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ABSTRACT
We show that the resolution-dependent loss of bimolecular reactions in spatiotemporal Reaction–Diffusion Master Equations (RDMEs) is
in agreement with the mean-field Collins–Kimball (C–K) theory of diffusion-limited reaction kinetics. The RDME is a spatial generalization
of the chemical master equation, which enables studying stochastic reaction dynamics in spatially heterogeneous systems. It uses a regular
Cartesian grid to partition space into locally well-mixed reaction compartments and treats diffusion as a jump reaction between neighboring
grid cells. As the chance for reactants to be in the same grid cell decreases for smaller cell widths, the RDME loses bimolecular reactions in
finer grids. We show that for a single homo-bimolecular reaction, the mesh spacing can be interpreted as the reaction radius of a well-mixed
C–K rate. Then, the bimolecular reaction loss is consistent with diffusion-limited kinetics in the mean-field steady state. In this interpretation,
the constant in a bimolecular reaction propensity is no longer the macroscopic reaction rate but the rate of the ballistic C–K step. For the
same grid resolution, different diffusion models in RDME, such as those based on finite differences and Gaussian jumps, represent different
reaction radii.
© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0227527

I. INTRODUCTION

Diffusing and interacting molecules are the basis of chemi-
cal reactions. Confined to small spaces, or at low molecule count,
chemical reactions are subject to intrinsic noise arising from the dis-
creteness of molecules, the quantum nature of reactions, and the
thermal Brownian motion of diffusion. This is typically the case in
biological cells, where the interplay between stochastic reactions and
diffusion has been shown to affect cellular dynamics.1–7 This allows
cells to exploit intrinsic noise1–4 but may also require mechanisms
to buffer noise.5–7

Both the intrinsic noise and the distribution of molecules can be
spatially heterogeneous in reaction–diffusion systems, even at steady
state.8 Reaction–diffusion models have thus enabled describing cel-
lular processes ranging from chemotaxis9 to cell polarization.10,11 It

is reasonable to assume that both spatial heterogeneity and stochas-
ticity contribute to cellular processes, albeit to various degrees. For
example, slow diffusion has been shown to lead to faster responses in
signaling pathways due to more localized molecule concentrations,12

and local fluctuations of molecules can have a significant effect
on spatial patterning.13 Understanding these phenomena requires
models that couple reaction stochasticity and spatial concentration
gradients.

Stochastic reaction–diffusion models, such as Brownian
Dynamics (BD)14 and the Reaction–Diffusion Master Equation
(RDME),15,16 allow capturing the combined effect of stochasticity
and spatial heterogeneity on reaction dynamics. BD represents indi-
vidual molecules as particles that undergo random walk and can
react with each other upon encounter within a given reaction radius.
This provides an accurate microscopic description of the system but
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leads to simulations with a computational cost that scales with the
molecular population. The RDME generalizes the classic Chemical
Master Equation (CME)17 to spatially inhomogeneous processes by
partitioning space into locally well-mixed reaction volumes along a
regular Cartesian grid15,18,19 or an unstructured mesh.20,21 In each
grid cell, a CME models the local reaction dynamics, while diffu-
sion is approximated with a continuous-time lattice random walk
and implemented as a jump “reaction” from a cell to a neighboring
cell, which need not be immediately adjacent.19 Tracking only the
total number of molecules in each cell, rather than each molecule
individually, the RDME provides a mesoscopic description of the
system. While this renders the standard RDME unable to capture
microscopic effects, like molecular crowding and volume exclusion,
it typically results in a lower computational cost.

The lower computational cost of RDME simula-
tions is exploited in several numerical algorithms22 and
approximations.23–28 These Stochastic Simulation Algorithms
(SSAs) simulate the jumps between grid cells as first-order reactions
with a rate proportional to the molecular diffusivity and the
grid-cell size. Therefore, they inherit the physical interpretation of
the propensity constants from the CME. However, the subdivision
of space by the RDME grid introduces additional reaction barriers.
Indeed, two molecules can only react if they are in the same grid
cell. Therefore, the RDME famously loses bimolecular reactions
with finer partitioning of the reaction volume.18,29–31

Loss of bimolecular reactions at higher spatial resolution is
widely considered nonphysical and is often cited as the main lim-
itation of RDME models.18,32–36 Correction factors to bimolecular
propensities have been proposed to counter the dependence of
bimolecular reaction frequencies on grid resolution.32–35 Using such
corrected propensities, the RDME achieves the same steady state
as a non-spatial CME. It has also been proposed to combine the
RDME with microscopic methods36,37 to avoid the issue altogether.
Alternatively, one can constrain the RDME to above a limit grid
resolution, below which the loss becomes significant. This resolu-
tion limit represents a trade-off between the error of the spatial
approximation of the diffusion process and the bimolecular reaction
loss.22,30,31,34

Interestingly, this limit grid-cell size is often derived from the
concept of a reaction radius as used in BD. In fact, the subdivision of
space into well-mixed sub-volumes is not introduced by the simula-
tion algorithms but is an integral part of the RDME model itself. A
comparison of RDME and BD models also showed a loss of bimolec-
ular reactions in BD for decreasing reaction radius.18 This hints at
the possibility that the bimolecular reaction loss in RDME might not
be nonphysical and that there exists a relation between RDME grid
resolution and BD reaction radius.

Formalizing the link between grid resolution and reaction
radius, we propose a physical explanation for the loss of bimolec-
ular reactions based on Collins–Kimball (C–K) theory of diffusion-
limited reaction kinetics. In this theory, the macroscopic reaction
rate depends on the molecular diffusivity, the reaction radius, and
on what happens at the site of collision as encapsulated in the ballis-
tic rate. In well-mixed CME models, it is known that the propensity
constant derives from the macroscopic C–K rate.38 Typically then,
the (uncorrected) bimolecular propensities in RDME models are
interpreted as C–K rates, and the grid resolution is chosen large
enough to avoid significant loss of bimolecular reactions, yet small

enough to well approximate the diffusion.19,29–31,39 Here, we propose
a different interpretation: the bimolecular propensities in RDME
models, in contrast to the CME, represent the ballistic rate alone, and
the grid resolution defines the reaction radius in addition to setting
the spatial accuracy of the diffusion approximation.

Using this new interpretation, we show that two different
RDME models—the standard model using finite differences for the
jump reactions (fd-RDME) and a model using Gaussian jumps
(GRDME)19—recapitulate the loss of bimolecular reactions expected
from C–K diffusion-limited reaction kinetics. This suggests that the
loss of bimolecular reactions in RDME models is physically consis-
tent if the grid-cell size defines the reaction radius, analogous to how
it is done in BD. In addition, the choice of diffusion model (GRDME
vs fd-RDME) modulates the molecule size. GRDME offers an addi-
tional degree of freedom (the Gaussian jump neighborhood radius),
which can be used to independently tune the reaction radius and
the accuracy of the spatial diffusion approximation. Taken together,
this suggests that the RDME can provide a correct mesoscopic model
of C–K reaction kinetics, but that standard RDME (fd-RDME) may
only be able to do so for reaction systems with a narrow spectrum of
reaction radii and for a limited range of diffusion constants, whereas
GRDME offers more flexibility.

