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ABSTRACT
We propose a Gaussian jump process model on a regular Cartesian lattice for the diffusion part of the Reaction–Diffusion Master Equation
(RDME). We derive the resulting Gaussian RDME (GRDME) formulation from analogy with a kernel-based discretization scheme for con-
tinuous diffusion processes and quantify the limits of its validity relative to the classic RDME. We then present an exact stochastic simulation
algorithm for the GRDME, showing that the accuracies of GRDME and RDME are comparable, but exact simulations of the GRDME require
only a fraction of the computational cost of exact RDME simulations. We analyze the origin of this speedup and its scaling with problem
dimension. The benchmarks suggest that the GRDME is a particularly beneficial model for diffusion-dominated systems in three dimensional
spaces, often occurring in systems biology and cell biology.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0123073

I. INTRODUCTION

Reaction–diffusion models are a workhorse of mathemati-
cal modeling in chemical physics and cell biology. They describe
the dynamics of interacting chemical species, or their concentra-
tion fields, in space and in time in the absence of any active
transport mechanism or flow. They are thus often the simplest
possible model of spatially resolved chemical dynamics. In biol-
ogy, reaction–diffusion models have, for example, been sufficient to
describe intra-cellular symmetry breaking and asymmetric cell divi-
sion (Min system in E. coli,1 Cdc42 system in S. cerevisiae,2 and PAR
system in C. elegans3), as well as chemotaxis.4

Despite their success in recapitulating spatiotemporal dynam-
ics, deterministic reaction–diffusion models are inappropriate at
scales where molecular discreteness becomes apparent. In biolog-
ical systems, this is typically the case at sub-cellular scales where
copy numbers of molecular can be low. The inherent stochasticity
of chemical kinetics at the molecular scale then starts to dominate,
as has, for example, been shown for the spatial patterns emerging

during cell polarity establishment,1,5 cell fate determination,6 or in
cellular signaling pathways.7–9 In these cases, intrinsic molecular
noise can lead to qualitatively different system behaviors than what
would be predicted by a mean-field model.10

The combination of intrinsic molecular noise and spatially
heterogeneous concentration fields can, among other methods, be
described at the mesoscopic scale by the Reaction–Diffusion Master
Equation (RDME).11,12 This equation governs the space-time evo-
lution of the localization probability of the molecules on a regular
Cartesian lattice. It is mesoscopic in the sense that it accounts for
molecular discreteness and stochastic kinetics, yet does not include
molecular details, such as atom composition or electronic structure
of the molecules, nor their localization within a lattice cell.

Neglecting the localization of individual molecules, the RDME
tracks the space-time evolution of the numbers of molecules (i.e.,
the molecular population) in each lattice cell. As individual cells are
assumed to be well-mixed, stochastic reaction kinetics are described
by one Chemical Master Equation (CME)13 in each cell. These CMEs
are extended by additional jump reactions between face-connected
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adjacent cells in order to model diffusion of molecules between
neighboring cells.11 This can then directly be simulated, for example,
by the Next Subvolume Method (NSM),14 which extends the next
reaction method15 to RDME models by introducing a priority queue
for the time of the next event in each lattice cell.

While NSM performs “exact” (in the sense that each and every
event—reaction or jump—is simulated sequentially) simulations, it
is computationally costly as diffusion jumps account for the vast
majority of events and their frequency increases with the increas-
ing spatial resolution of the lattice. Several attempts have been made
to reduce the computational cost of the diffusion part of simulation.
This included the binomial tau-leaping spatial stochastic simulation
algorithm16 and the Multinomial Simulation Algorithm (MSA),17

both of which aggregate multiple diffusion jumps into single events,
as well as the time dependent propensity function method,18 which
models the effect of diffusion on reactions. A similar approach using
operator splitting has also been used for RDME on unstructured
meshes.19 Another approach is to aggregate over lattice cells instead
of over jump events. This can be done, for example, by allowing dif-
fusion jumps to non-adjacent cells20 and is a good approximation
for sufficiently dilute systems, where the probability of encountering
a reaction partner along the jump is small. While all these algorithms
demonstrated significant speedups, sometimes by orders of magni-
tude, they no longer resolve every stochastic event and are therefore
not exact.

In the RDME, every diffusion event is modeled as a jump to
an adjacent cell. This is akin to how the compact finite-difference
stencil discretizes the continuous Laplace operator in determinis-
tic mean-field diffusion processes.14,20 This analogy is valid since
Green’s function of the continuous diffusion equation is formally
identical to the Markov propagator density of Brownian motion,
albeit corresponds to a different physical interpretation.21,22 This
suggests then that other numerical discretization schemes for the
continuous diffusion operator can inspire alternative formulations
of the RDME when interpreted in probability space.23

Here, we exploit this analogy to derive an RDME formulation
that uses Gaussian jump processes to model diffusion to non-
adjacent, larger neighborhoods of cells. We derive the corresponding
jump rates by analogy to a discretization method for the continuous
diffusion equation, called Particle Strength Exchange (PSE).24 This
results in a method that is in the same spirit as the Unstructured
Reaction Diffusion Master Equation (URDME) method, where
jump rates on unstructured meshes have been derived by anal-
ogy with finite element methods,23,25–27,55 but makes the size of the
neighborhood a user-controllable parameter. The present analogy
with PSE is most natural for the classic PSE formulation, which
uses Gaussian kernels for simulating diffusion. These kernels depend
on the distance between the two points and are symmetric and
mass conserving. Their coefficients are systematically derived by
satisfying physical moment conditions on the diffusing (proba-
bility) distribution.28 This solves the problem of time-dependent
variance in the Gaussian transition kernel of Brownian motion
and allows us to derive an alternative formulation of the RDME
with larger diffusion neighborhoods, which we call Gaussian RDME
(GRDME).

The GRDME can then be directly and exactly simulated using
an extension of the NSM to larger jump neighborhoods. We present
the resulting algorithm, which we call Gaussian NSM (GNSM). We

show that the diffusion jumps to non-adjacent lattice cells acceler-
ate the simulation roughly two-, four-, or six-fold in one-, two-, or
three-dimensional domains, respectively. It also enables increasing
the size of the diffusion jump neighborhood when refining the lattice
so that jump reactions do not abound. We derive theoretical bounds
for these speedups and confirm them in numerical experiments for
different problem sizes and space dimensions. Finally, we study the
accuracy of the GRDME in comparison with the classic RDME and
characterize their limits of validity, providing guidelines for when to
choose which formulation.

II. GAUSSIAN REACTION–DIFFUSION MASTER
EQUATION

We start by deriving the GRDME from the analogy with the
PSE method for simulating diffusion in the continuum.24 For this,
we first formulate the GRDME, then briefly review PSE, and finally
derive the diffusion jump rates of the GRDME using PSE. Consider a
system with C chemical species and R reaction channels. In reaction
channel j = 1, . . . , R, χi,j reactants of species Xi, i = 1, . . . , C, inter-
act with each other and get converted to χ′i,j products. The reaction
channels fire randomly and independently.

