
MultiTag: Multiple Error-Tolerant Sequence Tag
Search for the Sequence-Similarity Identification
of Proteins by Mass Spectrometry

Shamil Sunyaev,*,†,‡ Adam J. Liska,§,⊥ Alexander Golod,†,⊥ Anna Shevchenko,§ and
Andrej Shevchenko*,§

European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany,
Genetics Division, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School,
75 Francis Street, Boston, Massachusetts 02115, and Max Planck Institute of Molecular Cell Biology and Genetics,
Pfotenhauerstrasse 108, 01307 Dresden, Germany

The characterization of proteomes by mass spectrometry
is largely limited to organisms with sequenced genomes.
To identify proteins from organisms with unsequenced
genomes, database sequences from related species must
be employed for sequence-similarity protein identifica-
tions. Peptide sequence tags (Mann, 1994) have been
used successfully for the identification of proteins in
sequence databases using partially interpreted tandem
mass spectra of tryptic peptides. We have extended the
ability of sequence tag searching to the identification of
proteins whose sequences are yet unknown but are
homologous to known database entries. The MultiTag
method presented here assigns statistical significance to
matches of multiple error-tolerant sequence tags to a
database entry and ranks alignments by their significance.
The MultiTag approach has the distinct advantage over
other sequence-similarity approaches of being able to
perform sequence-similarity identifications using only very
short (2-4) amino acid residue stretches of peptide
sequences, rather than complete peptide sequences de-
duced by de novo interpretation of tandem mass spectra.
This feature facilitates the identification of low abundance
proteins, since noisy and low-intensity tandem mass
spectra can be utilized.

Developments in genomic sequencing and mass spectrometry
have shifted the focus of biochemical research from the charac-
terization of individual proteins to the large-scale analysis of the
proteome, the protein complement of the genome (reviewed in
ref 1). Proteins are typically resolved by one-dimensional or two-
dimensional gel electrophoresis, followed by enzymatic digestion
and identification by peptide mass fingerprinting (PMF) or tandem
mass spectrometry (MS/MS). An alternative approach is to digest

a complex protein mixture in solution and to identify proteins via
two-dimensional LC-MS/MS (reviewed in refs 2 and 3). Masses
of intact tryptic peptides (in PMF) and masses of fragment ions
(in MS/MS) are submitted for database searching using special-
ized software (reviewed in ref 4). Regardless of differences in
database searching algorithms and mass spectrometry platforms,
the software correlates the observed masses with theoretically
predicted masses derived from peptide sequences produced by
in silico digestion of protein database entries and calculates the
statistical significance of hits. Importantly, the software does not
require a full representation of the fragment ions in the tandem
mass spectrum and can positively identify the peptide even if only
some of the fragment ions are matched. The significance of hits
increases if more fragment ions are detected and if more than
one peptide sequence originating from the same database entry
is recognized. Thus, conventional database mining software is
inherently biased toward exact matching of spectra to catalogued
sequences and in practice is mostly applied to the identification
of proteins already residing in available databases. It is, therefore,
not surprising that proteomics is largely limited to organisms with
sequenced genomes, despite the fact that phylogenetically related
organisms share significant molecular homology and that exten-
sive protein sequence information may be available from related
species.

The proteomes of organisms with unsequenced genomes can
be analyzed effectively with the aid of methods for the correlation
of peptides with database sequences by sequence similarity
(reviewed in ref 5). Recently, methods have been developed for
protein identification by modified FASTA6 (FASTS)7 and BLAST8

(MS BLAST)9 database searches, which allow the mass spectro-

* Correspondence may be addressed to either author. E-mails: shevchenko@
mpi-cbg.de; ssunyaev@rics.bwh.harvard.edu.

⊥ Authors contributed equally to this work.
† EMBL.
‡ Brigham & Women’s Hospital and Harvard Medical School.
§ Max Planck Institute of Molecular Cell Biology and Genetics.

(1) Anderson, N. L.; Matheson, A. D.; Steiner, S. Curr. Opin. Biotechnol. 2000,
11, 408-412.

(2) Mann, M.; Hendrickson, R. C.; Pandey, A. Annu. Rev. Biochem. 2001, 70,
437-473.

(3) Peng, J. M.; Gygi, S. P. J. Mass Spectrom. 2001, 36, 1083-1091.
(4) Fenyo, D. Curr. Opin. Biotechnol. 2000, 11, 391-395.
(5) Liska, A.; Shevchenko, A. Proteomics 2003, 3, 19-28.
(6) Pearson, W. R. Genomics 1991, 11, 635-650.
(7) Mackey, A. J.; Haystead, T. A.; Pearson, W. R. Mol. Cell. Proteomics 2002,

1, 139-147.
(8) Altschul, S. F.; Madden, T. L.; Schaffer, A. A.; Zhang, J.; Zhang, Z.; Miller,

W.; Lipman, D. J. Nucleic Acids Res. 1997, 25, 3389-3402.
(9) Shevchenko, A.; Sunyaev, S.; Loboda, A.; Bork, P.; Ens, W.; Standing, K. G.

Anal. Chem 2001, 73, 1917-1926.

10.1021/ac026199a CCC: $25.00 © xxxx American Chemical Society Analytical Chemistry A
PAGE EST: 8.8Published on Web 00/00/0000



metric identification of a sizable proportion of proteins sharing
more than 50% of the sequence identity to their closest neighbors
in a database.7,10 The MS BLAST method may utilize redundant,
degenerate, and inaccurate sequences produced by automated
interpretation of tandem mass spectra9 and can be linked to high-
throughput protein characterization techniques, such as LC-MS/
MS, through a simple scripting interface.11 Importantly, both MS
BLAST and FASTS methods provide independent means of
evaluating the statistical significance of hits, and therefore, it is
not necessary to compare retrospectively the matched peptide
sequences with actual tandem mass spectra to rule out false
positive hits.