II. RDME RECAPITULATES BIMOLECULAR REACTION
LOSS OBSERVED IN DIFFUSION-LIMITED REACTION
DYNAMICS

What is the dynamics of bimolecular reactions in a dilute
solution without external mixing? A theoretical description of
diffusion-limited reaction dynamics has been provided by Collins
and Kimball40 for three-dimensional systems. The theory considers
the setting where molecules of species i diffuse with diffusivity Di
and collide with other molecules, resulting in a possible reaction.
Consequently, two reactant molecules must first reach each other
for a bimolecular reaction to occur, making a second-order reaction
a two-step process. The diffusion-limited reaction rate kCK (C and K
stand for Collins and Kimball) of such a two-step process satisfies

1
kCK
=

1
kb
+

1
kd

, (1)

where kd ≡ 4πσDΣ is the rate of the diffusion step and kb is the rate of
the ballistic step, encapsulating the dynamics at the collision site.38

The reaction radius σ is the sum of the radii of two hard spheres,
representing the two colliding molecules, and DΣ is the diffusivity of
the two reactant molecules relative to each other, DΣ = Di +Dj. The
resulting overall rate of a bimolecular reaction in a dilute well-mixed
solution thus is

kCK =
kb kd

kb + kd
=

4πσDΣ kb

4πσDΣ + kb
. (2)

Depending on which of the two steps is rate-limiting, one dis-
tinguishes two regimes: the diffusional regime with kCK ≈ kd and
the ballistic regime with kCK ≈ kb. Besides kb, the sizes and diffu-
sivities of the reactant molecules determine which regime is the
system in.

How do diffusivity and size of molecules affect the dynamics
of bimolecular reactions in solution? In the diffusional regime,
kCK ≈ 4πσDΣ, and the overall reaction rate is proportional to the
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diffusivity and size of the molecules. Smaller DΣ leads to smaller
kCK because molecules encounter fewer reaction partners. Smaller
σ also leads to smaller kCK because smaller molecules occupy less
volume and therefore have a smaller probability of collision. Smaller
kCK leads to fewer reactions, with all other things being equal.

How is diffusion-limited kinetics reflected in the CME? The
CME describes how the probability of the reaction system being
in a certain state s⃗ evolves over time due to stochastic reactions.
The instantaneous probability of a reaction happening is described
by a propensity function41 a that depends on the state s⃗, the order
of the reaction, the reaction volume size Ω, and the kinetic rate k.
For a bimolecular reaction between molecules of species i and j, the
propensity is a = k Ω−1sisj. Gillespie38 has rigorously shown that for
well-mixed and dilute systems (that is, for the “non-spatial” CME),
the reaction rate k in the bimolecular propensity is the diffusion-
limited macroscopic rate kCK. While the parameters that control the
diffusion-limited dynamics (D, σ, and kb) are not explicitly modeled
by CME, they are implicitly accounted for in the value of the reaction
rate.

To illustrate how reaction radius (σ) and diffusivity (D) affect
the CME reaction dynamics through changing the bimolecular rate,
we consider a reaction system with one homo-bimolecular reaction,

∅
k1
Ð→X,

X + X
k2
Ð→ ∅

(3)

with state s = #X, the number of molecules. Since both reactants are
X and thus have the same diffusion coefficient D, the bimolecular
reaction rate for diffusion-limited kinetics from Eq. (2) is

k2 = kCK =
kb8πσD

kb + 8πσD
. (4)

In Fig. 1(a), we show how the time average of the steady state ⟨s⟩
varies with σ and D. For large-enough D and σ, the system reaches
the ballistic regime, where ⟨s⟩ no longer depends on D or σ. Thus, by
changing the bimolecular rate constant k2 in the CME as a function

of σ and D, the system experiences a loss of bimolecular reactions for
decreased σ or D.

Unlike the CME, the RDME explicitly models diffusion. In
grid-based RDME, the reaction volume Ω is decomposed using a
Cartesian grid into M compartments of width h and volume hd,
where d is the spatial dimension (here d = 3 throughout). Each com-
partment p contains a sub-population s⃗ p of molecules allowed to
react, and the bimolecular propensity between molecules i and j in
a compartment becomes a = k h−dsp

i sp
j . The diffusion of molecules

across compartments is modeled as a first-order reaction in which a
molecule in a compartment p is “converted” to a molecule of the
same species in another compartment q with a rate kD = cDi/h2,
where c is a function of the diffusion model used.

The original formulation of RDME by Gardiner et al.,15 here
referred to as fd-RDME, uses a finite-difference diffusion model for
which c = 1 and the error for the spatial diffusion approximation
scales as O(h2

).19,39,42 Then, a molecule can jump to one of the 2d
face-connected adjacent compartments. The total propensity for a
molecule to jump anywhere in this neighborhood is

afd−RDME
D = 2d

D
h2 . (5)

In the GRDME, molecules can jump to a larger neighborhood, with
a Gaussian rate proportional to the distance of the jump. There-

fore, the GRDME has c = hd

ε′2
( 1

4πε′2
)

d
2 exp ( −l2

4ε′2
), where l is the length

of the jump and ε′ ≥ 1 is an additional parameter that controls the
radius of the Gaussian neighborhood. The error for the spatial dif-
fusion approximation in GRDME scales as O(ε′2h2

). For a fixed
h, the diffusion error scales as ε′ as O(ε′2).19 The total diffusional
propensity for GRDME is

aGRDME
D = ε′−2 D

h2 . (6)

In both grid-based RDME models, the bimolecular propensity and
the number of compartments M scale with the space dimension
d, whereas the diffusional propensity scales inversely quadratically

FIG. 1. Reaction loss in diffusion-limited CME resembles reaction loss in RDME. We show the time-average estimate of the steady-state number of molecules s of the reaction
system in Eq. (3), modeled by the CME (a) and the RDME (b) for varying length scale [the diffusion-limited C–K reaction radius σ in the CME, see Eq. (2); the grid cell size
h in the RDME]. The experiment is repeated for different diffusivities D, shown in color where the darkest hue represents the smallest D (color bar legend on the right). For
RDME, we use two different diffusion models: fd-RDME (dotted lines) and GRDME (dashed lines); see the inset legend. Results are shown on a log–log scale. All simulation
parameters are listed in Table II. The barely visible error bands (semi-transparent color) show the 95% confidence intervals of the time-averaged estimates.
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with the grid spacing h. With decreasing h, the molecules explore
smaller fractions of Ω and thus encounter fewer potential reac-
tion partners. Hence, bimolecular reaction loss is also observed
in grid-based RDME models, both when decreasing D and when
decreasing h.