If the system is not dilute and well-mixed in a larger domain
�, finite diffusion times of molecules have to be taken into account.
The RDME model does so by partitioning � into p = 1, . . . , M cubic
cells of edge length h such that the system within each individual cell
can be assumed dilute and well-mixed. Each cell stores the molecu-
lar population within so that Xp

i is species i in cell p. Only molecules
within the same cell can react with each other. This results in a
much larger system of R ⋅ M reactions, as given in the following
equation:

χ1,jXp
1 + ⋅ ⋅ ⋅ + χC,jXp

C
kj�→ χ′1,jX

p
1 + ⋅ ⋅ ⋅ + χ′C,jX

p
C

∀j = 1, . . . , R, p = 1, . . . , M.
(1)

Diffusion between cells is modeled as first-order “jump” reac-
tions of molecules between cells. This results in an additional set of
first-order reactions, where a molecule in cell p is “converted” to a
molecule of the same species in another cell q in the neighborhood
N(p) of cell p,

Xp
i

kq
Di��→Xq

i ∀p = 1, . . .M, q ∈N(p). (2)

The resulting system of compartmentalized reactions and diffu-
sion jump events can be modeled with the RDME11,29 in Eq. (3),
where a is the reaction propensity.13 This master equation describes
the time evolution of the probability distribution P() of the state[�s 1, . . . , �s M], where �s p is the vector of the number of molecules
of each species in cell p, i.e., the “molecular population” in cell
p. The shift operator Ek

i,j subtracts k from the state sp
i of species i

in cell p. The evolution of the state due to the compartmentalized
reactions is described by the first row of the equation, and the evo-
lution of the state due to the diffusion jumps is described by the
second row,
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d
dt

P(�s 1, . . . , �s M , t) = M�
p=1

R�
j=1
� C�

i=1
E

χi,j−χ′ i,j
i,p − 1�a��s p,

�
M
�

× P(�s 1, . . . , �s M , t)
+ M�

p=1
�

q∈N(p)
C�

i=1
�E1

i,pE−1
i,q − 1�kDi s

p
i

× P(�s 1, . . . , �s M , t). (3)

Note that unlike the classic RDME, Eq. (3) allows for diffu-
sion jumps within a potentially larger neighborhood N(p) of each
cell p. This means that we cannot use the classic RDME11 jump
rates ki

D = Di�h2 for diffusion constant Di of species i and regular
Cartesian cells with all edge lengths equal to h. We need to derive
different rates.

The diffusion jump neighborhood in the original RDME11

consists of the face-connected adjacent cells and, as such, is equiv-
alent to the support of the compact (2d + 1)-point finite-difference
stencil to discretize the Laplace operator on a regular Carte-
sian lattice in d dimensions. The jump rates kD,i = Di�h2 can,
therefore, be derived from the probabilistic interpretation of this
stencil.23

Here, we consider larger neighborhoods, as illustrated in Fig. 1.
A molecule from the center cell can jump to any other cell within this
larger neighborhood in one step/event. We derive the corresponding
jump rates kq

D for all q ∈N(p) by analogy with another discretization
method for the continuous Laplacian, Particle Strength Exchange
(PSE).24 PSE operators have larger support than finite-difference
stencils.

PSE discretizes the Laplace operator � over a continuous
concentration field f by

�f (�xp) ≈ 1
ε2 �

q∈N(p)
Vq(f (�xq) − f (�xp))ηε(�xp − �xq), (4)

FIG. 1. Neighborhood N(0,0) for a two-dimensional system with grid resolution h,
smoothing length ε = h (i.e., ε′ = 1), and a cutoff radius lmax = 4h. The center cell
has coordinate (0, 0). Grid cells with the same kD(l), where l is the distance from
the center, are filled with the same color [see Eq. (8)].

where �xp ∈ Rd are the locations of the collocation points (here, lat-
tice cell centers) and Vp is the volume of cell p. The operator kernel
ηε(z) = 1

εd η( z
ε ) has characteristic width ε and converges to the Dirac

delta measure for ε→ 0. For PSE to be consistent, we must require
ε ≥ h, which is known as the “overlap condition”.24 It is, therefore,
convenient to measure ε in units of h, ε′ = ε�h. The kernel ηε is
a local (but not necessarily compact) radially symmetric function
such that the neighborhood N(p) has a finite cutoff radius lmax.
There are many different choices of ηε that lead to valid approxi-
mations in Eq. (4) with different orders of accuracy, cutoff radii, and
dispersion properties. They all have in common that they fulfill a
set of well-defined moment conditions,28 which define a valid PSE
operator.

A particularly natural choice for simulating diffusion is the
Gaussian kernel,

ηε = � 1
4πε2 �

d
2

exp�−��xp − �xq�2
2

4ε2 �. (5)

When used in PSE for simulating continuous deterministic isotropic
diffusion, this kernel results in second-order consistency of the
approximation in Eq. (4) and exact (to machine precision) mass
conservation if the collocation points are arranged on a regular
Cartesian lattice.

Similar to how RDME jump rates can be derived from finite-
difference stencils,23 we here derive the jump rates for larger neigh-
borhoods as illustrated in Fig. 1 by analogy to PSE with Gaussian
kernels. Since the collocation points form a regular Cartesian lat-
tice with resolution h, all lattice cells have identical volumes Vp= Vq = hd. This allows us to rewrite the PSE scheme for the extensive
quantity, such as mass or the molecular population, sp = hdf (�xp) for
a well-mixed grid cell p. For isotropic, homogeneous, and normal
diffusion in Rd, this results in the dynamics

dsp

dt
= hdD

ε2 �
q∈N(p)

(sq − sp)� 1
4πε2 �

d
2

exp�−��xp − �xq�2
2

4ε2 � (6)

at each grid cell p.
Splitting the sum over the neighborhood into influx and outflux

terms,

dsp

dt
= hdD

ε2 �
q∈N(p)

sq� 1
4πε2 �

d
2

exp�−��xp − �xq�2
2

4ε2 �

− hdD
ε2 �

q∈N(p)
sp� 1

4πε2 �
d
2

exp�−��xp − �xq�2
2

4ε2 �, (7)

provides a direct link to the diffusion jump rates from the outflux
term in the second line of the equation for the first-order reactions
from cell p to cell q ∈N(p) [Eq. (2)]. We see from Eq. (7) that the
jump rates have a Gaussian dependence on the Euclidean distance
between cells p and q, lq = ��xp − �xq�2.

This results in the following rates for the diffusion jump
reactions in Eq. (2):

kq
Di
(lq) = hdDi

ε2 sp� 1
4πε2 �

d
2

exp�−l2
q

4ε2 �. (8)
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The total propensity of the outflux of molecules of Xi from p to
anywhere in N(p) is obtained by the following summation:

ap
i = sp

i
Di

ε2 �
q∈N(p)

� 1
4πε2 �

d
2

exp�−l2
q

4ε2 �hd ≈ s p
i

Di

ε2 . (9)

The expected waiting time until the next diffusion jump event of any
molecule of species i is thus τ = ε2

Di
. The PSE kernel width can there-

fore be expressed as ε =√Diτ. Replacing ε2 = Diτ in Eq. (8) recovers
the discretized Green’s function of diffusion. The GRDME there-
fore defines the rates for on-lattice diffusion jumps equivalently to
Green’s function of the continuous diffusion process.

III. LIMITS OF VALIDITY
For RDME and GRDME to describe physically consistent and

“useful” processes, it is important to choose an appropriate grid
resolution h. A good h must be small enough to resolve spatial
inhomogeneities in the system, but large enough to avoid artificial
loss of bimolecular reactions.30–37 This constrains the grid reso-
lution between hmin and hmax for which RDME models are valid.
While hmax depends on the Kuramoto length of the system being
modeled, hmin is an intrinsic property of the specific master equa-
tion model used. Previous works defined and provided physical
reasons for the hmin of the RDME model,30–32 proposed modifi-
cations/corrections to the bimolecular reaction propensities that
reduce hmin,33,34 and combine the RDME with microscopic frame-
works to assert convergence.35–37 Since GRDME and RDME use
different diffusion models, however, we expect their hmin to differ.

We therefore derive a guideline for hmin with which we can
compare RDME and GRDME. For this, we build on top of the
approaches of Isaacson30 and Gillespie et al.31 and design a heuristic
guideline based on macroscopic reaction rates and diffusivities.