A major limitation to sequence-similarity identification rests
with the quality of de novo interpretation of raw tandem mass
spectra, rather than in database searching. Tandem mass spectra
are inherently deficient; peptide sequence fragments are often
underrepresented. At the same time, spectra often display ions
that originate from fragmentation of side chains of amino acid
residues and are not accounted for by typical scoring schemes. It
is common in femtomole sequencing that low peptide content and
high chemical noise allows only a few informative fragment ions
to be detected in MS/MS spectra, from which software-assisted
interpretation cannot produce credible peptide sequence proposals
and sequence-similarity identification will likely yield a false
negative result.

The peptide sequence tag approach for error-tolerant database
searching developed by Mann and Wilm in 1994 helps to
overcome those limitations.12 The sequence tag utilizes a short
(2-4 amino acid residues) sequence stretch, which can be easily
determined from a low-energy CID spectrum acquired from a
multiply charged precursor and a pair of masses that lock the
determined stretch in the full length peptide sequence, namely,
the combined mass of all amino acid residues between the
N-terminus of the tryptic peptide and the sequenced region and
the mass of all amino acid residues between the sequenced region
and the tryptic peptide’s C-terminus. In stringent database
searches, both masses and the sequence are required to match.
Currently, sequence tags are employed in protein, EST13 (ex-
pressed sequence tag), and genomic sequence14 database search-
ing. However, no evaluation of the significance of matches is pro-
vided in these searches. Therefore, even if a single hit is re-
trieved upon database searching, the match between corre-
sponding peptide sequence from a database entry and the tandem
mass spectrum has to be verified retrospectively by manual
inspection.

Sequence tags can be used for error-tolerant searching allowing
for one of the regions of the sequence tag (and, consequently,
the intact mass) to mismatch. The approach enables cross-species
identifications in protein sequence databases.15 However, loose
matching requirements result in a dramatic loss of search
specificity so that many hundreds of hits are typically retrieved,
and manual inspection of all of them is tedious.

In the present paper, we have extended the capability of the
sequence tag search with the implementation of a statistical

evaluation for the matching of multiple partial sequence tags in
the identification of proteins from organisms with unsequenced
genomes. We demonstrate that the MultiTag approach enables
identification of distantly related proteins by sequence-similarity
searching using only very short stretches of peptide sequence
derived from tandem mass spectra, and is, therefore, a vastly
simplified and sensitive method of exploring the proteomes of
organisms with unsequenced genomes.

MATERIALS AND METHODS
Software. MultiTag is a stand-alone application on the MS

Windows platform. MultiTag code was written using C++
language with Microsoft Visual C++ and Microsoft Foundation
Classes (Microsoft Inc. CA). Sorting and statistical evaluation of
∼5000 hits takes ∼1 s on a Pentium IV workstation.

Mass Spectrometry Analysis. Proteins in a partially purified
extract from Xenopus laevis oocytes were separated on a one-
dimensional polyacrylamide gel and visualized by staining with
Coomassie. Protein bands were excised and in-gel digested with
trypsin as previously described.16 Extracted peptides were first
analyzed by PMF on a Reflex IV (Bruker Daltonik, Bremen,
Germany) matrix-assisted laser desorption ionization time-of-flight
(MALDI-TOF) mass spectrometer, and obtained peptide mass
fingerprints were submitted for database searching by Mascot
(Matrix Science Ltd, U.K.) software.17 None of the samples were
positively identified. Samples were further analyzed by nanoelec-
trospray tandem mass spectrometry on a QSTAR Pulsar i
quadrupole time-of-flight (QqTOF) instrument (MDS Sciex,
Canada).

Interpretation of Tandem Mass Spectra and Database
Searching. Sets of uninterpreted tandem mass spectra were used
to search databases first with Mascot, and when no positive
identifications were achieved, the spectra were interpreted manu-
ally. Sequence tags were determined by the interpretation of
tandem mass spectra using BioAnalyst QS software (Applied
Biosystems, CA). Database searching was performed using the
PepSea program (a part of the BioAnalyst QS package) against a
comprehensive nonredundant protein sequence database down-
loaded from NCBI (ftp://ftp.ncbi.nlm.nih.gov/blast/db/). No
constraints on the protein molecular weight or species of origin
were imposed. The mass tolerance was set to 0.05 Da for fragment
ions and 0.1 Da for precursor ions. Hits from error-tolerant
searches were pooled in a spreadsheet (Microsoft Excel) and were
encoded by a peptide precursor mass and a letter code for the
matched regions of the corresponding sequence tag in order to
facilitate subsequent processing by the MultiTag program. The
entire pool of hits was downloaded to the MultiTag program for
sorting and statistical evaluation. MS/MS spectra were further
analyzed by MS BLAST sequence-similarity database searches at
http://dove.embl-heidelberg.de/Blast2/msblast.html against the
nrdb protein database.

(10) Habermann, B.; Sunyaev, S.; Shevchenko, A. Unpublished data.
(11) Nimkar, S.; Loo, J. A. Proc. 50th ASMS Conference on Mass Spectrometry

and Allied Topics, Orlando FL 2002; Abstract 334.
(12) Mann, M.; Wilm, M. Anal. Chem. 1994, 66, 4390-4399.
(13) Mann, M. Trends Biochem. Sci. 1996, 21, 494-495.

(14) Kuster, B.; Mortensen, P.; Andersen, J. S.; Mann, M. Proteomics 2001, 1,
641-650.