There were many dedicated efforts toward finding good or even
optimal (in some sense) grid resolutions h for RDME, balancing
the accuracy of diffusion approximation and the loss of bimolecular
reactions.18,31–35 However, as shown in Fig. 1(a), also the CME with
diffusion-limited C–K rates loses bimolecular reactions for decreas-
ing reaction radii [note that in the bimolecular reaction in Eq. (3)
is an annihilation reaction such that higher ⟨s⟩ indicates a stronger
loss of bimolecular reactions]. This is akin to the trend observed in
Fig. 1(b), which shows the extent of bimolecular reaction loss as a
function of h for fd-RDME and GRDME. Both RDME models expe-
rience reaction loss for decreasing h, albeit to a different extent. This
suggests that, rather than being a nonphysical consequence of grid
partitioning, bimolecular reaction loss in RDME models could be
due to the reaction system transitioning from the ballistic regime to
the diffusion-limited regime.

The question then is whether the bimolecular reaction loss in
RDME models is consistent with the C–K theory. RDMEs explicitly
model diffusion as first-order jump reactions between compart-
ments. Yet, diffusion is also encapsulated in the bimolecular propen-
sity constant, which represents the diffusion-limited macroscopic
reaction rate. This means that in the current interpretation of rates
in RDME, diffusion is accounted for twice. Thus, we need to reexam-
ine the physical interpretation of the rate constant of the bimolecular
propensity in RDME. Furthermore, as σ and D go hand-in-hand in
C–K dynamics, we cannot explicitly model one without accounting
for the other. Thus, we propose an alternative interpretation of the
reaction loss observed in RDME: the RDME models a reaction sys-
tem in which the observed reaction dynamics is described by the
diffusion-limited bimolecular (macroscopic) reaction rate kCK, the
bimolecular propensity constant k2 is the ballistic rate kb, and the
grid resolution h sets the reaction radius σ.

III. GRID RESOLUTION DEFINES REACTION RADIUS
If the loss of bimolecular reactions in RDME can be explained

by C–K theory, then one should be able to relate the reaction radius
σ and the grid cell size h. We can estimate kCK (the macroscopic

reaction rate) from the time-averaged steady-state concentration ⟨s⟩
and the birth rate k1 by expressing kCK from the steady-state solu-
tion of the deterministic rate equation of the reaction system in
Eq. (3) as

kCK = k1(
Ω
⟨s⟩
)

2

. (7)

C–K theory relates kCK to σ. However, the resulting prediction may
not represent the sum of the two molecule radii. We therefore refer
to the length scale estimated from kCK as σ∗ as follows:

σ∗ =
kCKk2

8(kbπD − kCKπD)
. (8)

This predicts σ∗ to vary with D and k2 (hypothesized to
represent kb).

To see how σ∗ depends on the system parameters, we compute
the time average of the mean ⟨s⟩ (time interval [Tstart, T], see Table I)
of the reaction system in Eq. (3) using fd-RDME and GRDME
(ε′ = 1) for varying Ω, k1, and D, while keeping h fixed—see Table I.
We expect to find two constant values for σ∗, one for each of the two
models (fd-RDME and GRDME with ε = 1). In Fig. 2(a), we plot σ∗
obtained for each combination of k1 and Ω over 100 independent
repetitions of each simulation for the two models as a function of D.
Indeed, σ∗ remains constant when varying k1, Ω, or D. For a large D,
the standard error in the average σ∗ (over the 100 independent repli-
cas) sharply increases. This happens because the system is no longer
diffusion-limited such that kCK ≈ kb and ⟨s⟩ becomes independent of
D. In the ballistic regime, σ∗ becomes undetermined and can there-
fore not be estimated from simulations. This happens at lower D for
fd-RDME than for GRDME.

Given that σ∗ does not depend on the system parameters for a
given, fixed h, does it depend on h? We study this in simulations in
which we vary kb, D, and h—the complete set of parameters control-
ling kCK according to Eq. (2). All simulation parameters are again
listed in Table II, but we additionally vary kb ∈ {0.125, 0.25, 0.5}.
For each parameter combination, we compute σ∗ from kCK using
Eqs. (7) and (8). We hypothesize that the bimolecular rate in RDME
is the rate of the ballistic step kb alone. Then, kb is the independent
parameter in the simulation, and not kCK. We therefore measure
kCK in the simulations from k1 and ⟨s⟩ using Eq. (7). From this, we

TABLE I. Parameter values used to generate time-averaged estimate of the reaction system in Eq. (3) for Fig. 2(a).

Birth rate k1 1.715 ⋅ 10−8, 3.429 ⋅ 10−8, 6.859 ⋅ 10−8

Bimolecular propensity rate kb 0.125, 0.25, 0.5
Cell width h 2
Domain length L 24, 30, 38
Domain volume Ω 13 824, 27 000, 54 872
Diffusivity D 1 ⋅ 10m, 2 ⋅ 10m, 3 ⋅ 10m, 5 ⋅ 10m

m = −3,−2,−1, 0

Simulation time T 2 ⋅ 108

Collection start point for ⟨s⟩ Tstart 5 ⋅ 105

Number of repetitions n 100
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FIG. 2. Grid resolution sets the reaction radius. Estimated reaction radius σ∗ for fd-RDME (orange dotted line) and GRDME, ε′ = 1 (blue solid line) as a function of diffusion
constant D (a) and RDME grid resolution h (b). Dark orange dashed lines indicate σ∗ = 0.3h for fd-RDME, and dark blue dashed lines indicate σ∗ = 0.075h for GRDME.
(a) Computed σ∗ for each combination of parameters Ω and k1 in Table I as a function of D on a logarithmic scale. The error bands (light shaded areas) show the 95%
confidence interval over 100 independent repetitions of each stochastic simulation. The σ∗ is the same for any combination of parameters for each of the two models and a
fixed h. (b) Average σ∗ for each trajectory across varying RDME cell width h using all combinations of parameters from Table II, except D ≥ 0.5 since the reaction radius is
undetermined in the ballistic regime. The 95% confidence bands are below the linewidth.

TABLE II. Parameter values used to solve the reaction system in Eq. (3) for Figs. 1, 2(b), and 3.

Birth rate k1 3.429 ⋅ 10−8

Bimolecular propensity rate kb 0.25
Reaction radius (for CME) σ 50 log-spaced values in [0.225, 1.5]
Cell width (for RDME) h 0.75, 1, 2, 3, 5
Domain length L 30
Domain volume Ω 27 000
Diffusivity D 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0
Simulation time T 2 ⋅ 108

Collection start point for ⟨s⟩ Tstart 5 ⋅ 105

Number of repetitions n 50

compute σ∗ according to C–K theory using Eq. (8). Note that both
Eqs. (7) and (8) are not explicit functions of h. A consistent emerging
correlation between h and σ∗ would therefore show that σ∗ is set by
h. Indeed, the results in Fig. 2(b) suggest a linear relation between σ∗
and h across all tested simulation parameters, with σ∗GRDME = 0.075 h
and σ∗fd−RDME = 0.3 h. These pre-factors are the same as those found
in Fig. 2(a) for the constant case. Thus, this is consistent evidence
that σ∗ is a linear function of h with a slope that depends only on the
choice of the diffusion model.