We start from the Kuramoto length of the system LK =√2dDτ,
which is the average distance travelled by a molecule of species
Xi during its lifetime τ.38 The lifetime of Xi depends on the total
propensity of all reactions that consume Xi, ∑j∈R2

sjkj +∑j∈R1
kj,

where R1 and R2 are the sets of first and second order reactions,
respectively, in which Xi participates. The Kuramoto length of
Xi in a system of volume � is then given by

L�,i
K =

�����2dDi ������j∈R2

si′kj + ����
j∈R1

kj
�
�
−1

, (10)

where Di is the diffusion constant of Xi and i′ is the index of the
species reacting with Xi in bimolecular reaction j. We approximate
hmax as the smallest Kuramoto length of the system for any i,

hmax = min
i=1,...,C

L�,i
K . (11)

To find an approximate hmin, we consider the Kuramoto length
of an individual grid cell. The RDME with conventional bimolecular
reaction rates is consistent for grid resolutions for which the system
is dilute, and hence well-mixed, within individual cells.31 A cell p
is well-mixed with respect to a bimolecular reaction j if the proba-
bility of the reaction occurring is the same anywhere in p. In other

words, the Kuramoto length of a cell has to be much larger than
hmin: Lp

K = θhmin, θ� 1.
To estimate τ required to compute Lp

K , we assume that there
are at most two molecules of any species in the cell p at any given
time. Since the average number of molecules in the compartment
p tends to zero as h→ 0, the probability of finding more than two
molecules in the cell tends to zero for small enough h. This approx-
imation holds well for sufficiently dilute systems. As there is then at
most one reactant pair in cell p when h is small enough, the propen-
sity of the bimolecular reaction is given by aj = 1 ⋅ kj�hd. This yields
τj = hd�kj and

θh j
min =

����2dD̂j
(h j

min)d

kj
, θ� 1. (12)

Since the reaction system has to be well-mixed and dilute within
the cell for the mass action assumption to hold, we take kj to be
the macroscopic rate constant in the reaction-limited regime. Then,
D̂j = Di +Di′ is the total diffusivity of the reactant pair. hmin of the
model is the largest h j

min of any bimolecular reaction j,

hmin = max
j∈R2

h j
min.

We expect GRDME and RDME to differ in the value of θ since
the two diffusion models have different propensities. To see this,
we express Lp

K = θhmin in terms of the propensity of the diffusion
reactions. Since diffusion events of different molecules are mutu-
ally independent, the total propensity is the sum aD̂ = ai

D + ai′
D. For

the RDME and GRDME, this is aD = cD�h2, with c = 2d for RDME
and c = 1�ε′2 for GRDME, where ε′ = ε�h is the relative smooth-
ing length. Expressing D̂ = aD̂h2�c and aD̂ = 1�τj, we get θh =�h2�c.
Therefore, θ of the GRDME is a factor of

√
2dε′ larger than θ of the

RDME.
From Eq. (12), we can find approximations for hmin for any

dimension. For one-dimensional systems (d = 1), both the RDME
and GRDME are consistent for all choices of h. For two-dimensional
systems (d = 2), we find that the two models are consistent if the
ratio between the diffusivity and the reaction rate is high enough,
specifically if

k < 4D̂
θ2 . (13)

For three-dimensional systems (d = 3), the criterion leads to39

hmin = kθ2

6D̂
, (14)

a rule of thumb similar to the one provided by Isaacson.30 hmin for
three-dimensional systems is the most restrictive. Since θ of GRDME
is
√

2dε′ larger than that of the RDME, we therefore expect hmin of
the GRDME to be 6ε′2-times larger than for the RDME. We verify
this in numerical experiments in Sec. V C for ε′ = 1.

The analysis here shows that both RDME and GRDME experi-
ence loss of bimolecular reactions with the decreasing cell size, but
for the GRDME, this already happens at a 2d-fold larger grid resolu-
tion. If one knows hmin for one diffusion model, one can estimate
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hmin for the other model for a given reaction system. Since hmin
depends on the propensity of the diffusion model, it can be esti-
mated for any kernel width ε with hmin quadratically increasing with
ε, yielding

h GRDME
min = 2dε′2 h RDME

min . (15)

IV. GAUSSIAN NEXT SUBVOLUME METHOD
The GRDME in Eq. (3) with jump rates as given in Eq. (8) can

be simulated exactly by extending the NSM14 algorithm to enable
diffusion jumps to a larger neighborhood, leading to the GNSM
algorithm. GNSM differs from NSM in the way it stores the infor-
mation about the neighboring cells and in the way it finds the target
cell q in the diffusion event.

In the original NSM, information about cell adjacency and
the boundary conditions is precomputed and stored in a con-
nectivity matrix (cf. supplementary materials of Ref. 14). Using a
similar approach for the extended neighborhoods of GNSM would
lead to prohibitively large memory consumption, especially for
three-dimensional domains. Therefore, GNSM computes this infor-
mation on the fly from a dedicated neighborhood data structure
N when executing a diffusion jump.40 This data structure stores
the translation-invariant relative index shifts of all cells within a
d-dimensional ball with center 0d and radius lmax. These represent
the potential jump vectors (from any p) in cell grid units. In order to
build this data structure, the algorithm proceeds in rings of increas-
ing radius l since diffusion jump rates only depend on the distance
between the two cells. For each radius l, all cell shifts w(l) for that
radius are collected in a tuple ν, along with their total number �w(l)�,
the radius l, and the corresponding diffusion jump rate kD(l). Final
N is then the tuple of all tuples ν, sorted by increasing l.

This procedure is detailed in Algorithm 1 for d = 3. The pro-
cedures for d = 1, 2 are analogous, but simpler. Since the Gaussian

Algorithm 1. Construct neighborhood N(d = 3).
Require: kmin, ε′ = ε�h
Ensure: N
1: lmax = 2ε′

�− ln kmin + ln((2√πε′)d)
2: Use Algorithm 3 to build an array MS of elements (m, l, nmp)
3: Remove elements in MS with l larger than lmax
4: Sort elements in MS by increasing l
5: for all ms in MS do
6: Use Algorithm 4 to create an array MP with permutations of

ms.m
7: for all mp in MP do
8: Use Algorithm 5 to create an array SP with permutations

of the signs of mp
9: Append all elements in SP to w

10: end for
11: kD = ( 1

4πε′2 )d�2 exp(−ms.l2�4ε′2)
12: Create a tuple ν = (w, �w�, kD, ms.l)
13: Append ν to N
14: end for

PSE kernel has infinite support, there is no actual cutoff radius.
Therefore, we start in line 1 by determining lmax from the small-
est kD the user still wants to consider (in our benchmarks, we use
kmin = 10−10, which is the value below which the cumulative sum of
the diffusion rates kD(l)�w(l)� saturates on a 64-bit computer due
to finite-precision arithmetic). Line 2 then uses Algorithm 3 (see
Appendix A) to create an array MS of all multisets m of cardinal-
ity d taken from the set {0, 1, . . . , �lmax�}. Each element of MS is a
tuple (m, l, nmp), where l is the radius of all coordinates that can be
built from m and nmp is the number of multiset permutations of
m. This creates an array of all index multisets in a cube with edge
length 2lmax. To obtain the index multisets of all cell coordinates
within a ball of radius lmax, we remove the elements of MS with l
larger than lmax in line 3. The elements are then sorted by increasing
l in line 4. For each element in MS, we then create an array MP of
all multiset permutations of m using Algorithm 4 (see Appendix A)
in line 6. Finally, in line 8, we create an array SP for each per-
mutation, where we use Algorithm 5 (Appendix A) to generate all
sign permutations of the index vectors in mp. These coordinates
are appended to w in line 9. The diffusion jump rate correspond-
ing to this radius is computed in line 11; the tuple ν is built in line
12 and appended to the neighborhood N in line 13. This data struc-
ture provides direct access to all information needed to sample
diffusion events in Algorithm 2.