(15) Shevchenko, A.; Keller, P.; Scheiffele, P.; Mann, M.; Simons, K. Electro-
phoresis 1997, 18, 2591-2600.

(16) Shevchenko, A.; Wilm, M.; Vorm, O.; Mann, M. Anal. Chem. 1996, 68,
850-858.

(17) Perkins, D. N.; Pappin, D. J.; Creasy, D. M.; Cottrell, J. S. Electrophoresis
1999, 20, 3551-3567.

B Analytical Chemistry



RESULTS AND DISCUSSION
MultiTag Protein Identification Strategy. MultiTag is a

sequence-similarity searching approach for identifying unknown
proteins via their homology to known proteins available in a
sequence database. Comparison of homologous sequences of
proteins from different species often shows that varying amino
acid residues are distributed randomly along a polypeptide
backbone, with some regions having more conservation than
others. Although a single tryptic peptide may not be completely
identical between the two protein sequences, their partial identity
frequently occurs (Figure 1). We propose that error-tolerant
searching with sequence tags can reveal regions of partial identity
without determining complete peptide sequences. Although those
regions are rather short to claim positive identification of a protein
homologue, typically, many peptides are sequenced from a protein
digest. The MultiTag software reveals proteins to which multiple
fragmented peptides are matched in an error-tolerant fashion and
computes the statistical significance of the hits to discriminate
true hits from false positives.

The first step of the analysis is the construction of peptide
sequence tags based on raw mass spectra (Figure 2). Sequence
tags are typically called from the high m/z region of tandem mass
spectra of tryptic peptides, which are dominated by abundant
y-ions and partial interpretation of the spectrum is straightforward.
Sequence tags were assembled for as many fragmented tryptic
peptides as possible and were used for searching a database in a
stringent fashion (matching regions 1, 2, and 3) and error-tolerant
fashion: a search tolerating a mismatch of the C-terminal mass
(matching regions 1 and 2), a search tolerating a mismatch of
the N-terminal mass (matching regions 2 and 3), and searches
tolerating one mismatch in the amino acid sequence (matching
regions 1 and 3). The hits were additionally encoded by the mass
of the precursor ion and by the abbreviated matching region (NC,
N, C, or E, respectively) in the sequence tag. Importantly, matches
of retrieved sequences to corresponding tandem mass spectra
were not further inspected, and the redundant hits (matching the
same peptide sequence in another database entry, or in another
search) were not removed. The full list of hits was then imported
to the MultiTag program. The software identified multiple hits
originating from the same protein entry, eliminated redundant hits
to the same peptide in the same entry and assigned the
significance to all matches by computing an estimate of the
probability that such a combination of tags may hit a protein entry
at random.

Calculation of E Values. The major problem of database
searching with multiple sequence tags is the need to identify hits
corresponding to truly homologous proteins in the large pool of
randomly matching proteins produced in multiple degenerate
searches, and therefore, the evaluation of statistical significance
of hits is ultimately required. The classic way to interpret the
results of a database search in the statistical framework is to assign
an E value to each hit resulting from the search. E values
represent the expected number of better or equally good matches
found in a database at random. In the case of the MultiTag search,
a database search hit is a protein sequence, which matches some
sequence tags in a degenerate or a nondegenerate manner. E
values here give the expected number of sequences from a
random database that would match the same combination of tags
with the same level of degeneracy or even a more specific (less
likely) combination of tags. The combination of tags can be more
specific as a result of either a higher number of tags matched or
a lower degeneracy of the matches. To compute E values, we first
have to determine the probability that a given tag with a given
type of degeneracy would match a random amino acid sequence.
The probability that a given combination of tags would match a
random sequence can then be computed as a product of the
probabilities corresponding to individual matches. Further, we will
need to find the probability that any possible combination of tags
more specific (less likely) than a given combination would match
a random sequence. Finally, the E value would be given by
multiplication of the latter probability to the total number of
database sequences. Below, we present the detailed consideration
of each of those steps.

Let us consider a sequence tag, which is represented by an
N-terminal mass mN, three amino acids, a1, a2, and a3, and
C-terminal mass mC. The probability that a random tryptic peptide
would match this tag in a nondegenerate manner would be given
as a product of the three following probabilities: First, the
probability that the random tryptic peptide has an N-terminal
fragment of any length, whose mass lies in the interval (mN -
∆m, mN + ∆m), where ∆m is mass tolerance of the instrument.
Second, the probability that this fragment of random peptide has
amino acids a1, a2, and a3. This is simply given by the product
f(a1)f(a2)f(a3), where f(ai) denotes frequency of amino acid ai. And
third, the probability that the mass of the random peptide fragment
between these amino acids and the C-terminus would be between
mC - ∆m and mC + ∆m.

Figure 1. Partial amino acid sequences for human and alligator alcohol dehydrogenases (75% identity) are aligned. Regions alignable by
error-tolerant sequence tags between the two sequences are highlighted in gray. These regions are theoretical tryptic peptides over six amino
acids in length with more than three conserved amino acids from the N-terminus or more than four conserved amino acids from the C-terminus.
Tryptic cleavage sites designated above are shared between both sequences. Tryptic cleavage sites not at the same point on the sequences
are not designated by spaces; cleavage sites do not occur in the gray regions. Accession numbers: human, P00325; alligator, AAB28120. The
sequences were aligned using the Clustal X program.
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To derive probabilities corresponding to mN and mC, we would
regard the mass of a random tryptic peptide as being a result of
a random process. We imagine that the sequence of the random
tryptic peptide was constructed by a random generator, which
consequently generates amino acids, one at a time, and the
probability that the amino acid next in the sequence will be ai is
given by its frequency f(ai). Obviously, at each moment of time,
the generator can produce a trypsin cleavage site (K or R residue)
with the probability q ) f(K) + f(R) and thus stops the process.
The mass, M, of the random tryptic peptide can be regarded as
an accumulated sum of masses of randomly generated amino
acids.

