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A B S T R A C T

Motivation: Analysing mixed DNA profiles is a common task in forensic genetics. Due to the complexity of the
data, such analysis is often performed using Markov Chain Monte Carlo (MCMC)-based genotyping algorithms.
These trade off precision against execution time. When default settings (including default chain lengths) are
used, as large as a 10-fold changes in inferred log-likelihood ratios (LR) are observed when the software is run
twice on the same case. So far, this uncertainty has been attributed to the stochasticity of MCMC algorithms.
Since LRs translate directly to strength of the evidence in a criminal trial, forensic laboratories desire LR with
small run-to-run variability.
Results: We present the use of a Hamiltonian Monte Carlo (HMC) algorithm that reduces run-to-run variability
in forensic DNA mixture deconvolution by around an order of magnitude without increased runtime. We
achieve this by enforcing strict convergence criteria. We show that the choice of convergence metric strongly
influences precision. We validate our method by reproducing previously published results for benchmark DNA
mixtures (MIX05, MIX13, and ProvedIt). We also present a complete software implementation of our algorithm
that is able to leverage GPU acceleration for the inference process. In the benchmark mixtures, on consumer-
grade hardware, the runtime is less than 7 min for 3 contributors, less than 35 min for 4 contributors, and
less than an hour for 5 contributors with one known contributor.
1. Introduction

Investigators present at a crime scene identify and collect the avail-
able physical evidence. As a part of this evidence, DNA samples con-
taining material from multiple contributors (i.e. mixed DNA samples) are
often collected. The resulting short tandem repeat data are occasionally
affected by stochastic events such as severe peak height imbalance,
drop-outs, and drop-ins [1], especially in case of low-template samples.
Manual analysis of the electropherograms (EPG) might be unreliable
and biased [2,3]. Therefore, laboratories routinely rely on validated
statistical software when analysing complex DNA mixtures [3].

The recommended metric [4] for reporting results of DNA mixture
analysis is the likelihood ratio (LR):

LR =
𝑃 (𝑉 |𝐻𝑝)
𝑃 (𝑉 |𝐻𝑑 )

=
∑

𝑗 𝑃 (𝑉 |𝑆𝑗 )𝑃 (𝑆𝑗 |𝐻𝑝)
∑

𝑗 𝑃 (𝑉 |𝑆𝑗 )𝑃 (𝑆𝑗 |𝐻𝑑 )
, (1)

where 𝑉 is the observed EPG, 𝑆𝑗 represents a genotype set—a list of
tuples denoting the allele designations of contributors. The summations

∗ Corresponding author at: Biotype GmbH, Dresden, 01109, Germany.
E-mail address: m.susik@biotype.de (M. Susik).

are over all possible genotype sets 𝑗. 𝐻𝑝 and 𝐻𝑑 are the hypotheses of
the prosecutor and the defendant respectively. A hypothesis assumes
inclusion of certain contributors (suspect, victim, etc.) in the mixture,
as well as the background allele frequencies of the populations the
contributors allegedly belong to. Usually, the difference between the
hypothesis of the prosecutor and the hypothesis of the defendant is
the inclusion of the suspect in the former. In the setting we consider,
the number of considered contributors is fixed beforehand. 𝑃 (𝑆𝑗 |𝐻𝑛)
can be estimated based on the background frequencies of the alleles
in the populations of interest for any hypothesis 𝐻𝑛, 𝑛 = {𝑝, 𝑑} [5].
Probabilistic genotyping (PG) refers to the set of statistical methods used
to compute LR for given EPG data.

In order to estimate 𝑃 (𝑉 |𝑆𝑗 ), assumptions about the underlying
data-generating process are made. These assumptions lead to a prob-
abilistic model 𝑃 (𝑉 |𝑀,𝑆𝑗 ) with latent variables 𝑀 . Models where
probability is estimated based on the heights of the EPG peaks are
called ‘‘fully continuous’’. Some of the main approaches used to infer
vailable online 11 July 2022
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such models are: finding the most likely set of parameters by maximum
likelihood estimation [6,7] or estimating the expression [6,8,9]:

𝑃 (𝑉 |𝑆𝑗 ) = ∫𝑀
𝑃 (𝑉 |𝑚,𝑆𝑗 )𝑓 (𝑚)d𝑚 (2)

ith the prior probability density function (PDF) of the parameters
(⋅). In an ideal scenario, LR is independent of any choices made by

he laboratory technician and of any random confounding factors. In
ractice, however, LR depends on the variation in the samples from
he crime scene, stochastic events occurring during PCR amplification,
llele frequency sampling, parameter settings in the data-processing
oftware,1 hyper-parametrisation of the PG software, etc. [10,11]. Still,
ven when fixing all of these influences across identical runs on the
ame EPG data, residual run-to-run variability remains [8,9,12–14].