For each diffusion event, Algorithm 2 is used to find the tar-
get cell q. It first samples the index β in the tuple ν corresponding
to the jump radius (lines 2 to 5) using a uniformly distributed ran-
dom number ω between 0 and 1 and computing the cumulative sum
of the diffusion rates. The diffusion rates sum to 1 by construction
and therefore do not have to be further normalized before comput-
ing the cumulative sum. Once the index β is identified, the random
number ω is linearly rescaled in line 6 to find the jump index shift�x jump from the candidates in the tuple w(l(β)) of the data structure
N in line 7. The coordinates of the source cell are then computed in
line 8, and the jump shift is added in line 9 to compute the coordi-
nates of the tentative target cell. In line 10, the method of images
is used to apply appropriate boundary conditions (e.g., reflection
or absorption) before the index of the target cell is computed from
its coordinates in line 11. The way reaction events are handed is
identical to how NSM14 does it and is therefore not described here.

Algorithm 2. Diffusion event: find target cell q.

Require: N, ω ∼ U[0,1], p
Ensure: q
1: β = 0, c = 0
2: while c < ω do \(�\) find index β in ν with jump radius l(β)
3: c = c + �w(l(β))�kD(l(β))
4: β = β + 1
5: end while
6: Rescale ω to ωβ = ω−c�w(l(β))�kD(l(β)) + 1
7: Use ωβ to find �x jump from w(l(β))
8: Compute the coordinate �xp of the center point of cell p
9: �x′q = �xp + �x jump

10: Find �xq by reflecting �x′q using the method of images
11: Compute cell index q for location �xp
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TABLE I. The size of elements in N for ε = h (ε′ = 1) and kmin = 10−10.

d lmax �N� ∑β�w�
1 10.751 11 21
2 10.984 56 373
3 11.212 191 5887

In order to compare the computational complexity of NSM
and GNSM, we note that the size of N in GNSM depends on lmax,
but is independent of h and of the edge length L of the simulation
domain �. The connectivity matrix in NSM, on the other hand,
contains the neighbors of every cell and hence scales with the size
of the domain as 2d(L�h)d. The total number of coordinates ∑β�w�
in N can be approximated by the volume of a d-dimensional ball
with radius lmax (giving 2lmax, πl2

max, and 4�3πl3
max in one-, two-, and

three-dimensions, respectively) and hence scales exponentially with
dimension (Table I, column 4). Since the coordinates in w use the
majority of the memory in N, this data structure becomes more
memory efficient than a connectivity matrix when the number of
cells per edge length exceeds∑β�w�1/d ≈ 20.

Each diffusion jump event in GNSM consists of more opera-
tions than in NSM. Finding q in NSM only requires sampling an
element in row p of the connectivity matrix using a random num-
ber. This is comparable in complexity to line 7 in Algorithm 2. All
operations before line 7 provide additional complexity for comput-
ing a diffusion event in GNSM. The maximum number of operations
to find the index β in lines 2 to 5 is bounded by the size of N (col-
umn 3 of Table I). This is approximately �N� ≈ V ball�V cube� �lmax�+d

d �,
where Vball is the volume of a d-dimensional ball with radius lmax
and Vcube is the volume of a d-dimensional cube with length 2�lmax�.
Large �N� imply a large average number of loop iterations in lines
2–5 of Algorithm 2. However, the cumulative sum c grows fastest
for the smallest l, as seen in Table II, which shows the index β at dif-
ferent values of the cumulative sum c in different dimensions. In the
best-case scenario, when the loop is short, the complexity of a dif-
fusion event in GNSM is thus approximately an order of magnitude
larger than in NSM. In the worst-case scenario, when the number of
loop iterations is equal to �N�, a diffusion event in GNSM is up to
200 times costlier than in NSM. Since the majority of the probability
mass of the Gaussian kernel is concentrated close to the source of the
jump (see Fig. 1), the average cost is closer to the optimal case than
to the worst case.

While the computational cost for executing one diffusion jump
is much larger in GNSM than in NSM, we show in Sec. V B that

TABLE II. Values of the index β at different values of the cumulative sum c in
Algorithm 2 and for lmax in N in dimensions d = 1, 2, 3.

d c = 0.5 c = 0.68 c = 0.95

1 1 2 3
2 2 4 9
3 3 7 24

GNSM is overall still computationally more efficient because dif-
fusion jumps in the GRDME happen less frequently (i.e., diffusion
“reactions” have a much smaller propensity than in the RDME).

V. NUMERICAL EXPERIMENTS
Here, we compare the GRDME and RDME models with respect

to their accuracy and benchmark the computational performance
of GNSM in comparison to NSM. Finally, we characterize the lim-
its of validity of the GRDME and RDME models with respect to
the lattice cell size h. In order to ensure a fair comparison, we
implemented both NSM and GNSM in the same software environ-
ment. Both methods were implemented in C++ using the Eigen41

library to represent arrays and the Boost42 library to implement
the priority queues and compute linear least squares regressions
of the Mean Squared Displacement (MSD). Statistical analysis and
plotting of the results were done in Python using the pandas,43

numpy,44 Matplotlib,45 and Seaborn libraries.46 By default, the width
of the PSE kernel is set to the edge length of the lattice cells,
i.e., ε = h (ε′ = 1). This choice of ε leads to not only the highest
accuracy of the diffusion model but also the highest computa-
tional cost of GNSM. It therefore provides a lower bound for the
speedup GNSM provides over NSM. Results for ε′ > 1 are provided
in Appendix B.

A. Accuracy of the diffusion model
We start by comparing the accuracy of the diffusion models

in the RDME and GRDME as this is the only difference between
the two. To do so, we simulate a case with a known analytical
solution: diffusion from a point source in a one-, two-, and three-
dimensional open domain in the absence of any chemical reactions.
Therefore, these benchmarks consider only a single species and track
the evolution of its molecular population across lattice cells.

Since the models are stochastic, we consider convergence in
both the strong and the weak sense. To quantify convergence in the
strong sense (i.e., in value), we simulate many repetitions of a sin-
gle particle diffusing out from the point source and compute the L2
error in the mean squared displacement across the so-obtained tra-
jectories. To quantify weak convergence, we consider the errors in
the first four moments of the probability distribution of a population
of N molecules diffusing out from a point source at the origin.

1. Strong convergence: Mean squared displacement
The Mean Squared Displacement (MSD) of a traveling mole-

cule or particle is defined from its trajectory over time as MSD∶= ���x(t) − �x0�2
2�, where �x(t) is the location of the particle at time

t for a process that started from location �x0 at initial time 0.
The angle brackets denote an ensemble average over many i.i.d.
repetitions of the process. For a particle undergoing normal,
isotropic, and homogeneous diffusion with diffusion constant D
in an open d-dimensional space, the MSD is a linear function of
time: MSD = 2dDt.