In probability theory, random values represented as successive
sums of positive identically distributed variables as in eq 1 are
called a renewal process.18 Obviously, masses of randomly
generated amino acids obey the probability distribution deter-
mined by amino acid frequencies so that the probability p(m) that
the random mass would be exactly m is given by combined
frequency of amino acids of mass m. Then, the distribution of
the mass accumulated after n + 1 step, that is, the probability

that the peptide fragment of length n + 1 would have its mass
smaller than t can be computed via successive convolutions.

Summation here is carried over all values of amino acid masses.
Multiplication to (1 - q) is needed to take into account that the
process survived the (n + 1)-th step, that is, the tryptic peptide,
has more amino acids than n + 1.

The distribution of the total mass of the tryptic peptide, that
is, the probability that the peptide’s total mass would not exceed
t is given by allowing for all possible lengths of the peptide,

which implies that the probability that the peptide’s mass would
be in the interval from m - ∆m to m + ∆m is

Although not intuitively obvious, this formula holds both for
the whole mass of the peptide and for any of its fragments between
a fixed amino acid position and the cleavage site. Indeed, if we

(18) Feller, W. An Introduction to Probability Theory and Its Applications; John
Wiley & Sons: New York, London, Sydney, 1966.

Figure 2. The MultiTag approach consists of constructing sequence tags from peptide tandem mass spectra, error-tolerant database searches,
and sorting and calculation of the significance of multiple error-tolerant sequence tag alignments by the MultiTag software. Panel 1 shows a
tandem mass spectrum of a low-abundance peptide with an overlaid sequence tag. Panel 2 shows one complete and three error-tolerant sequence
tag database searches, which is done for each MS/MS spectrum and corresponding sequence tag. Panel 3 shows the combined list of search
results (most of the 8000 entry list is not shown) from all spectra and all searches in the analysis of a single sample. Tag Mass column indicates
the tag’s parent mass followed by an NC for search results with complete tags, an N for searches with tag regions 1 and 2, an E for searches
with tags with one amino acid error, or a C for searches with tag regions 2 and 3; Sequence column is the retrieved sequence found from the
database search; Mass column indicates the protein’s total mass in kDa from which the peptide originated; DB Accession, the proteins accession
number; Protein name; Species. Panel 4 shows the MultiTag output. Tag Mass column lists the tag-search code for the tags aligned; Sequence
lists all of the full peptide sequences error-tolerantly aligned; Mass-Species, same as Panel 3; E values, for the probability of the alignment of
the group of sorted sequence tags. Additional column Predicted Counts reflecting the number of expected random matches of a given combination
of tags is not provided here for the sake of presentation clarity.

Fn+1(t) ) (1 - q)∑
i

Fn(t - mi)p(mi) (2)

F(t) ) q∑
n)0

∞

Fn(t) (3)

P(m, ∆m) ) F(m + ∆m) - F(m - ∆m) (4)

M ) M1 + M2 + M3 + ... (1)
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further consider our analogy with the renewal process, it will retain
its properties regardless of the point we consider the process
started (the process has no memory). Therefore, after the position
of the sequence tag on the peptide sequence is fixed through
matching one mass and the short sequence stretch, probability
that the second mass would also match is given by eq 4.

Now consider matching of the sequence tag as a sequence of
three consecutive independent events, namely, match of the first
mass, match of the short sequence stretch, and the following
match of the second mass. Although the consideration is obviously
symmetric with regard to N- and C-termini of the peptide, without
loss of generality, we would assume that the N-terminal mass is
the first mass to match. The probability that the mass of any
N-terminal fragment of the peptide would be in the interval (mN

- ∆m, mN + ∆m) is given by

or

We introduced a multiplier 1/q because, in this case, the process
survives the step with this mass; i.e., all peptides with arbitrary
lengths with N-terminal parts matching the mass would satisfy
the condition. We note that eq 5 holds only if the mass tolerance
of the instrument is lower than any of the amino acid masses.
Otherwise, it corresponds to the expectation and not to the
probability.

Since the probability of the nondegenerate match of the
sequence tag would be a product of probabilities of the N-terminal
mass match (which importantly fixes the position of the tag along
the peptide), sequence stretch match, and the C-terminal mass
match, it will be expressed as

Additional multiplier 1/(1 - q) simply reflects the fact that we do
not consider zero-length tryptic peptides, allowed by the model if
the cleavage site comes at the first step. Therefore, we work only
with 1/(1 - q) fraction of realistic peptides.

Examples of probabilities for degenerate matches are given
by

and

As the next step, we compute the probability that a random
protein sequence containing K tryptic peptides would match
multiple sequence tags, taking into account the tags being
matched and the type of degeneracy of the match. For in-
stance, if we had three sequence tags and the random sequence
matched simultaneously sequence tag 1 with an error in the
C-terminal mass, sequence tag 2 with an error in the N-ter-
minal mass and sequence tag 3 with a mismatch at the second
identified amino acid, the probability of the event would be given
by eq 8.

This example shows how to compute the probability that a
random amino acid protein sequence would match an arbitrary
combination of sequence tags.

To calculate E values, we should first compute the probability
that any combination of tags would match a random amino acid
sequence, which is equally or more specific than the combination
observed. In other words, we will need to sum up probabilities
(eq 8) of all possible matches that do not exceed the probability
of the actual database hit. It is definitely too demanding compu-
tationally to directly enumerate all less likely combinations of tags.
However, it appears to be much easier to enumerate all combina-
tions that are, in contrast, more likely to happen because they
mostly involve matches with a very few tags. Therefore, we
compute the probability that a random sequence would produce
a less specific match than the actual hit (taking care of possible
statistical dependence of various combinations of tags) and
subtract the result from 1. The E value is then computed by
multiplying the result to the database size.