If σ∗ is a linear function of h, does h then represent the reac-
tion radius in RDME models? If this is true, then fd-RDME and
GRDME should both match the CME prediction in which the net
effect of diffusion-limited kinetics is accounted for by using the
bimolecular C–K rate from Eq. (4) at corresponding h and σ∗. The
solid lines in Figs. 3(a) and 3(b) show the results of simulations
with fd-RDME and GRDME, respectively, for different D (color)
and h. The dashed lines show the results from the (non-spatial)
CME, where the bimolecular rate was computed from σ∗ and D

according to Eq. (4). Both RDME models closely match the CME
results when using the corresponding σ∗ from C–K theory, as can
be seen in the small relative (to CME baseline) Mean Squared Error
(MSE) of the two RDME models in Figs. 3(c) and 3(d). For small
D, however, the error increases at larger h for GRDME. In Figs. 3(e)
and 3(f), we show a sensitivity analysis, where we perturb the reac-
tion radii in the CME baseline by a factor η ∈ [0.5, 2.0], yielding
kCK = kb8π η σD/(kb + 8π η σD). The results show that the predic-
tions are most sensitive to the setting of the reaction radius σ∗ in
the diffusion-limited regime, i.e., for smaller h and smaller D. For
high D, the error barely depends on the perturbation to the reaction
radius, as expected for the ballistic regime.

This suggests that the RDME models a diffusion-limited sys-
tem, as we are able to predict the dynamics using the CME with a
diffusion-limited bimolecular reaction rate, and the results are most
sensitive in the diffusion-limited regime. In this case, the choice of
h may be constrained beyond numerical considerations, as it repre-
sents a length scale of the system and therefore defines the chemical
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FIG. 3. RDME matches CME for
diffusion-limited dynamics with the
Collins–Kimball reaction radius. Steady-
state number of molecules s in the
reaction system from Eq. (3) as a func-
tion of RDME grid spacing h, computed
as time averages of 50 independent
RDME simulations (solid lines). The σ∗
is determined from the linear relationship
found in Fig. 2 and is then used to
compute the bimolecular rate k2 [Eq. (4)]
of the corresponding CME (dashed
lines). Results are shown for different
D (colors, legend on the right) with the
lowest value shown in the darkest hue.
All simulation parameters are listed in
Table II. The 95% confidence bands are
shown as light shaded bands and are
mostly thinner than the linewidth. (a)
CME and fd-RDME with σ∗ = 0.3h. (b)
CME and GRDME with σ∗ = 0.075h.
(c) Normalized (to CME average) Mean
Squared Error (MSE) between indepen-
dent simulations of CME and fd-RDME
with σ∗ = 0.3h. (d) Normalized (to
CME average) MSE between CME
and GRDME with σ∗ = 0.075h. (e)
Sensitivity analysis of the normalized
MSE between fd-RDME and a per-
turbed CME baseline with σ∗ = η 0.3h
w.r.t. η. (f) Sensitivity analysis of the
normalized MSE between GRDME
and a perturbed CME baseline with
σ∗ = η 0.075h w.r.t. η.

system in a similar manner as D and kb do. Therefore, in the RDME,
there is an implicit reaction radius for each h, which matches the
macroscopic C–K dynamics.

IV. DIFFERENT DIFFUSION MODELS IN RDME ASSUME
DIFFERENT REACTION RADII

GRDME and fd-RDME use different diffusion models with dif-
ferent diffusion propensities [cf. Eqs. (5) and (6)]. Consequentially,
they model different σ∗ for the same h. Concretely, reaction radii
in the GRDME are smaller than in the fd-RDME. By extension,

varying the free parameter ε′ in GRDME should also affect σ∗. Dif-
ferent σ∗ in GRDME represent chemical systems with molecules of
different sizes, enlarging the range of molecular sizes that can be
modeled with a single h.

To better understand the relationship between σ∗ and the dif-
fusion model, we study how σ∗ varies with ε′. The parameters used
are listed in Table III. According to the total propensity of diffusion
jumps for the GRDME [Eq. (6)], σ∗ should vary with ε′ as O(ε′−2).

The results in Fig. 4 confirm the expected scaling for ε′ ≥ 1.
For smaller ε′, however, σ∗ slightly deviates from the theoretical
line. Comparing the diffusional propensities of fd-RDME [Eq. (5)]
and GRDME [Eq. (6)], we expect σ∗fd−RDME = 6σ∗GRDME, ε′=1 for a
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TABLE III. Parameter values used to generate the results in Fig. 4 for the reaction system in Eq. (3).

Birth rate k1 3.429 ⋅ 10−8

Bimolecular propensity rate kb 0.125, 0.25, 0.5
Cell width h 0.5
Smoothing length ε′ 1.0, 1.2, 1.5, 1.7, 2, 3, 5
Domain length L 30
Domain volume Ω 27 000
Diffusivity D 0.005, 0.01, 0.02, 0.05, 0.1, 0.2,0.5, 1, 2, 5
Simulation time T 108

Collection start point for ⟨s⟩ Tstart 5 ⋅ 105

Number of repetitions n 50

three-dimensional reaction volume. However, in the numerical
results in Fig. 2, σ∗fd−RDME is only about four times larger than
σ∗GRDME, ε′=1. How can we explain this? σ∗ is the radius of a reac-
tion sphere. The largest sphere that can fit inside a cubic grid cell
of edge length h has radius h/2. This σ∗max is indicated in Fig. 4 by
the horizontal green dashed line. Extrapolating the theoretical line
(black dashed) to ε′ < 1, σ∗ = 0.5h should be reached at ε′ ≈ 6−1/2.
This is also the value of ε′ for which GRDME has the same diffu-
sional propensity as fd-RDME, implying that σ∗ for fd-RDME is h/2
and

σ∗GRDME = (ε
′
√

6)
−2

σ∗fd−RDME =
1

12
hε′−2. (9)

However, the numerically computed σ∗fd−RDME = 0.3 h (orange dot in
Fig. 4) is below 0.5h. In addition, σ∗ of GRDME with ε′ = 1 also devi-
ates from quadratic scaling, as it is slightly smaller than predicted by

FIG. 4. Relationship between grid spacing h, GRDME parameter ε′, and reac-
tion radius σ∗. Computed reaction radius σ∗ for GRDME with varying smoothing
length ε′ (blue line with dots) and for fd-RDME (orange dot) on a log–log scale. We
compute σ∗ from the simulated steady-state number of molecules for the para-

meters in Table III. The σ∗ of fd-RDME is at ε′ =√6
−1

, where the diffusional
propensities of GRDME and fd-RDME coincide. The black dashed line indicates
the theoretically expected scaling from Eq. (6). The horizontal green dashed line
indicates the maximum possible σ∗max = h/2 in a Cartesian grid of spacing h.

theory. It is therefore possible that the orange dot in Fig. 4 indeed lies
on the sub-quadratically extrapolated blue line. The deviation might
stem from the geometry of the mesh (Cartesian) or from the σ ≪ h
restriction described in the literature30,31 (although this restriction
has been derived assuming that the bimolecular propensity rate is
kCK). In any case, the difference between the numerically computed
σ∗fd−RDME and the one predicted from quadratic scaling may explain
why Smith and Grima18 were not able to match the reaction loss
observed in BD to the reaction loss observed in the RDME when
setting the reaction radius equal to the grid size h.