We compute MSD curves from RDME and GRDME simula-
tions of diffusion of a single particle in an open system in d = 1, 2, 3
dimensions until final time T = 107 with D = 1 and h = 1 (all units
dimensionless). The MSD averages are computed in a sliding win-
dow along the trajectories at time intervals of 1 until a final time shift
of 100. The slope α1 and offset α0 of a linear regression to the MSD
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TABLE III. L2 errors and their 95% confidence intervals (over 10 independent repeti-
tions of each experiment) for the offset α0 and slope α1 coefficients of the linear fit to
the MSD curve of a particle diffusing in open space in one, two, and three dimensions
according to RDME and GRDME.

d α RDME GRDME

1 0 0.089 676 ± 0.058 389 0.106 235 ± 0.054 984
1 0.005 956 ± 0.003 575 0.007 367 ± 0.003 594

2 0 0.216 079 ± 0.100 957 0.172 402 ± 0.070 996
1 0.014 352 ± 0.006 606 0.010 178 ± 0.005 423

3 0 0.121 224 ± 0.050 473 0.155 069 ± 0.066 789
1 0.010 434 ± 0.003 732 0.010 846 ± 0.005 069

curves have been obtained by a linear least-squares fit of the MSD
values using the Boost library. To obtain the confidence intervals
of the errors, we repeated the whole procedure 10 times. Table III
summarizes the L2 errors of the α0 and α1 coefficients for RDME
and GRDME with respect to the ground truth α̂0 = 0 and α̂1 = 2dD.
The errors in both coefficients are comparable between RDME and
GRDME and mutually contained within their confidence intervals.
We thus conclude that both models are equally accurate in the strong
sense.

2. Weak convergence: Probability distribution
moments

We study the convergence of the models in the weak sense by
measuring the L2 error in the first four moments of the localiza-
tion probability distribution of a population of diffusing molecules.
The ground-truth probability distribution is a Gaussian with vari-
ance σ2 = 2dDT. We consider the first moment (mean) �′1, central
second moment (variance) �2, standardized third moment (skew-
ness) �3�σ3, and standardized fourth moment (kurtosis) �4�σ4.
The expected convergence order of the error in the moments is
O(N−1/2) +O(h2), with the increasing molecule number N and
decreasing lattice cell size h, reducing the error. The first term,
O(N−1/2), is a consequence of the central limit theorem when com-
puting the moments over the population of N molecules. The second
term, O(h2), corresponds to the (asymptotic) convergence rate of
the deterministic discretization underlying the diffusion jumps, i.e.,
second-order central finite differences for RDME and the second-
order accurate Gaussian PSE kernel for GRDME. The two errors
are additive because we assume their sources to be statistically
independent of each other.

We first study convergence with respect to N by running the
same point-source diffusion simulation for N = 10k, 2 ⋅ 10k, and
5 ⋅ 10k for k = 2, . . . , 7 until final time T = 100 with diffusion con-
stant D = 1, grid resolution h = 1, and ε′ = 1 (dimensionless units).

FIG. 2. L2 error convergence of the first four moments �′1, �2, �3�σ3, and �4�σ4 in dimensions d = 1, 2, 3. (a) Convergence with respect to the number of molecules N for
RDME (orange dotted lines) and GRDME (blue solid lines) for point-source diffusion in an open domain with h = 1 and D = 1 at final time T = 100. The black dashed lines
indicate the theoretically expected convergence order −1�2. (b) Convergence with respect to the lattice resolution h for RDME (orange dotted lines) and GRDME (blue solid
lines) for the same problem with N = 107 and D = 1 at time T = 100. The black dashed lines indicate the theoretically expected convergence order 2.
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L2 errors are computed with respect to the moments of the ground-
truth Gaussian distribution with mean zero and variance σ2 = 2dDT.
We simulate ten i.i.d. repetitions for each N to obtain confidence
intervals of the errors. The results are shown in Fig. 2(a) along with
dashed lines indicating the theoretically expected convergence order
of −1�2 with respect to N. For large N and high moments, however,
the error from the grid cell size h becomes dominant, leading to the
plateaus seen in the bottom row of Fig. 2. Table IV compares the val-
ues of the L2 errors in all moments for N = 5 ⋅ 107. The errors in the
first three moments are comparable between RDME and GRDME,
whereas the error in the fourth moment is approximately six times
larger for GRDME than for RDME once the plateau is reached. This
is consistent with the error stemming from h being about six times
larger in GRDME than in RDME because of the larger neighborhood
considered.

To study the convergence of the GRDME with respect to h, we
perform ten i.i.d. simulations h = 0.1, 0.2, 0.25, 0.5, 1.0, 2.0, and 5.0
for a large population size, N = 107 with T = 100, D = 1, and ε′ = 1.
The results are shown in Fig. 2(b). Reducing h does not reduce the
L2 error for the first three moments, confirming that the dominant
error term for these moments is O(N−1/2). For the N simulated, as
already seen in Fig. 2(a), however, the dominant error in the fourth
moment stems from h. This is confirmed in the bottom panel of
Fig. 2(b), where the dashed line indicated the theoretically expected
convergence order of 2 with respect to h. For small h, we again
observe a plateau where the error from N becomes dominant again.

Despite the different propensities of the diffusion models of
GRDME and RDME, the two models are comparable in their error
for small population sizes. Since stochastic models are predomi-
nantly used to study the effect of intrinsic noise in diffusion-limited
regimes, which implies small population sizes, the two models are of
comparable accuracy for practical applications. The error for small
N is dominated by the noise generated by the Brownian motion
of the diffusing molecules. The main difference between the two

TABLE IV. L2 errors and their 95% confidence intervals (over 10 independent repe-
titions of each experiment) for the first four moments of the probability distribution
of a population of N = 5 ⋅ 107 molecules diffusing out from a point source with
D = 1, h = 1, at T = 100, compared between RDME and GRDME for different space
dimensions d.

Moment d RDME GRDME

�′1
1 0.001 454 ± 0.000 584 0.002 249 ± 0.000 884
2 0.002 520 ± 0.000 769 0.002 105 ± 0.000 808
3 0.003 238 ± 0.000 845 0.003 136 ± 0.000 650

�2

1 0.034 944 ± 0.015 896 0.025 486 ± 0.007 220
2 0.045 222 ± 0.021 068 0.044 089 ± 0.034 839
3 0.059 043 ± 0.033 842 0.049 188 ± 0.026 956

�3
σ3

1 0.000 336 ± 0.000 103 0.000 460 ± 0.000 218
2 0.000 205 ± 0.000 103 0.000 197 ± 0.000 069
3 0.000 113 ± 0.000 037 0.000 074 ± 0.000 039

�4
σ4

1 0.005 198 ± 0.000 311 0.030 215 ± 0.000 291
2 0.002 415 ± 0.000 101 0.014 866 ± 0.000 178
3 0.001 648 ± 0.000 096 0.009 977 ± 0.000 069

models is in the error of the fourth moment for large popula-
tion sizes, where the error for GRDME is larger. For both models,
the error converges correctly with order 2 for decreasing h, which
matches the convergence order numerical schemes used to derive
the models. Both the errors in h and in N, however, cause plateaus
in the convergence of the other respective error when they become
limiting.

The results in Fig. 5 for ε′ > 1 further show that the error
increases quadratically for increasing ε′, consistent with the theo-
retical prediction of an error order O(h2ε′2) for the GRDME.

B. Computational cost
The computational cost of an exact stochastic reaction–

diffusion simulation depends both on the propensities of the model
and on the algorithms used to sample and execute the events. In the
RDME diffusion model, each cell has 2d possible outgoing diffusion
jumps, each with a rate of kD = D

h2 . The total propensity of diffu-
sion jumps for one cell is thus a diff

p = sp 2dD
h2 . As derived in Eq. (9), in

GRDME, the total diffusion propensity is a diff
p = sp D

ε2 since molecules
can jump further and therefore do so less frequently. For ε = h,
we therefore expect GNSM to have a roughly 2d-fold lower total
diffusion propensity than NSM.