Series of computational simulations have been carried out to
validate the computation of E values described above (data not
shown).

Software implementation of MultiTag uses precomputed dis-
tribution function F(t). The software imports sequence tags in the
conventional format (mc)a1 ... an(mn)12 and peptide mass, and
computes probabilities for each tag to match a random tryptic
peptide. Further, the software imports a full list of hits produced
by multiple degenerate and nondegenerate sequence tag searches
and identifies hits corresponding to the same protein. For each
hit, MultiTag first computes the probability of the match (similarly
to eq 8), then it identifies all tag combinations giving the same or
higher probability, and on the basis of this information, assigns
an E value to the hit. At the final step, MultiTag sorts all hits
according to E values.

Specificity, Performance, and Limitations of Error-Toler-
ant MultiTag Searching. MultiTag aligns multiple partial and
complete sequence tags to increase the coverage of a database
sequence from available tandem mass spectrometry data to raise
the significance and lower the E value of identifications. We used
sequence tags from the identification of DNA polymerase (Table
1) to perform alignments with MultiTag to demonstrate factors
that contribute to final E values (Table 2). High E values are given
for “poor” quality tags that have short mass lengths for tag regions
1 and 3 and designate common amino acids with a high frequency

Q(mN, ∆m) ) 1
q
[F(mN + ∆m) - F(mN - ∆m)]

Q(mN, ∆m) ) 1
q
P(mN, ∆m) (5)

Pnondegenerate ) 1
q(1 - q)

P(mN, ∆m)f(a1)f(a2)f(a3)P(mC, ∆m)
(6)

PN-terminal )

1
q(1 - q)

[1 - P(mN, ∆m)]f(a1)f(a2)f(a3)P(mC, ∆m)

Psecond residue )

1
q(1 - q)

P(mN, ∆m)f(a1)[1 - f(a2)]f(a3)P(mC, ∆m) (7)

P ) (1 - e-K‚P1(m1N)‚f(a11)‚f(a12)‚f(a13)‚(1-P1(m1C)))(1 -

e-K(1-P2(m2N))‚f(a21)‚f(a22)‚f(a23)‚P2(m2C))(1 -

e-K‚P3(m3N)‚f(a31)‚(1-f(a32))f(a33)‚P3(m3C))
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in proteins, that is, leucine. Lower E values are given for
uncommon amino acids such as tryptophan, for tags with more
amino acids in the sequence stretch and for tags covering a longer
amino acid sequence by the “lock” masses in regions 1 and 3.
The probability that a combination of partial sequence tags will
match a single database entry is lower than if an individual tag is
matched, with an increasing significance as more partial sequence
tags are aligned. Two partial sequence tags might not be
significant enough for a confident identification at any practical
mass accuracy, depending on the character of the tags. However,
the alignment of three or more partial sequence tags lowers E
values to the range of 1 × 10-6 to 1 × 10-9, even at 0.1 Da mass
accuracy, enabling confident protein identification. Sequence tags

assembled with narrower mass tolerance increase the specificity
of database searching and lower the E values of hits. As in the
case of conventional database sequence-similarity searches, speci-
ficity of the MultiTag search decreases with the growing size of
the database.

In the case of analysis of protein mixtures, many sequence
tags from a MultiTag query are not expected to match any single
protein sequence in a database, even if it is a true homologue of
one of the proteins present in the mixture. Therefore, we estimated
the robustness of MultiTag identification with respect to the
number of irrelevant tags in the query. Simple simulation on a
database with random sequences (data not shown) suggested that
the dependence of E values on the full number of tags in the query

Table 1. Identification of Xenopus Proteins by MultiTaga

MultiTag protein
identifications tags submitted mass

matching
tags

MS BLAST
identifications

MS BLAST
alignments

isoleucyl-tRNA synthetase (371.24)VTY(734.42) 846.5 (371.24)VTY(734.42) no identification none
human P41252 (637.34)VL(849.49) 935.51
E value: 2.73 × 10-5 (587.36)VSQ(901.52) 1047.55 (587.36)VSQ

(488.34)LEL(843.55) 1099.56
E value of top (602.42)EQ(859.53) 1134.64

false positive: 0.15 (979.62)DVS(1280.74) 1408.76 DVS(1280.74)
(1166.60)DLL(1507.80) 1619.81
(1363.59)VV(1561.73) 1918.98
(985.50)NT(1200.59) 2329.25

glutamyl-prolyl-tRNA synthetase (492.31)TY(756.42) 902.49 (492.31)TY no identification none
human XP_001958 (559.31)QAS(845.44) 942.03
E value: 7.14 × 10-7 (559.33)QVS(873.49) 971.57

(545.27)LWT(945.48) 1058.58
E value of top (705.35)LE(947.47) 1192.62

false positive: 0.52 (626.40)LLDE(1096.64) 1357.67
(1177.60)LLA(1474.81) 1544.87 (1177.60)LLA(1474.81)
(926.54)FSLTDT(1590.84) 1688.94
(561.34)AVEP(957.54) 1711.92 (561.34)AVEP

DNA polymerase delta (401.30)PVP(694.48) 750.5 DNA polymerase delta
human S35455 (486.38)SE(702.45) 772.49 human P28340
E value: 8.14 × 10-7 (441.21)PF(685.33) 797.42