Nevertheless, the connection between σ∗ and h elucidates an
important modeling caveat of the fd-RDME: The reaction radius
σ is defined as the sum of the radii of two colliding molecules,
σ = σi + σj. This means that for different combinations of reac-
tant species, it assumes different values. Nevertheless, fd-RDME
models all reactions using a single grid spacing h, and hence a
single σ = σ∗.

V. GRDME CAN MODEL MULTIPLE REACTION RADII
WITH ONE FIXED GRID

If there exists only one bimolecular reaction in the system,
either homo-bimolecular or hetero-bimolecular, then the system can
be model by either fd-RDME or GRDME, since there is one well-
defined σ from which to choose h. Using a fixed Cartesian grid,
fd-RDME assumes all molecules in the system to have the same reac-
tion radius. This can be problematic if there are multiple bimolecular
reactions in the system with significantly different reaction radii.
This is relaxed in GRDME, which offers an additional degree of
freedom in ε′. Indeed, for a fixed grid spacing h, different ε′ model
different reaction radii as shown in Fig. 4.

From Eq. (9), the radius of an individual molecule, σi =
1
2 σ∗

(σi is the radius of an individual molecule and σ∗ is the radius of the
reaction sphere), in a homo-bimolecular reaction can be expressed
as

σi =
1

24
hε′−2. (10)

By definition, the reactant partners in homo-bimolecular reactions
have the same size. However, this is generally not the case in
hetero-bimolecular reactions. Unlike fd-RDME, GRDME can model
a hetero-bimolecular reaction between two reactant molecules of
different sizes by setting ε′ separately for each chemical species
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i and j. The reaction radius of the hetero-bimolecular reaction
(σ∗ = σi + σj) is thus

σ∗ =
1

24
h
⎛

⎝

1
ε′i

2 +
1

ε′j
2
⎞

⎠
. (11)

To model a molecule of a given radius σi for a chosen, fixed h, the
species-specific GRDME smoothing lengths ε′i can thus be computed
from the molecule radii as

ε′i =
√

h
24σi

. (12)

Note here that σi is the radius of a molecule of species i and not the
reaction radius σ∗. Consequently, the combination of ε′i and h sets
the size of the molecules of species i. This provides additional free-
dom in choosing h in the GRDME, e.g., to trade off computational
cost and accuracy, which is not there for the fd-RDME. Moreover,
it allows the GRDME to model bimolecular reactions with different
σ∗ using one fixed grid.

VI. ZEROTH-ORDER REACTIONS IMPOSE A LOWER
DIFFUSIVITY LIMIT

The error of the diffusion models in fd-RDME and GRDME
decreases with decreasing h when there are no reactions in the sys-
tem.19 However, despite the improved accuracy of the diffusion
model with decreasing h, in a system with reactions, the overall error
in a RDME model increases again with decreasing h, due to the loss
of bimolecular reactions. As shown above, the bimolecular reaction
loss associated with decreasing h may be a consequence of an artifi-
cially decreased reaction radius. However, is there any other error
associated with the grid spacing h? And are there other limits of
validity of the RDME?

Indeed, as we show in the following, such additional limits on h
may exist for very large h and for very small D, for which grid-based
RDMEs suffer from insufficient reaction loss if the reaction system
contains zeroth-order (i.e., birth) reactions.

Consider again Fig. 2(b), which shows σ∗ as a function of h
on a log–log scale. For fd-RDME, the relation between σ∗ and h
appears to be slightly sub-linear. For GRDME, it becomes slightly
super-linear for large h (h ⪆ 4). Counterintuitively, this would mean
that that for large h, GRDME does not lose enough bimolecular
reactions. To illustrate that, consider the extreme case h = L, for
which we recover a non-spatial simulation. The system is then, by
definition, in the ballistic regime with k2 = kCK = kb (note the ambi-
guity in the physical interpretation of the bimolecular propensity in
this case) with no dependence on D and no loss of bimolecular reac-
tions. Thus, we expect that for very large h ≈ L, RDMEs may not
adequately model diffusion-limited kinetics for small D.

This implies an error that is correlated with h and depends on
the zeroth-order reactions in the system. The error can indeed be
observed in Fig. 3, where GRDME (panel b) drops below the rate
equations (RE, dashed line) for large h and small D (darker colors),
implying insufficient loss of bimolecular reactions. The fd-RDME
model (panel a) is slightly above the rate equations, consistent with
the sub-linear scaling of its reaction radius σ∗. While we still do not
know the source or the exact scaling of the error with h, both RDME

models have an error that is correlated with increasing grid-cell size
h, whereas the error due to bimolecular reaction loss increases with
decreasing h.30–37 The constraint from below on the ratio L

h effec-
tively provides an upper bound on the range of reaction radii in the
system that can possibly be modeled with RDMEs.

Since the diffusion-limited reaction rate in Eq. (2) is symmet-
ric with respect to reaction radius and diffusion constant, this also
implies a limit on the diffusivity. To see this, consider the limit case
D→ 0. One would then expect no bimolecular reaction to happen at
all, and indeed kCK = 0 for D = 0 [cf. Eq. (2)]. In a RDME model with
D = 0, molecules never leave the grid cell they were created in. How-
ever, two molecules that happen to have been created in the same
grid cell can still react. RDME models in which zeroth-order (birth)
reactions can occur thus have a non-zero probability for bimolec-
ular reactions to happen even at D = 0. Therefore, we anticipate
an insufficient loss of bimolecular reactions in RDME models for
small D.

How small can D be in a RDME model before these errors
become dominant? For the reaction system from Eq. (3), ⟨s⟩→∞
for D→ 0, since no bimolecular reactions happen and molecules
accumulate in the system forever. In a RDME model, as we have sug-
gested above, the bimolecular rate represents kb, which is indepen-
dent of D. Therefore, ⟨s⟩ will remain finite, but the ratio kb/kCK by
which the RDME over-estimates the bimolecular reactions diverges
to infinity as D→ 0. For an infinite bimolecular reaction rate, the
⟨s⟩ in a discrete stochastic model converges to s∞ = 0.5.43 In a
RDME model, the grid cells become independent of each other
in the absence of diffusion. Therefore, with M grid cells, the limit
molecular population is ⟨s⟩max = 0.5M. This is the limit for very high
bimolecular rates, which is the worst case for RDME when in reality
no bimolecular reactions should occur.