It is not clear, though, whether this reduction in propen-
sity directly translates to a proportional saving in algorithm
runtime since, as we have outlined in Sec. IV, each individual dif-
fusion jump is costlier to compute in GNSM than in NSM. We
therefore conduct numerical experiments to benchmark the run-
times of the two algorithms. For this, we simulate diffusion of
N = {1 ⋅ 10k, 2 ⋅ 10k, 5 ⋅ 10k}k=1,2,3,4 molecules for a system with no-
flux boundary conditions in one-, two-, and three-dimensional space
with D = 1, ε = h = 1, L = 10, and T = 104. Simulations were per-

FIG. 3. Total runtimes of simulations of diffusion in a bounded domain (see the
main text for the simulation setup) with N molecules, simulated using NSM (dotted
lines in shades of orange) and GNSM (solid lines in shades of blue). The speedups
ρd = time(NSM)�time(GNSM) are ρ1 = 1.81, ρ2 = 3.47, and ρ3 = 5.06. There-
fore, GNSM achieves 85% of the maximally possible speedup of 2d-fold. The
error bars over 10 independent repetitions of each simulation are smaller than
the symbol size.

J. Chem. Phys. 157, 194110 (2022); doi: 10.1063/5.0123073 157, 194110-8

© Author(s) 2022

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

formed using the GCC 10.3.0 compiler with the o3 optimization flag
on the AMD Ryzen Threadripper 3990X 64-Core processor with
the Ubuntu 20.04.4 LTS operating system. The results are shown
in Fig. 3. As expected, both methods have a computational cost
that scales linearly with the number of molecules, and GNSM has
a lower computational cost than NSM in all dimensions. We also
find that the runtimes of GNSM less strongly depend on the dimen-
sionality of the space than those of NSM, which is in line with
the above propensity estimates. As expected from those estimates,
the speedup afforded by GNSM is larger in higher dimensions.
Because each individual diffusion event is costlier to compute in
GNSM, though, the speedups are smaller than the maximum pos-
sible ones of 2d. We empirically find them to be 1.81-fold for
d = 1, 3.47-fold for d = 2, and 5.06-fold for d = 3, which is about
85% of 2d-fold.

This speedup can be further increased, at the expense of a larger
error, by increasing ε′. Indeed, as confirmed by the results in Fig. 6,

the computational cost of GNSM is up to 2dε′2 times smaller than
that of NSM overall.

C. Limits of validity for a homobimolecular reaction
The theoretical considerations in Sec. III predicted that the

smallest allowed cell size hmin for the GRDME is about a factor of√
6 larger than for the RDME. We verify this experimentally by

considering the bimolecular reaction system,

Á k1��→A,

A + A k2��→Á,
(16)

with propensities a1 = k1, a2 = k2
2 sA(sA − 1). The same system has

previously been used to demonstrate the limits of validity of the
RDME model.12 We simulate this system for k1 = 0.3 and k2 = 0.02

FIG. 4. (a) Expectation value of sA for the reaction system from Eq. (16) simulated at different grid resolutions h = 0.02, 0.03125, 0.05, 0.0625, 0.1, 0.125, 0.2, 0.25, 0.5, 1.0
and diffusivities D = 0.1, 0.5, 1.0, 5.0 in dimensions d = 1, 2, 3 for 500 repetitions (error bars) of each combination. (b) The curves for d = 3 plotted separately for each
diffusivity D. The analytically predicted hmin from Eq. (14) for GRDME and RDME are shown as vertical dashed lines. They are roughly a factor of six apart.
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TABLE V. Values of hmin for different diffusivities D for RDME and GRDME
with ε′ = 1.

D hmin RDME hmin GRDME

0.1 0.277 778 1.666 667
0.5 0.055 556 0.333 333
1.0 0.027 778 0.166 667
5.0 0.005 556 0.033 333

and four different diffusivities, D = 0.1, 0.5, 1.0, and 5.0. To simplify
the analysis, we assume k2 to be at the ballistic limit of the diffu-
sional propensity47 and hence to not change with varying D. The
Kuramoto lengths L�

K(D) =�2dD����(k2(E[sA] − 1)) for the dif-
fusivities used are L�

K(0.1) = 3.2, L�
K(0.5) = 7.2, L�

K(1.0) = 10.2, and
L�

K(5.0) = 22.8 such that the system is well-mixed in a domain with
edge length L = 1 and steady state E[sA] =�k1�k2 ≈ 3.8730. This
ensures that any resolution-dependent loss of bimolecular reactions
is unphysical, rather than a true result of the reaction dynamics in a
diffusion-limited system. We confirm in the leftmost plot of Fig. 4(a)
that both models are indeed consistent for all choices of h in one
dimension.

The results in two dimensions are consistent for all choices
of h and D except the smallest D = 0.1 in GRDME, confirming
that θ for the GRDME is larger than for the RDME such that for
D = 0.1, Eq. (13) is not satisfied anymore. However, we do not see
the error in E[sA] diverge as ln(h), as predicted by Isaacson30 and
shown by Hellander et al.33 Further analysis is required to see if
this would be that case for smaller h. Another reason could be
that here we measure the average number of molecules in the sys-
tem rather than the average time until the first reaction, and the
hmin heuristic has been developed for macroscopic parameters. The
results for the same reaction system with ε′ > 1 are given in Fig. 7
in Appendix B.

Consistently, both the RDME and GRDME models experience
reaction loss in the three-dimensional system at a grid resolution ∼10
times larger than the Kuramoto length of a cell. The proportional-
ity constant θ at which this happens is larger for GRDME than for
RDME. This case is analyzed in more detail in Fig. 4(b). The dashed
vertical lines indicate hmin computed using Eq. (14). The θ coefficient
for GRDME is θ = 10, and for RDME, θ = 10�√6. The correspond-
ing values of hmin are given in Table V. While for the present choices
of k2 and D, hmin < hmax, further decreasing D or increasing k2 would
lead to hmin > hmax such that there would be no h for which either

TABLE VI. Values of hmin for different diffusivities D for RDME and GRDME with
different ε′ > 1.

hmin D = 0.5 D = 5 D = 50

RDME 0.055 556 0.005 556 0.000 556
GRDME, ε′ = 1.0 0.333 333 0.033 333 0.003 333
GRDME, ε′ = 1.5 0.750 000 0.075 000 0.007 500
GRDME, ε′ = 2.0 1.333 333 0.133 333 0.013 333
GRDME, ε′ = 3.0 3.000 000 0.300 000 0.030 000
GRDME, ε′ = 5.0 8.333 333 0.833 333 0.083 333

RDME or GRDME is consistent (see Table VI). The numbers con-
firm the theoretical prediction of Sec. III that RDME and GRDME
experience the same level of loss of bimolecular reactions at grid
resolutions approximately six fold apart in three dimensions.

Thus, for a given hmin, molecules with diffusivity six times
higher than the critical diffusivity that determines hmin can be simu-
lated with GRDME, reducing the computational cost of simulations.

VI. CONCLUSIONS AND DISCUSSION
We presented the Gaussian Reaction–Diffusion Master Equa-

tion (GRDME) model, which generalizes the Reaction–Diffusion
Master Equation (RMDE) to larger diffusion jump neighborhoods.
Analogous to how the classic RDME is derived from a finite-
difference interpretation of diffusion, we derived the GRDME from
the Particle Strength Exchange (PSE) discretization method, provid-
ing a straightforward second-order scheme with a larger support.
The diffusion transfer rates in the present GRDME model have a
Gaussian form, and the diffusion jump neighborhood is extended to
nonadjacent cells without introducing additional state dependences.
The GRDME in the presented form can therefore be exactly (in the
sense that all events are explicitly executed) simulated by an exten-
sion of the Next Subvolume Method (NSM) called the Gaussian Next
Subvolume Method (GNSM).