(456.31)FT(704.42) 816.48 (456.31)?T(704.42) LTFALPR
E value of top (345.25)QEL(715.43) 827.49 (345.25)QEL(715.43)

false positive: 0.35 (385.28)LY(661.42) 846.49 (385.28)LY(661.42) DAYLPLR
(421.29)EAW(807.44) 877.48
(583.32)LGG(810.44) 908.5 LGG(810.44) VGGLFAFAK
(543.30)LNL(883.51) 995.6
(470.29)FVL(829.51) 1071.58
(533.32)LPE(872.50) 1131.65 LPE(872.50)
(889.45)QS(1104.54) 1190.56

Hsp70/Hsp90 organizing protein (494.26)DSLL(922.48) 992.53 stress-induced
Chinese hamster AAB94760 (408.23)FQLA(867.48) 995.51 phosphoprotein STI1
E value: 7.82 × 10-9 (550.27)ELL(905.48) 1017.56 (550.27)E?L(905.48) Xenopus AAM77586

(585.40)GVDF(1003.59) 1115.67 (585.40)G?DF(1003.59) LFDVGLLALR
E value of top (674.38)NGAS(1003.52) 1186.65 NGAS(1003.52) ALSAGNLD

false positive: 0.59 (416.24)ELL(771.45) 1350.72 (416.24)ELL
(856.51)NLYA(1317.73) 1415.8 VAYLNPD

heat shock protein 90-beta (385.26)FLL(758.50) 828.53 (385.26)FLL(758.50) heat shock protein 90-beta ALLFLPR
zebrafish O57521 (567.28)Y(730.35) 876.43 (567.28)Y(730.35) salmon AF135117 (nucleotide) FYDGFTK
E value: 2.60 × 10-9 (401.29)ES(617.37) 729.45 (401.29)ES(617.37) LSELLR

(708.37)NAV(992.52) 1234.64 (708.37)N?V(992.52)
E value of top

false positive: 0.2
(716.34)NLL(1056.55) 1241.69 NLL(1056.55)

LTPDQPVV

a For each sample, sequence tags were constructed from multiple MS/MS spectra from the analysis of a single in-gel digest (tags submitted)
and error-tolerantly searched against a protein database (resulting list of entries not shown). The mass column contains the mass of the intact
peptide for each sequence tag. Results were sorted by MultiTag. Groups of matching partial sequence tags resulted (matching tags). E values for
the group of partial sequence tags were calculated by the MultiTag software (first column in bold). The final MultiTag report gave a list of database
entries with diminishing E values (data not shown). E values are cited (column 1, top false positive) for the first database entry in the list to not
correspond by annotated function (i.e., HSP 90) to the most significant hit. Protein identifications made by MS BLAST are found in the column MS
BLAST identifications, and peptide sequences aligned are in MS BLAST alignments.
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is nonlinear, and its strength is dependent on the number of full
and partial tags matched to the protein sequence.

We, therefore, considered a highly simplified scenario with a
query of N tags that are having identical specificity (only one type
of match is allowed) and n tags out of total N tags match the
protein in a database. Let us estimate an increment of the E value
if the query size would be increased up to MN tags without any
new matching tags added. A reasonable low limit estimate could
be presented by a ratio of binomial coefficients Cn

MN/Cn
N For

example, with 5 tags matched, expanding the query from 5 to 10
tags would increase the E value by 252 times, which is in good
agreement with example calculations in Table 2. However,
increasing the number of tags under the same scenario from 20
to 40 would increase the E value by only 42 times.

For large queries, Cn
MN/Cn

N ∼ Mn. Let us consider the data
from Table 1 as a practical example to evaluate the performance
of MultiTag in “shotgun-type” identification of unknown proteins
from unseparated mixtures Although these proteins were identi-
fied from Coomassie stained individual bands, let us consider the
case in which the same analysis would have been performed from
mixtures of, say, 10 unknown proteins, each producing 10 peptides
upon their tryptic digestion, so that altogether 100 tryptic peptides
would have been sequenced in each case, with sequence tags
determined and submitted to MultiTag search. E values of the
hits in Table 1 are in the range of 1 × 10-5 to 1 × 10-9 for about
10 tags submitted, with 3-5 tags matched. If the same tags would
be matched to the same proteins in the same way, but from the
queries comprising yet another 90 nonmatching tags, we would
observe their E values increased by 3 orders of magnitude in cases
where three tags matched and by 5 orders of magnitude in the
case of 5 tags matched. Despite remarkable drop in statistical
confidence, these hits would still remain significant. However, it
is also apparent that weaker hits would be pushed into a “twilight
zone” of marginal significance.

Although we did not observe this problem in practice, we
propose the following strategy for evaluating borderline hits. For
every hit, in additional to E values, MultiTag reports the expected
number of random matches of the same combination of tags in
the same way (termed predicted counts, PredCount) (Figure 2).
PredCount values reflect the specificity of matches, and their
ranking order is the same as the ranking order based on E values.
However, PredCount does not reflect the expected number of
false-positives when the entire query is searched against a
database. Contrary to E values, PredCount values very weakly
depend on the number of tags in the query. Therefore, in cases
when most of the tags in the query were not matched, hits with
low PredCount values (lower than 1 × 10-4) deserve further
analysis by manual inspection of the original spectra (as described
below), even if their E values have only marginal significance.

An intrinsic problem to all statistical approaches to homology
searches relying on average amino acid frequencies is posed by
low complexity regions and other proteins or protein regions with
amino acid frequencies, which strongly deviate from the database
average.19 If a MultiTag identification results in a peptide from a
low complexity region or a peptide of obviously special amino acid
composition, these identifications have to be interpreted with
caution, since the underlying statistical model does not account
for bias in amino acid composition.