So far, this run-to-run variability has been attributed to the inherent
tochasticity of the Markov Chain Monte Carlo (MCMC) methods used
o estimate mixture model parameters [14,15]. However, as we show
ere, the apparent run-to-run variability is more likely caused by the
hoice of convergence criteria used in the MCMC sampler. This is sup-
orted by our results demonstrating that run-to-run variability can be
educed when using an MCMC method with strict convergence criteria.
or this, we formulate a probabilistic model of DNA mixture deconvolu-
ion that only has continuous model parameters, marginalising over the
iscrete dimensions (genotype sets). While such marginalised models
an be properly convergence-controlled, they are generally more expen-
ive to compute. As we show here, however, the intrinsic structure of
he posterior probability distribution can be exploited by Hamiltonian
onte Carlo (HMC), maintaining the runtimes of conventional MCMC

olutions. We show that the strict convergence criteria afforded by our
ethod significantly reduce run-to-run variability. We further present a
eduplication system that efficiently handles the combinatorial growth
n the number of genotype sets with increasing numbers of contributors.

.1. Precision of DNA mixture deconvolution

We define precision of DNA mixture deconvolution as the inverse
ariance between results of runs with identical hyper-parametrisation
n the same EPG data for the same hypotheses. Precision has to be
onsidered in addition to the accuracy of a PG system [10], as also the
uthors of PG algorithms note [16]:

‘‘The argument is that the existence of variability [across PG runs —
our note] raises doubts about whether any of the results should be
accepted.’’ [16]

ourts are often unaware of run-to-run variability, as expert witnesses
sually report a single LR number [17]. The issue is even more severe
hen the verbal scale for reporting LRs is used [18,19]. The European
etwork of Forensic Science Institutes [19] suggest a scale that defines
n LR between 100 and 1000 as ‘‘moderately strong support’’ and LR
etween 1000 and 10 000 as ‘‘strong support’’. Let us assume that we
se a PG system, which, for the given case, outputs results from a
ormal distribution: log10 LR ∼  (2.3, 0.5). A single run of the software
ould give ‘‘strong support’’ in ≈ 73% of cases. A technique that reports

onfidence intervals [5,20], however, would provide the conservative
nswer of ‘‘moderately strong support’’. This highlights the importance
f high precision (i.e. low variance) in PG results.

The precision of available commercial solutions has been quantified
n several studies [8,9,12–14]. A standard deviation of LR of > 104 has
een reported between identical runs on a three-contributor mixture
sample ‘3-2’) when the TrueAllele® software was used [12]. Results
btained with the STRmix™ software displayed 10-fold LR difference
cross runs [13,14]. In order to increase precision, it has been recom-
ended to increase the number of MCMC iterations, at the expense of
larger computational runtime [13,21].

1 E.g. GeneMapper™.
2

e

To determine when to terminate an MCMC sampler in Bayesian
inference, convergence criteria are used [22]. The most popular cri-
terion is the univariate Gelman–Rubin (GR) diagnostic [22,23], which
compares pooled and within-chain variances of samples to indicate
possible convergence. For given model parameters, this diagnostic has
a value close to 1 if the samples from different chains result in sim-
ilar estimates for the marginal distribution. Since actual convergence
cannot be quantified as long as the true posterior distribution is not
known, convergence criteria measure the stability of samples, and the
term ‘‘convergence’’ in MCMC is always relative to the chosen metric.

Some of the available PG software solutions provide users with
convergence diagnostics. STRmix™ [9] for example calculates the ratio
of pooled and within-chain variances of the likelihood of the model
(personal communication, Kevin Cheng, Institute of Environmental Sci-
ence and Research, Ltd., Auckland). GenoProof Mixture [24] reports the
univariate GRs for the continuous parameters. By default, both software
solutions use a predefined constant number of post burn-in samples
and then report the value of the diagnostic to the user. If the desired
threshold (by default 1.2 in STRmix™, 1.05 in GenoProof Mixture) of
the convergence diagnostic has not been achieved, the software offers
an option to run additional iterations. The default GR threshold should
be rather low. The authors of the diagnostic state [22]:

‘‘The condition of GR near 1 depends on the problem at hand; for
most examples, values below 1.1 are acceptable, but for a final
analysis in a critical problem, a higher level of precision may be
required.’’ [22]

Providing evidence in court should be considered a critical problem,
as the consequences of wrong or doubtful answers are significant [25].
Other scientists researching convergence diagnostics noted [26]:

‘‘We argue that a cutoff of GR ≤1.1 is much too high to yield
reasonable estimates of target quantities.’’ [26]

his seems even more important since the statistical models used in
oth of these software tools combine continuous (e.g. peak intensities)
nd discrete (e.g. genotype sets) dimensions. However, GR cannot
onitor convergence in discrete dimensions. It is therefore possible that

onvergence is deduced purely from the continuous parameters, while
he genotype set distributions may not have converged at all, offering

possible explanation for the large run-to-run variability observed
espite low GR thresholds. In our model, we avoid the issue of assessing
onvergence of genotype sets by marginalising them out (i.e., the
enotype set is not part of the MCMC sampling process).