The smallest D that can be represented in a RDME therefore is
D that yields a kCK with the same ⟨s⟩max as a sum of M independent
grid cells of volume h3, namely

⟨s⟩max = Ω
√

k1

kCK
= 0.5

Ω
h3 = 0.5M. (13)

To find this lower limit on D, Dmin, we use the rate for the diffu-
sional regime kCK = 8πchD, since we study the system for D→ 0.
Instead of σ∗, we use ch for some constant c > 0, since σ∗ is a
linear function of h with slope depending on the diffusion model
(cf. Fig. 2): c (fd − RDME) = 0.3, c (GRDME, ε′ = 1) = 0.075, and
c (GRDME, ε′ > 1) = 1

12 ε′−2. Substituting the resulting expression
for kCK into Eq. (13), we find for the reaction system from Eq. (3)

Dmin =
k1 h5

2πc
. (14)

Hence, Dmin depends on the diffusion model, on the birth rate, and
strongly on the grid resolution.44 Importantly, the expression for
Dmin is specific to the reaction system. For example, the limit steady
state of a reaction system similar to the system in Eq. (3) but with

an additional first-order reaction X
k3
Ð→ ∅ would be s∞ = h3k1/k3 for

D→ 0. This would result in a more permissive Dmin.
We empirically confirm the above-mentioned expression for

Dmin for fd-RDME and GRDME (ε′ = 1) in Fig. 5, where we plot
the numerically computed ⟨s⟩ as a function of D (solid lines). We
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FIG. 5. For small D, RDME has insufficient bimolecular reaction loss. Time average
of the steady-state number of molecules ⟨s⟩ in the reaction system from Eq. (3)
as a function of the diffusivity D for fd-RDME (orange solid line), GRDME ε′ = 1
(blue solid line), and two CMEs with a diffusion-limited bimolecular rate kCK, one
with σ = 0.3h (orange dotted line), corresponding to σ∗ of fd-RDME, and the other
with σ = 0.075h (blue dotted line), corresponding to σ∗ of GRDME. All simulation
parameters are listed in Table IV. The horizontal black dashed line indicates the
maximum possible value of ⟨s⟩, predicted by Eq. (13). The vertical dashed lines
indicate Dmin for fd-RDME and GRDME predicted by Eq. (14). The error bands
(below the linewidth) show the 95% confidence interval over ten independent
repetitions of each simulation.

compare this to the predictions from the CME with a bimolecu-
lar rate kCK and σ∗RDME = 0.3 and σ∗GRDME = 0.075, respectively. All
simulation parameters are summarized in Table IV. As kCK → 0, the
steady state is reached at progressively later times, which is why we
scale both the total simulation time T and the time Tstart at which

we start collecting statistics for ⟨s⟩ accordingly. This ensures that all
simulations reach the steady state before we start averaging ⟨s⟩.

We observe that both RDME models match the CME with kCK
well for larger D. However, ⟨s⟩ in the RDME models asymptotes at
the maximum from Eq. (13) (indicated by a horizontal black dashed
line), whereas it continues to increase for the CME. The Dmin from
Eq. (14) are indicated by vertical dashed lines (orange for fd-RDME
and blue for GRDME). For both models, the CME predictions cross
the line ⟨s⟩max = 0.5M exactly where predicted by Dmin. This shows
that in the presence of zeroth-order reactions, a Dmin exists for
both RDME models and that it is defined by the steady state of M
independent reaction volumes of size h3.

VII. DISCUSSION AND CONCLUSION
We have shown that for a minimal bimolecular reaction

system, one can linearly map the grid resolution of a RDME
model to an effective reaction radius that recovers the well-mixed
Collins–Kimball (C–K) rate in the mean-field limit. This suggests
that RDME models, relying on a regular Cartesian grid, interpret the
grid spacing as a reaction radius, in addition to it defining the accu-
racy of the spatial diffusion model. Then, the bimolecular propensity
represents the rate of the ballistic step alone of diffusion-limited
kinetics. This renders the bimolecular reaction loss in RDMEs con-
sistent with the C–K theory of diffusion-limited reaction kinetics in
three dimensions. In this interpretation, the grid resolution below
which the model begins to lose bimolecular reactions is not a limit
of validity of the RDME itself but rather corresponds to the reac-
tion radius at which the system transitions from the ballistic to the
diffusion-limited regime.

The RDME correctly models kinetics also in the diffusion-
limited regime, where it coincides with the CME using the C–K
rate. Nevertheless, a limit of validity for the RDME exists for systems
that contain zeroth-order (birth) reactions. This limit, however, is a

TABLE IV. Parameter values used to generate the results in Fig. 5 for the reaction system in Eq. (3).

Birth rate k1 3.429 ⋅ 10−8

Bimolecular propensity rate kb 0.25
Diffusivity D 10−9, 5 ⋅ 10−9, 10−8, 5 ⋅ 10−8, 10−7, 5 ⋅ 10−7, 10−6, 10−5, 5 ⋅ 10−5, 10−4, 10−3, 10−2, 10−1, 10○

Estimated reaction radius,
GRDME

σ∗GRDME 0.075

Estimated reaction radius,
fd-RDME

σ∗fd−RDME 0.3

Collins–Kimball reaction
rate

kCK
kb8πσ∗D

kb+8πσ∗D

Cell width h 1
Domain length L 30
Domain volume Ω 27 000
Number of cells M Ω/h = 27 000
Simulation time T 107

√
kb

kCK

Collection start point for ⟨s⟩ Tstart 105
√

kb
kCK

Number of repetitions n 10
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lower limit on the diffusion constant, rather than a limit on the grid
resolution. Indeed, for a given grid resolution, RDME models allow
two molecules in the same grid cell to react even for zero diffusivity.
This is because the diffusion constant in a RDME model controls
the jump rate of molecules between grid cells but has no influence
on the reaction kinetics within a cell. For very small diffusivity,
RDME models thus become nonphysical, as they are losing too few
bimolecular reactions. Below this lower diffusivity limit, the over-
all dynamics is better represented by an ensemble of independent
well-mixed reaction systems.

Above the limit diffusivity, the choice of grid resolution in a
RDME model defines the reaction radius σ∗. This is related to the
radius σ of the sphere occupied by a pair of reactant molecules,
but the two are not identical. Rather, the RDME σ∗, as defined by
the grid resolution, can be interpreted as the radius of a sphere
within which diffusion does not affect the reaction kinetics. There-
fore, the reaction radius as used in Brownian dynamics methods is
not the same as the reaction radius set by the grid resolution of a
RDME model. Nevertheless, RDME models do assume a reaction
radius. On-lattice models, such as RDME, therefore do not avoid
the need for setting appropriate reaction radii. In practice, however,
on-lattice approaches are often chosen precisely to avoid having to
know microscopic system parameters. Our results point toward a
possibility that on-lattice and off-lattice approaches may not be all
that different in this regard, and that GRDME might potentially be a
more expressive mesoscopic model than fd-RDME.

The key to setting the correct reaction radius in a RDME model
is how σ∗ scales with grid resolution h. As we have shown, this scal-
ing is linear with a slope that only depends on the diffusion model
used by the RDME. Since σ∗ is smaller than h, consistent with the
picture that multiple reactant pairs can simultaneously be within
the same grid cell, diffusion within a grid cell should also be mod-
eled but is neglected by RDMEs. This is why RDMEs are not able
to correctly capture the dynamics for very small diffusion constants.
The slower the scaling of σ∗ with h, the more pronounced this error.
This is why GRDME has a larger minimum diffusivity limit than fd-
RDME. Neither fd-RDME nor GRDME, however, is physically con-
sistent for very small diffusion constants below the limit we derived
here.