An advantage of MultiTag over MS BLAST, besides its ability
to represent noisy and low-intensity spectra, is that peptide
sequences retrieved by sequence tag searches can be overlaid
on fragment ion spectra, allowing one to determine whether the
retrieved sequence is the correct sequence. This is less direct
with MS BLAST or FASTS. Even though relatively weak matches
can be evaluated in this way, the MultiTag approach is suited for

(19) Baudouin-Cornu, P.; Surdin-Kerjan, Y.; Marliere, P.; Thomas, D. Science
2001, 293, 297-300.

Table 2. E Values Are Dependent on Amino Acids in the Tag, Number of Tags, Mass Accuracy, and Database Sizea

E valuesb

E values PredCount
massc

sequence tags in the
identification of

DNA polymerase 1.0 Dad 0.5 Dad 0.1 Dad 0.1 Dad
1 600 000

DB entriese
200 000

DB entriese

1 816.48 (456.31)?T(704.42) 6.06 × 103 2.73 × 103 2.56 × 103 1.76 × 102 5.11 × 103 6.39 × 102

2 827.49 (345.25)QEL(715.43) 1.96 × 102 8.83 × 101 8.34 × 101 1.23 1.67 × 102 2.09 × 101

3 846.49 (385.28)LY(661.42) 2.61 × 102 1.30 × 102 1.29 × 102 2.66 2.58 × 102 3.22 × 101

4 908.50 LGG(810.44) 8.36 × 103 6.53 × 103 6.92 × 103 9.81 × 102 1.38 × 104 1.73 × 103

5 1131.65 LPE(872.50) 1.73 × 103 1.01 × 103 9.52 × 102 7.06 × 101 1.90 × 103 2.38 × 102

6 LGG(810.44) + LPE(872.50) 5.08 × 101 2.71 × 101 2.51 × 101 9.23 × 10-2 5.16 × 101 6.45
7 LGG(810.44) + LPE(872.50) +

(456.31)?T(704.42)
1.24 × 10-1 3.09 × 10-2 2.86 × 10-2 2.17 × 10-5 5.72 × 10-2 7.15 × 10-3

8 LGG(810.44) + LPE(872.50) +
(456.31)?T(704.42) +
(385.28)LY(661.42)

1.97 × 10-5 3.23 × 10-6 3.01 × 10-6 7.68 × 10-11 6.02 × 10-6 7.53 × 10-7

9 LGG(810.44) + LPE(872.50) +
(456.31)?T(704.42) +
(385.28)LY(661.42) +
(345.25)QEL(715.43)

1.49 × 10-6 8.60 × 10-7 8.14× 10-7 1.26 × 10-16 1.63 × 10-6 2.03 × 10-7

10 LGG(810.44) + LPE(872.50) +
(456.31)?T(704.42) +
(385.28)LY(661.42) +
(345.25)QEL(715.43)

3.64 × 10-9 4.17 × 10-9 3.55 × 10-9 1.31 × 10-16 7.11 × 10-9 8.88 × 10-10

a The E value in bold is shown in Table 1. In the calculation of E values for row 1-9, all tags submitted were included from Table 1. In row 10,
only the tags that matched the database entry were included in the list of tags submitted for MultiTag calculations. Da corresponds to mass
accuracy (in Da) used in database searches and input into MultiTag for calculations of E values. b 800 000 and 200 000 database entries correspond
approximately to the NCBI nonredundant (nrdb) and SwissProt protein databases, respectively. c Mass of the intact peptide corresponding to the
sequence tag in column 3. d 800 000 database entries. e Mass accuracy of 0.1 Da.
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a high-throughput setting, since manual evaluation is required only
for easily recognizable borderline hits.

MultiTag, as well as any sequence-similarity searching method,
is prone to errors if the analyzed protein contains low-complexity
sequence regions, such as collagen, glycine-rich cell wall proteins,
and silk proteins. Because MultiTag recognizes only a few central
amino acids accurately, it would be possible that multiple sequence
tags to different regions of the same proteins could not be
distinguished, thus diminishing the overall score.

Identification of Proteins from Xenopus laevis by Mul-
tiTag Searching. We applied the MultiTag approach to the
identification of proteins isolated from the African clawed frog X.
laevis in ongoing collaboration projects. X. laevis is an important
model organism for the study of the cell cycle (reviewed in ref
20), DNA replication,21 and developmental biology,22 among other
biological processes. Currently, sequences of fewer than 7000
Xenopus proteins are present in a publicly available database,
despite a public initiative in EST sequencing (fewer than 221 000
largely unannotated ESTs are available, August 16, 2002, both
figures from http://www.ncbi.nlm.nih.gov/). Taken together,
current database resources do not provide an adequate coverage
of Xenopus’ large 3070-megabase pseudotetraploid genome.23 In-
gel digests of Xenopus proteins were analyzed by PMF and by

nanoelectrospray tandem mass spectrometry. Sequence-similarity
searching methods were applied for protein identification, because
Mascot database searching with peptide mass fingerprints and
with lists of fragment masses derived from uninterpreted tandem
mass spectra were unable to identify proteins by stringent
matching. Two methods of sequence-similarity searching were
applied in parallel to the same set of MS/MS data. Peptide
sequence proposals obtained by automated de novo interpre-
tation of tandem mass spectra were submitted to MS BLAST
searching.24 In parallel, peptide sequence tags were assembled
via partial manual interpretation of spectra (Figure 3), followed
by error-tolerant database searching and sorting and evaluating
the results by MultiTag, as described above (Table 1). From
five attempted unknown proteins, MS BLAST identified three;
however, all five were identified by MultiTag. Importantly, in
three cases, both MultiTag and MS BLAST identified homolo-
gous sequences from the same organism or from different
species, providing an independent validation of the MultiTag
approach.