Extending the classic RDME model to larger diffusion neigh-
borhoods would require the use of finite-difference stencils with
larger support. While such schemes exist (e.g., WENO finite dif-
ferences48), they have solution-dependent weights that cannot be
precomputed. We also note that an extension to orders of accuracy
larger than two seems impossible, both for the RDME and for the
GRDME. This is because any finite-difference stencil and any PSE
kernel or order larger than two have to have negative weights on
some of the grid cells in order to cancel the odd terms in the Taylor
expansion of the operator. In any scenario where the molecular pop-
ulation in a cell is zero, this could lead to negative molecule numbers
being computed. It therefore seems that extending the RDME model
to larger diffusion neighborhoods, or extending either the RDME or
GRDME to higher orders of convergence, is at least difficult if not
impossible.

We have shown in numerical experiments that the GRDME dif-
fusion model is of comparable accuracy to the RDME model and
displays the expected error convergence with respect to population
size and grid resolution. GRDME, however, has smaller total diffu-
sion propensity, which reduces the computational cost of an exact
simulation by at most a factor of 2dε′2 in a d-dimensional space
and when using a PSE kernel of normalized width ε′. The presented
benchmarks showed that our implementation of GNSM sustained a
speedup over NSM that is close to this upper bound. The price to
pay for this speedup is a smaller range of length scales in which the
model is valid. Indeed, while the maximum admissible resolution
hmax is the same for both models, our analysis has shown that hmin
of the GRDME is 2dε′2 times larger than that for the RDME, reflect-
ing a proportional trade-off between computer time and accuracy.
Therefore, it might be interesting in the future to develop hybrid
approaches, where the diffusion model switches between RDME and
GRDME on a per-species basis depending on the diffusion con-
stant of the species, while the reaction parts of the two models
remain identical. Modeling rapidly diffusing species with GRDME
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and slowly diffusing ones with RDME could still achieve lower com-
putational cost overall, while maintaining the larger validity range of
grid resolutions of the RDME.

An important limitation of both the RDME and the GRDME
models is that they are derived under the assumption of dilute
molecular populations in each grid cell. While this is mostly not
the case in biological cells, we agree with previously established
arguments29,31 that RDME and, therefore, also GRDME are valid
models if (i) the molecules undergo normal, Brownian diffusion,
(ii) the reactant molecules of all modeled reactions are sufficiently
dilute, (iii) hmin < hmax, and (iv) the diffusional bimolecular reac-
tion propensity47 is applicable. Under these conditions, the crowders
mainly increase the effective viscosity of the medium, but do not
participate in the chemical kinetics modeled. This must always be
carefully decided on a case-by-case basis before deciding on whether
to use any master-equation model. For example, macromolecular
crowding can reduce diffusivity and increase bimolecular reaction
rates,49 possibly violating requirement (iii). Excluded volume effects
may violate requirement (iv). Highly concentrated systems as seen in
liquid–liquid phase separation50 may violate all four requirements.
In such cases, additional microscopic detail is required and, thus,
modeling frameworks, such as Brownian dynamics,51 vRDME,52 or
SPT-RDME,53 should be used. In many cases, however, solutes dis-
play normal diffusion54 and reactants are rare in comparison to
inert molecules. Then, master-equation models, such as the RDME
or GRDME, could be appropriate, provided that requirement (iii)
holds, which is easy to verify for any given system using the known
expressions for hmin and hmax.

Taken together, the GRDME is comparably accurate as the
classic RDME, but permits faster exact simulations with a suit-
ably extended version of the NSM algorithm. Due to its larger
minimum grid cell size, it is best suited for systems with suffi-
ciently high diffusivity, and the computational savings are largest for
three-dimensional systems.
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APPENDIX A: ALGORITHMS FOR N
Algorithm 3 constructs an array MS of all multisets m of car-

dinality d from the set {0, 1, . . . , �lmax�}. MS additionally contains
the radius l of the coordinates, which will be built from the multi-
sets m, and the number of multiset permutations of each m, nmp.
A multiset allows several instances of each element. The number of
instances of an element is called its multiplicity. Multisets containing
elements with large multiplicity have a smaller number of permuta-
tions. The array “multiplicity” of size K stores the largest multiplicity
of each m in MS. Line 1 of Algorithm 3 computes K, which is the
number of elements in MS. Lines 2 and 3 allocate arrays MS and
multiplicity of size K and initialize all values to 1. The multisets
m are constructed in the nested loops starting in lines 5 through 7.
The inner loops progress until they reach the value of the iterator of
the loop within which they are nested. The outermost loop iterates
until �lmax�. In line 8, the multiset m is set to the values of the itera-
tors x, y, and z. The radius l is computed in line 9. At the end of each
inner loop, the value of the iterator of the inner loop and the iterator
of the outer loop are the same, increasing the multiplicity value of
m in line 12. The final multiplicities are computed in lines 15–18.
The multiplicity of the elements is used to compute the number

Algorithm 3. Construct all multisets of cardinality d from the set {0, 1, . . . , �lmax�}
1: K = � �lmax�+d

d �
2: Initialize an array MS of K elements (m, l, nmp), setting all to 1
3: Initialize an array multiplicity of K integers, setting all to 1
4: x = y = z = 0, i = 0
5: for x = 0, x ≤ �lmax� do
6: for y = 0, y ≤ x do
7: for z = 0, z ≤ y do
8: MS[i].m = [x, y, z]
9: MS[i].l =�x2 + y2 + z2

10: i = i + 1
11: end for
12: Multiplicity[i − 1] =Multiplicity[i − 1] + 1
13: MS[i − 1].nmp =MS[i − 1].nmp ⋅Multiplicity[i − 1]
14: end for
15: for j = i − 1 − x, j ≤ i − 1 do
16: Multiplicity[ j] =Multiplicity[ j] + 1
17: MS[ j].nmp =MS[ j].nmp ⋅Multiplicity[ j]
18: end for
19: end for
20: for all ms in MS do
21: ms. nmp = d!

ms. nmp
22: end for
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Algorithm 4. Find all permutations of a multiset of cardinality d.

Require: ms
1: δ = 1
2: initialize ms.nmp sized array MP of permutations of ms.m
3: MP.append(m)
4: P1 = P2 = m
5: if m[1] = m[2] then
6: δ = −1
7: end if
8: for i = 0, i < ms.nmp − 1 do
9: P1 = P2

10: P1[1] = P2[1 + δ]
11: P1[1 + δ] = P2[1]
12: δ = −δ
13: MP.append(P1)
14: end for

of multiset permutations for each m, required as an input for
Algorithm 4.

Algorithm 4 creates an array MP from all multiset permutations
of a given element ms in MS. The first element in MP is initialized
with the input sequence in m (line 3). Permutations are created by
swapping the position of the temporary arrays P1 and P2 nmp times
using multipliers δ ∈ {−1, 1} (lines 8 to 14), starting with δ = 1. In
the special case where the second and third element of m are the
same, δ is initialized to−1 (lines 5–7). At each iteration, δ is mirrored
to −δ (line 12), and the value of P1 is appended to MP (line 13).

Algorithm 5 creates an array SC of all permutations of the
sign values of the x, y, and z coordinates of a given permutation mp
of a multiset m. The number of such permutations depends on the

Algorithm 5. Compute all sign permutations of mp.

Require: mp
1: i = 0, signx = signy = signz = 1
2: nsign = [1, 1, 1]
3: for ax = 0, ax < d do
4: if �mp.m[ax]� > 0 then
5: nsign[ax] = 2
6: end if
7: end for
8: n = nsign[0] ⋅ nsign[1] ⋅ nsign[2]
9: create an array SC of size n containing sequences [x, y, z]

10: for x = 0, x < nsign[0] do
11: for y = 0, y < nsign[1] do
12: for z = 0, z < nsign[2] do
13: SC[i][0] = mp.m[0] ⋅ signx
14: SC[i][1] = mp.m[1] ⋅ signy
15: SC[i][2] = mp.m[2] ⋅ signz
16: i = i + 1
17: signz = −signz
18: end for
19: signy = −signy
20: end for
21: signx = −signx
22: end for

value of mp and is computed in lines 3–7: only nonzero elements
have two sign versions. The permutations are created in the nested
for loops in lines 10 through 22 by multiplying each element in mp
with the sign value (lines 13 to 15). At the end of each loop, the
sign along the axis over which the loop iterated is flipped (lines 17,
19, and 21).