An important difference between fd-RDME and GRDME is
that GRDME possesses an additional parameter, the width ε′ of
the Gaussian jump kernel. As we have shown here, it is the com-
bination of h and ε′ that sets the reaction radius in GRDME. This
enables GRDME to model different bimolecular reactions, with dif-
ferent reaction radii, using one grid resolution but species-specific
ε′. It also allows the grid resolution h to be chosen according to the
spatial diffusion accuracy desired, while the ε′ can be chosen inde-
pendently to match the reaction radii. This flexibility is not possible
with fd-RDME, where one h sets the diffusion approximation accu-
racy as well as all reaction radii, such that, according to the present
interpretation, all bimolecular reactions in a system must have sim-
ilar reaction radii that are moreover compatible with the diffusion
error.

While our results may appear to limit the use of RDME mod-
els, we would like to point out that the limiting h derived here
is typically 5–10 times smaller than the lower limit for h pro-
posed in previous studies. In particular, the consensus of previous
studies is that h should be at least an order of magnitude larger than

the reaction radius.30,31,34 The interpretation provided in this work,
therefore, would suggest a smaller h, improving at the same time also
the accuracy of the diffusion approximation. We therefore believe
that the present work might in fact extend the range of applicability
and validity of RDME models.

Physical consistency for multiple bimolecular reactions on a
single fd-RDME grid can potentially be restored by applying cor-
rection factors to bimolecular propensities.32–35 However, in light
of the present results, the premise on which some of these fac-
tors were derived might need to be reconsidered. Some correction
schemes aim to avoid the loss of bimolecular reactions altogether,
which might not correctly model diffusion-limited kinetics. Indeed,
using propensity correction, the steady state of the system remains
constant for all grid resolutions above a certain validity limit of the
correction scheme. Below this limit, the propensity-corrected system
experiences a sudden and complete loss of bimolecular reactions.32

In the interpretation we proposed here, this means that propen-
sity correction schemes increase the ballistic rate kb to prevent the
system from becoming diffusion-limited. Below their validity limit,
the system is entirely diffusional, and the kinetics of the ballistic
step no longer contribute to the dynamics. Propensity correction
therefore models diffusion-limited kinetics only in the range of
grid resolutions between the onset of bimolecular reaction loss in
the uncorrected system and the validity limit of the correction
scheme.

We have considered two different RDME models that use
Cartesian grids, fd-RDME and GRDME. Comparing their different
diffusion models was instrumental in understanding the physical
interpretation of their parameters and establishing the correspon-
dence with the C–K theory for diffusion-limited kinetics. Our con-
siderations were, however, limited to three-dimensional reaction
volumes, as the C–K theory only holds there. Moreover, we were
limited to the case where a single, spatially isotropic and uniform
grid resolution h characterizes the model. Future work could try
to analyze spatially adaptive RDME models or models that use an
unstructured grid, such as URDME.20,21 For those models, theoret-
ical results are likely harder to come by, but numerical simulations
might provide insight.

Based on the present results, future work could also try to
improve the consistency of RDME at small diffusivities. The diffu-
sivity limit derived here mainly stems from the design of zeroth-
order reactions in current RDME models. The RDME model for
zeroth-order reactions could be improved, e.g., by localizing zeroth-
order reactions to the grid cell boundaries such that newly created
molecules first require a diffusion event to enter any cell. This
would prevent two molecules from being created within a distance
of σ∗ and ensure that there are no bimolecular reactions when
there is no diffusion. Another approach could be to restrict zeroth-
order reactions to empty grid cells or scale their propensities with
the void fraction of the cell. This could eventually reconcile the
RDME theory with models such as vRDME45 and SPT-RDME46 that
account for finite-size effects of the reacting particles. In either case,
one would need to ensure that the new model improves physical
consistency with diffusion-limited kinetics. For example, vRDME
uses an effective molecule diameter to model volume-exclusion
effects in crowded systems. This parameter could not yet be linked
to actual microscopic quantities, because the analysis in Ref. 45
was done in two dimensions, whereas C–K theory only holds for
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three-dimensional systems. Going forward, it would be interesting
to study the relationship between the reaction radius and volume
exclusion effects by extending vRDME to three dimensions or by
extending C–K theory to two dimensions.

Indeed, the role of the reaction radius in two-dimensional
kinetics is an exciting and important question, for example for sur-
face and interface systems. The kinetics of reaction loss in two
dimensions differs fundamentally from that in three dimensions.
In particular, in two dimensions, bimolecular reaction loss appears
constant across all values of h, but instead seems to depend on the
ratio between the bimolecular reaction rate and the diffusivity, as
previously shown [Eq. (12) and Fig. 4(a) in Ref. 19]. Perhaps then,
h can be set more freely in two-dimensional systems. However, this
is speculation at this point, and further research is needed to under-
stand the relationship between the reaction radius, grid resolution,
and kinetics in two dimensions.

Interestingly, our interpretation of the RDME parameters
shares similarities with the approach taken in convergent RDME
(cRDME) models,36 which are on-lattice RDME models of Doi’s
microscopic description. In addition, the cRDME uses the ballistic
rate kb as the bimolecular propensity. This similarity between our
interpretation and the cRDME design points at the possible exis-
tence of a general mapping between microscopic system parameters
and on-lattice master equation models.

It is important to keep in mind, though, that the present con-
clusions and interpretation were reached by comparing only the first
moment of the RDME with the well-mixed CME for the simplest
possible bimolecular reaction system at steady state. We consid-
ered this minimal model because it is theoretically tractable and its
low-dimensional parameter space allowed for exhaustive numerical
exploration. However, many open questions remain. For example,
does a similar limit on h also exist for the time-dependent error
before reaching the steady state? Is there an “optimal” value for h that
minimizes the overall error in a RDME model? Would the conclu-
sions still hold when other statistics are compared? Are there cases
when fd-RDME cannot provide reasonable approximations at all,
due to a spectrum of different reaction radii being present in the sys-
tem? How could one calibrate RDME directly to a microscopic C–K
model? Can the same principle be extended to two-dimensional sys-
tems, where the C–K theory does not exist? It is therefore clear that
the present study is only a first step, possibly raising more questions
than providing answers.