These data demonstrate that MultiTag can outperform the
more generic sequence-similarity searching tool, MS BLAST,
when de novo sequence prediction software is unable to produce
meaningful peptide sequences from noisy or low intensity spectra.
On the other hand, MultiTag successfully identified the proteins,
because sequence tags are easily assembled from tandem mass
spectra in which complete amino acid sequence prediction is

(20) Nurse, P. Cell 2000, 100, 71-78.
(21) Herrick, J.; Stanislawski, P.; Hyrien, O.; Bensimon, A. J. Mol. Biol. 2000,

300, 1133-1142.
(22) De Robertis, E. M.; Larrain, J.; Oelgeschlager, M.; Wessely, O. Nat. Rev.

Genet. 2000, 1, 171-181.
(23) Graf, J. D.; Kobel, H. R. Methods Cell. Biol. 1991, 36, 19-34.

(24) Shevchenko, A.; Sunyaev, S.; Liska, A.; Bork, P.; Shevchenko, A. Methods
Mol. Biol. 2002, 211, 221-234.

Figure 3. Xenopus proteins were in-gel digested and analyzed by nanoelectrospray tandem mass spectrometry. MS spectrum peaks labeled
with an asterisk were fragmented, and peptide sequence tags were assembled from MS/MS spectra (inset). Abundant y-ions above the multiply
charged precursor in MS/MS spectra allow direct determination of the partial amino acid sequence of a peptide and assembling a sequence tag.
The resulting sequence tag from the MS/MS spectrum shown is (587.36)VSQ(901.52), peptide mass 1047.55 Peaks in the MS spectrum labeled
with T are autolysis products of trypsin. All of the determined sequence tags from the analysis of this sample are presented in Table 1. The
protein was identified as isoleucyl-tRNA synthetase.
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impossible (Figure 2). The results suggest that three or more
error-tolerantly matching sequence tags may unequivocally iden-
tify a homologous protein (Table 2), despite none of the sequenced
peptides exactly matching the corresponding sequence from a
database entry and sequence stretches of less than four amino
acid residues being determined. Both MultiTag and MS BLAST
were able to identify the proteins not identified by Mascot, be-
cause they could tolerate amino acid substitutions, resulting in
an offset of the peptide’s total mass and many of the fragment
masses.

Homologue Identification Specificity of MultiTag Search-
ing. By its algorithm, MultiTag is a less generic sequence-
similarity searching tool, compared to MS BLAST and FASTS,
since it requires identical (although short) stretches of peptide
sequence for protein identification. We roughly estimated the
scope of MultiTag identification from the bottom, assuming the
most unfavorable model when identical amino acids between
proteins are distributed uniformly along the sequence. According
to our experience and Table 2, three partial matches usually
produce a statistically significant hit. We have estimated the
chance to obtain three partial matches and its dependence on the
overall identity of the complete query sequence and the database
sequence. A very simple calculation assumes that the probability
that a single amino acid would match between the query and the
database sequence is equal to the overall sequence identity and
is independent of the sequence region and amino acid type.
Assuming further a query of 10 identical tags, we estimated that
the MultiTag method is able to identify almost all homologues at
the level of 80% sequence identity, 75% of homologues at the level
of 75% sequence identity, but only about 45% of homologues at
the level of 70% sequence identity. Obviously, MultiTag cannot
achieve the specificity of the methods using the knowledge of
longer sequence parts. According to simulation results, sequence-
based methods, such as MS BLAST and FASTS, are able to detect
∼50% of homologous sequences at the sequence identity level of
∼50%.7 According to our lower limit estimate, MultiTag would
require 71% sequence identity (in reality, less) to reach the same
efficiency of identifications. However, simulations with MS BLAST
and FASTS were performed assuming all sequence predictions
are correct, which is rarely the case. Therefore, the advantage of
using MultiTag is the ability to identify sequence similarities at a
reasonable level with high robustness with respect to the quality
of the raw data and independently of the quality of automated de
novo sequence prediction techniques.

CONCLUSION AND PERSPECTIVES
The MultiTag approach addresses an issue of growing promi-

nence among the proteomics community: universal statistical
evaluation of protein identifications.25 It is a goal of the proteomics
community to set a threshold for protein identifications in high-
throughput settings so that a protein confidently identified in one
laboratory will be confidently identified by a similar method in
another institution. Consequently, the statistics of MultiTag takes
a step in this direction and determines the significance of sequence
tag alignments in a manner that can be adopted as a universal
standard evaluation of sequence tag identifications without the
need for retrospective inspection. Because the MultiTag approach
could be applied to the mining of EST and genomic databases,
the statistics will require alteration as a result of the size and
nature of these searches. The independent statistics of MultiTag
lends the method to a wide application in high-throughput
proteomics.

With further software developments, it will be possible to
completely automate the MultiTag method for high-throughput
proteomics of organisms with unsequenced genomes or the analy-
sis of highly modified proteins from organisms with sequenced
genomes. Currently, the ability to call sequence tags automatically
is available, and a scripted interface can be written to create lists
of sequence tags for spectra acquired from a complete LC-MS/
MS run. A corresponding scripted interface for database searching
can be written that can produce a complete list of encoded
retrieved database entries for submission to MultiTag for sorting
and significance calculation.

Following developments in automation, MultiTag will be a good
complementary method to de novo sequence prediction-based
methods, such as MS BLAST and FASTS, for sequence-similarity
protein identification in high-throughput settings, thus expanding
the repertoire of spectra interpretation and database mining tools
in the hands of mass spectrometrists. As sequence-similarity
methods develop, the proteomes of organisms with unsequenced
genomes will become more amenable for characterization, con-
tributing to the development of medicine, agriculture, and the
biological sciences in general.
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