.2. Trade-off with execution time

In forensic DNA mixture deconvolution, computational runtime is
f great importance, since:

• Laboratories might have to run software multiple times with
different hyper-parametrisations in order to check the robustness
of the results or to test hypotheses with different numbers of
contributors, different analytical thresholds, different priors, etc.

• Laboratories might want to quantify the precision of the results
over several identical replicates.

• Forensic laboratories are often working under time pressure,
e.g., if cases attract great media attention or laws limit detention
time without charges.

In addition to the efficiency of the software implementation, there
re multiple factors that influence the execution time, including the
umber of contributors, the number of alleles per locus, the techniques
sed to limit the number of considered genotype sets, the convergence
riteria, the choice of the optimisation problem (maximum likelihood
s. Bayesian inference), the specification of the model, the priors used,

tc.
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Fig. 1. Illustration of the present probabilistic genotyping model. Top left: the
observed peaks 𝑂𝑙

𝑎𝑟 at two selected loci from the green channel of the analysed mixture.
Centre left: We analyse the genotype set [(15,16),(14,Q)] for locus D3S1358 and
[(6,9),(7,9,3)] for locus TH01. The catch-all dropout allele 𝑄 denotes any dropped-out
peaks. The lines show the expected contributions for all alleles 𝑡𝑙𝑎𝑛𝑟. The function is
ecreasing within a locus due to degradation modelling. The TH01 locus was modelled
ith a larger amplification efficiency parameter than D3S1358. Bottom left: Expected
eaks 𝑥𝑙𝑎𝑟 are created by applying stutter ratios to 𝑡𝑙𝑎𝑛𝑟 for two contributors. In this
xample, we consider only backward stutter for illustration purposes. Composed peaks
i.e. those that consist of both allelic and stutter contributions) are 14 and 15 at
3S1358, and 6 at TH01. Top right: PDF of the log-normal model for peak 15 at
3S1358 as a function of the expected peak height. Centre right: dropout probability
s a function of expected peak height. Bottom right: drop-in probability as a function
f observed peak height. Peak 18 at D3S1358 is a drop-in, since it is observed but
ot expected in the considered genotype set. The dotted lines denote the analytical
hresholds.

In general, there is a trade-off between the precision and runtime.
ower runtimes can trivially be achieved by running a smaller number
f MCMC iterations, at the expense of precision. Achieving perfect
recision is theoretically possible, if runtime is not a priority, by
ntegrating over the latent variables (see Eq. (2)).

The model presented here integrates over the discrete dimensions,
.e., marginalises over genotype sets in order to be able to prop-
rly monitor convergence. Such a marginalisation imposes additional
omputational cost, and a proper estimation of the posterior requires
ell-suited computational methods. We render our method practically
pplicable by using a Hamiltonian Monte Carlo (HMC) sampler and by
ntroducing a deduplication system for genotype sets. Thanks to these
ontributions, we are able to use a strict GR threshold of 1.05 with
imilar or faster runtime than existing solutions.

. Materials and methods

We base our probabilistic genotyping model on the work by Taylor
t al. [9], due to the large number of studies that describe and evaluate
his model [e.g. 6,9,27–29]. The main assumptions in this model are the
ndependence of the loci data given the nuissance parameters and the
og-normal distribution of the ratio of the observed EPG peak heights to
he peak heights predicted by the generative model (called ‘‘expected’’
eak heights). The generative model consists of several steps, as il-
ustrated in Fig. 1: First, the expected contributions are computed for
ach genotype set from the considered set of parameters. Then, peak
3

stutter models are applied to predict expected peaks. The next step is
to calculate the standard deviation 𝜎 of the log-normal distribution.
Finally, the likelihood of the observed data given the parameters is
calculated as the product of the likelihoods of all peaks. The model
handles stochastic dropout and drop-in events.