Despite these limitations, we suggested an alternative inter-
pretation of the RDME model parameters in terms of microscopic
quantities. This could effectively extend the utility of RDME models
to regimes previously considered unattainable. More importantly,
though, the microscopic reinterpretation of the model parameters
allows for exploring the interplay between stochasticity and spa-
tial heterogeneity in the diffusion-limited regime, as often found in
biological cells.
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12K. Takahashi, S. Tănase-Nicola, and P. R. ten Wolde, Proc. Natl. Acad. Sci.
U. S. A. 107, 2473 (2010).
13D. Fange and J. Elf, PLoS Comput. Biol. 2, 637 (2006).
14J. Lipková, K. C. Zygalakis, S. J. Chapman, and R. Erban, SIAM J. Appl. Math.
71, 714 (2011).
15C. W. Gardiner, K. J. McNeil, D. F. Walls, and I. S. Matheson, J. Stat. Phys. 14,
307 (1976).
16S. Smith and R. Grima, Phys. Rev. E 93, 052135 (2016).
17D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977).
18S. Smith and R. Grima, Bull. Math. Biol. 81, 2960 (2018).
19T. Subic and I. F. Sbalzarini, J. Chem. Phys. 157, 194110 (2022).
20S. Engblom, L. Ferm, A. Hellander, and P. Lötstedt, SIAM J. Sci. Comput. 31,
1774 (2009).
21B. Drawert, S. Engblom, and A. Hellander, BMC Syst. Biol. 6, 76 (2012).
22J. Elf and M. Ehrenberg, Syst. Biol. 1, 230 (2004).
23T. T. Marquez-Lago and K. Burrage, J. Chem. Phys. 127, 104101 (2007).
24S. Lampoudi, D. T. Gillespie, and L. R. Petzold, J. Chem. Phys. 130, 094104
(2009).
25B. Drawert, M. J. Lawson, L. Petzold, and M. Khammash, J. Chem. Phys. 132,
074101 (2010).
26J. Fu, S. Wu, H. Li, and L. Petzold, J. Comput. Phys. 274, 524 (2014).

J. Chem. Phys. 161, 234107 (2024); doi: 10.1063/5.0227527 161, 234107-11

© Author(s) 2024

 16 D
ecem

ber 2024 11:52:26

https://pubs.aip.org/aip/jcp
https://git.mpi-cbg.de/MOSAIC/GRDME
https://doi.org/10.1073/pnas.110057697
https://doi.org/10.1073/pnas.092133899
https://doi.org/10.1073/pnas.092133899
https://doi.org/10.1038/nature09326
https://doi.org/10.1016/j.cels.2016.10.006
https://doi.org/10.1063/pt.3.4771
https://doi.org/10.1016/j.cels.2016.01.004
https://doi.org/10.1126/science.aba0446
https://doi.org/10.1098/rstb.1952.0012
https://doi.org/10.1371/journal.pcbi.0030036
https://doi.org/10.1126/science.1208619
https://doi.org/10.1038/ncomms2795
https://doi.org/10.1038/ncomms2795
https://doi.org/10.1073/pnas.0906885107
https://doi.org/10.1073/pnas.0906885107
https://doi.org/10.1371/journal.pcbi.0020080
https://doi.org/10.1137/100794213
https://doi.org/10.1007/bf01030197
https://doi.org/10.1103/PhysRevE.93.052135
https://doi.org/10.1021/j100540a008
https://doi.org/10.1007/s11538-018-0443-1
https://doi.org/10.1063/5.0123073
https://doi.org/10.1137/080721388
https://doi.org/10.1186/1752-0509-6-76
https://doi.org/10.1049/sb:20045021
https://doi.org/10.1063/1.2771548
https://doi.org/10.1063/1.3074302
https://doi.org/10.1063/1.3310809
https://doi.org/10.1016/j.jcp.2014.06.025


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

27E. Roberts, J. E. Stone, and Z. Luthey-Schulten, J. Comput. Chem. 34, 245
(2013).
28M. J. Hallock, J. E. Stone, E. Roberts, C. Fry, and Z. Luthey-Schulten, Parallel
Comput. 40, 86 (2014).
29S. A. Isaacson and C. S. Peskin, SIAM J. Sci. Comput. 28, 47 (2006).
30S. A. Isaacson, SIAM J. Appl. Math. 70, 77 (2009).
31D. T. Gillespie, L. R. Petzold, and E. Seitaridou, J. Chem. Phys. 140, 054111
(2014).
32R. Erban and S. J. Chapman, Phys. Biol. 6, 046001 (2009).
33D. Fange, O. G. Berg, P. Sjöberg, and J. Elf, Proc. Natl. Acad. Sci. U. S. A. 107,
19820 (2010).
34S. Hellander, A. Hellander, and L. Petzold, Phys. Rev. E 85, 042901 (2012).
35S. Hellander, A. Hellander, and L. Petzold, Phys. Rev. E 91, 023312 (2015).
36S. A. Isaacson, J. Chem. Phys. 139, 054101 (2013).
37A. Hellander, S. Hellander, and P. Lötstedt, Multiscale Model. Simul. 10, 585
(2012).
38D. T. Gillespie, J. Chem. Phys. 131, 164109 (2009).

39S. A. Isaacson and D. Isaacson, Phys. Rev. E 80, 066106 (2009).
40F. C. Collins and G. E. Kimball, J. Colloid Sci. 4, 425 (1949).
41D. T. Gillespie, Physica A 188, 404 (1992).
42D. Bernstein, Phys. Rev. E 71, 041103 (2005).
43 The reaction X + X

k2Ð→ ∅ requires two reaction partners. Starting from s = 0, the

first bimolecular reaction will only occur after at least two birth reactions (∅
k1Ð→X).

Before reaching s = 2, the system will spend on average half of the time at s = 0 and
half of the time at s = 1. Once s = 2, a bimolecular reaction brings the system back
to s = 0. The larger the k2, the faster this happens, and the closer the system is to
the limit s∞ = 0.5.
44 This result can also be interpreted as a limit for h, hmin = (2πcD/k1)1/5.
While we are not yet able to physically interpret this limit, it varies little
over a broad range of parameters. For example, for the reaction parameters in
Table IV and varying 10−3 < D < 103, the limit varies between 0.005 < hmin
< 0.090.
45C. Cianci, S. Smith, and R. Grima, J. Chem. Phys. 144, 084101 (2016).
46C. Cianci, S. Smith, and R. Grima, Phys. Rev. E 95, 052118 (2017).

J. Chem. Phys. 161, 234107 (2024); doi: 10.1063/5.0227527 161, 234107-12

© Author(s) 2024

 16 D
ecem

ber 2024 11:52:26

https://pubs.aip.org/aip/jcp
https://doi.org/10.1002/jcc.23130
https://doi.org/10.1016/j.parco.2014.03.009
https://doi.org/10.1016/j.parco.2014.03.009
https://doi.org/10.1137/040605060
https://doi.org/10.1137/070705039
https://doi.org/10.1063/1.4863990
https://doi.org/10.1088/1478-3975/6/4/046001
https://doi.org/10.1073/pnas.1006565107
https://doi.org/10.1103/PhysRevE.85.042901
https://doi.org/10.1103/PhysRevE.91.023312
https://doi.org/10.1063/1.4816377
https://doi.org/10.1137/110832148
https://doi.org/10.1063/1.3253798
https://doi.org/10.1103/physreve.80.066106
https://doi.org/10.1016/0095-8522(49)90023-9
https://doi.org/10.1016/0378-4371(92)90283-v
https://doi.org/10.1103/physreve.71.041103
https://doi.org/10.1063/1.4941583
https://doi.org/10.1103/physreve.95.052118

