,775 110,487 288 

Lizard 77,354 77,273 80 

Frog 47,270 47,123 147 

Zebrafish  17,941 17,919 22 

C 
   

 

kb in aligning blocks in syntenic nets 

Query spe-

cies after chainCleaner before chainCleaner difference 

Horse 1,710,241 1,709,757 484 

Cow 1,442,880 1,442,151 729 

Mouse 1,030,775 1,030,272 504 

Table 3: chainCleaner keeps aligning blocks in nets above a minimum score 

threshold. 

(A) Score threshold of 100,000. (B) Score threshold of 200,000. (C) “Syntenic 

nets” are defined in (Kent, et al., 2003) as either nets with a high score (>300,000 

for top-level nets) or they are nested in such a high-scoring net and align to the 

same genomic locus. This syntenic net filter is usually applied to alignments of 

well-assembled placental mammal genomes. 

 

4 Discussion 

Pairwise alignment chains and nets are a widely used concept for ge-

nome alignments. While chains represent both paralogous and ortholo-

gous alignments, nets attempt to capture only orthologous alignments by 

taking the entire top-scoring chain for a given genomic locus and filling 

in un-aligning regions with parts of nested chains. The hierarchy of nets 

should ideally represent the genome rearrangement history. However, as 

we have shown here, chain-breaking alignments in top-scoring chains 

can break nested chains into smaller individual nets and result in a net 

structure that does not represent the correct rearrangement history.  

 

Here, we developed chainCleaner to detect and remove such CBAs. This 

helps to correctly infer genomic rearrangements from nets, for example 

by avoiding an inflation of the number of rearrangements that actually 

occurred (Figure 1). Furthermore, chainCleaner can help to correctly 

infer nested rearrangements such as a smaller inversion that happened 

within a larger inverted region. In such a case, the alignments of the 

nested (second) inversion are co-linear with the not-inverted flanking 

alignments and thus are part of the top-level chain (Supplementary Fig-

ure 21). chainCleaner can remove the alignments of the nested inversion 

from the top-level chain and adds them back as a new chain that can 

become the level 3 net. This results in a hierarchical net structure that 

correctly represents the nested order of these inversion events (Supple-

mentary Figure 21). 

 

Apart from obscuring the rearrangement history, CBAs can break nested 

chains into smaller individual nets, which can be subsequently filtered 

out based on their score. As shown here, removing such CBAs adds new 

alignments in high-scoring nets. Furthermore, CBAs can be alignments 

between exons of a gene and a processed pseudogene, which can incor-

rectly suggest the loss of this gene in the query species (Figure 1C). 

Removing these CBAs exposes the true alignments between exons of 

these orthologous genes. With its fast runtime, chainCleaner adds little to 

the computational burden of computing genome alignments and thus has 

broad applicability to improve the specificity and sensitivity of genome 

alignments. 
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