APPENDIX B: NUMERICAL EXPERIMENTS FOR ε′ > 1

The normalized (to the grid spacing) PSE kernel width ε′ is
a free parameter in the GRDME model. It can be used to tune
between accuracy, resolution requirement, and computational cost
of the model and its exact simulation. Our theoretical analysis shows
that the error of the diffusion model scales as O(h2ε′2). The com-
putational cost of GNSM is up to a factor of 2dε′2 times lower than
that of NSM, but the lower grid resolution limit of GRDME is 2dε′2
times larger than that of the RDME. We empirically confirm this by
repeating the numerical experiments from Sec. V for different ε′ > 1.

1. Probability distribution moments
We repeat the measurements of the L2 error in the first four

moments of the spatial distribution of a population of diffusing
molecules from Sec. V A 2 for ε′ = 1, 1.5, 2, 3, 5 for varying N
and h using the same experimental conditions as in Sec. V A 2.
The expected convergence order of the error in the moments
is O(N−1/2) +O(h2ε′2) with increasing particle number N and
decreasing lattice cell size h and kernel width ε′, reducing the error.
We expect the error to increase quadratically with increasing ε′ for
fixed N and h. Figures 5(a) and 5(b) show the results. As expected,
increasing ε′ increases the error in the moments of the distribution.
For large ε′, the discretization error becomes the dominant term
even for small N [Fig. 5(a)]. Indeed, when both ε′ and h are large
(for h = 5 and ε′ = 5, ε = 25), the discretization error also dominates
for the second and third moment [Fig. 5(b)]. Figure 5(c) shows the
dependence of the L2 error on ε′ for N = 107 and different h. As long
as the discretization error dominates, the L2 error increases quadrat-
ically with increasing ε′, as expected from theory. For comparison,
the L2 errors for RDME are indicated by dots. The dots are placed
at ε′ = 1�√6, which is the value GRDME would have to use in order
to match the accuracy of the RDME model. This value was found
by extrapolation of the numerical results and not through theoreti-
cal error analysis. Since ε′ ≥ 1 by the overlap condition of PSE (see
Sec. II), the GRDME diffusion model can never match the accuracy
of the RDME diffusion model when using a Gaussian PSE kernel.

2. Computational cost
The computational cost of GNSM can be up to 2dε′2 times

smaller than that of NSM. However, the computation of each dif-
fusion event is costlier in GNSM than in NSM. Since the average
number of diffusion events decreases for larger kernels (i.e., larger
ε′), we expect that increasing ε′ further reduces the computational
cost of GNSM compared to NSM. Since the neighborhood to be
searched for each individual diffusion jump grows with ε′2, we also
expect that the practically achieved speedup will be farther from the
theoretically possible 2dε′2 for larger ε′. Figure 6(a) shows the mea-
sured computational costs of NSM and GNSM for ε′ = 1, 1.5, 2, 3, 5
and d = 1, 2, 3. As expected, increasing ε′ increases the speedup of
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FIG. 5. L2 error convergence of the first four moments �′1, �2, �3�σ3, and �4�σ4 in dimensions d = 1, 2, 3 for the RDME diffusion model and the GRDME diffusion model
with ε′ = 1, 1.5, 2, 3, 5. (a) Convergence with respect to the number of molecules N for RDME (orange) and GRDME (green–blue and darker shades indicate smaller ε′) for
point-source diffusion in an open domain with h = 1 and D = 1 at final time T = 100. The black dashed lines indicate the theoretically expected convergence order −1�2.
(b) Convergence with respect to the lattice resolution h for RDME (orange) and GRDME (green–blue and darker shades indicate smaller ε′) for the same problem with
N = 107 and D = 1 at time T = 100. The black dashed lines indicate the theoretically expected convergence order 2. (c) Convergence with respect to the normalizes kernel
width ε′ = ε�h for the GRDME with different lattice resolutions h (darker hue indicates larger h), N = 107, D = 1, and T = 100. The dots show the L2 errors for RDME for the
same h, indicated at the value of ε′ = 1�√6; the GRDME model would have to be use in order to achieve the same error. The black dashed lines indicate the theoretically
expected convergence order 2.

GNSM over NSM. However, as shown in Fig. 6(b), increasing ε′ too
much leads away from the quadratic speedup predicted by theory, as
seen for d = 3 and ε′ = 5. Nonetheless, GNSM with ε′ = 5 is ∼70-fold
faster than NSM in three dimensions.

3. Limits of validity for a homo-bimolecular reaction
The lower limit on the grid resolution, hmin, is also a function of

ε′. In Sec. III, we have shown that one-dimensional systems should
not possess a limit on h. Two- and three-dimensional systems, how-
ever, must have a sufficiently large ratio of diffusivity over reaction
rate. For two-dimensional systems for which this ratio is satisfied,
we expect there to be no lower limit on grid resolution, whereas hmin
always exists for three-dimensional systems.

We repeat the numerical experiment from Sec. V C using the
same reaction network and reaction parameters, but using the dif-
fusion coefficients D = 0.5, 5, 50, resulting in L�

K(0.5) = 7.2, L�
K(5)= 22.8, and L�

K(50) = 72.3. The results in the top row of Fig. 7
imply that, indeed, there is no lower limit on the grid resolution
for d = 1 even for the GRDME models with ε′ > 1. The results in
the middle row of Fig. 7 show that a two-dimensional system can
experience unphysical loss of bimolecular reactions if the propen-
sity of the diffusion model is too small compared to the propensity
of the bimolecular reactions, confirming the results in Fig. 4(a). The
bottom row confirms the existence of hmin for a three-dimensional
system, where the loss of bimolecular reactions is apparent for small
diffusivity and increases with increasing ε′. The numerical values
for this case are given in Table VI. Indeed, for D = 0.5 and ε′ = 5,
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FIG. 6. (a) Total runtimes of simulations of diffusion in a bounded domain (see Sec. V B for the simulation setup) with N molecules for d = 1, 2, 3, simulated using NSM
(orange dotted lines) and GNSM with ε′ = 1, 1.5, 2, 3, 5 (solid lines in shades of green–blue and darker shades indicate smaller ε′). The error bars over 10 independent
repetitions of each simulation are smaller than the symbol size. (b) The speedups ρd(ε′) = time(NSM)�time(GNSM(ε′)) plotted vs ε′. The black dashed line indicates
that ρ3 = 6ε′2 indicates the upper bound of the speedup in three dimensions (d = 3). The error bars over 10 independent repetitions of each simulation are smaller than
the symbol size.

FIG. 7. Expectation value of sA for the reaction system from Eq. (16) simulated at different grid resolutions h = 0.02, 0.03125, 0.05, 0.0625, 0.1, 0.125, 0.2, 0.25, 0.5, 1.0
and diffusivities D = 0.5, 5, 50 in dimensions d = 1, 2, 3. To simulate diffusion, we used both the RDME model (orange) and GRDME models with ε′ = 1, 1.5, 2, 3, 5
(shades of green–blue and darker shades indicate smaller ε′). The error bars show the standard deviations of the measurements over 500 independent repetitions of each
combination.
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there exists no h for which the model would be consistent since
hmin > hmax = L�

K . However, any system with sufficiently large dif-
fusion coefficients can be, in principle, modeled by a GRDME with
larger ε′ since the increase in hmin with increasing ε′ > 1 becomes
more and more negligible for larger D.
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