We consider the posterior probability of parameters 𝑀 given the
evidence 𝑉

𝑃 (𝑀|𝑉 ) =
𝑃 (𝑉 |𝑀)𝑃 (𝑀)

𝑃 (𝑉 )
=
𝑃 (𝑀)

∑

𝑗 𝑃 (𝑉 |𝑀,𝑆𝑗 )𝑃 (𝑆𝑗 |𝑀)
𝑃 (𝑉 )

. (3)

𝑃 (𝑆𝑗 |𝑀) is assumed to be a flat prior. This assumption leads to geno-
ype weights that are independent from the person(s) of the interest. In
ayesian inference, evidence is usually neglected as it is too expensive
o compute and constant w.r.t. model parameters. We thus obtain the
nnormalised posterior

(𝑀|𝑉 ) ∝ 𝑃 (𝑀)
∑

𝑗
𝑃 (𝑉 |𝑀,𝑆𝑗 ) , (4)

hich we use for estimating 𝑃 (𝑉 |𝑆𝑗 ) (see Eq. (2)). We assume peak
eights to be conditionally independent given 𝑆𝑗 and 𝑀 , and alleles of
contributor in different loci to be independent from each other. To

rovide a mathematical formulation of the model, we denote:

• 𝑂𝑙𝑎𝑟: random variable of observed peak height at locus 𝑙, allele 𝑎,
replicate 𝑟;

• 𝑥𝑙𝑎𝑟: expected peak height at locus 𝑙, allele 𝑎, replicate 𝑟;
• 𝑓𝑋 : the PDF of a random variable 𝑋;
• 𝑄: the ‘‘catch-all’’ dropout allele [9];
• ℎ𝑙𝑟: the analytical threshold of the EPG for locus 𝑙 and replicate 𝑟;
•  (0, 𝑠2): a normal distribution with mean 0 and standard devia-

tion 𝑠;
• 𝑐𝜓 : the peak height variance parameter for peak type 𝜓 (e.g. stut-

ter).

The resulting model is a function 𝑥𝑙𝑎𝑟(𝑀,𝑆𝑗 ) of 𝑀 and 𝑆𝑗 . The
ikelihood of the observed EPG given parameters 𝑀 and a genotype
et 𝑆𝑗 is then:

𝑗
𝑃 (𝑉 |𝑀 = 𝑚,𝑆𝑗 ) =

∏

𝑙

∑

𝑗

∏

𝑟
𝑃 (𝑉𝑙,𝑟|𝑚,𝑆𝑗,𝑙) , (5)

here 𝑉𝑙,𝑟 denotes the available data at locus 𝑙 for replicate 𝑟, and 𝑆𝑗,𝑙
s the genotype set 𝑗 at locus 𝑙. The conditional probability is modelled
s:

(𝑉𝑙,𝑟|𝑚,𝑆𝑗,𝑙) =

(

(

∏

𝑏∈𝐵
𝑃
(

𝑂𝑙𝑏𝑟 ∣ 𝑥
𝑙
𝑏𝑟(𝑚,𝑆𝑗,𝑙), 𝑂

𝑙
𝑏𝑟 > 0

)

)

∏

𝑑∈𝐷
𝑃
(

dropout ∣ 𝑥𝑙𝑑𝑟(𝑚,𝑆𝑗,𝑙)
)

)

d𝑚 . (6)

he inner multiplications are performed over the set 𝐵 of observed
eaks and the set 𝐷 of hypothetical dropout peaks. This model for-
ulates separately the relative likelihood of observed peaks and the
robabilities of dropout events. In the following, we abbreviate the
otation for 𝑥𝑙𝑎𝑟(𝑚,𝑆𝑗,𝑙) to 𝑥𝑙𝑎𝑟.

The genotype set weights are calculated by:

(𝑉 |𝑆𝑗,𝑙 , 𝑙) ∝
∑

𝑚∈𝑀 ′
𝑃 (𝑚)

∏

𝑟
𝑃 (𝑉𝑙,𝑟|𝑚,𝑆𝑗,𝑙) , (7)

here 𝑀 ′ is the sample from the posterior.

.1. Observed peaks

In case a peak is observed (i.e. 𝑂𝑙𝑎𝑟 > 0) our model considers a
ompound distribution that combines sub-models for peaks that are
xpected (𝑓𝑍 ) and for drop-in events

(

𝑓(𝑂𝑙𝑎𝑟 ∣𝑥𝑙𝑎𝑟=0,𝑂𝑙𝑎𝑟>0
)

)

:

(

𝑂𝑙𝑎𝑟 ∣ 𝑥
𝑙
𝑎𝑟, 𝑂

𝑙
𝑎𝑟 > ℎ

𝑙
𝑟
)

∝

{

(1 − 𝑑rate)𝑓𝑍 , if 𝑥𝑙𝑎𝑟 > 0
( )

(8)

𝑑rate𝑓 𝑂𝑙𝑎𝑟 ∣𝑥𝑙𝑎𝑟=0,𝑂𝑙𝑎𝑟>ℎ𝑙𝑟

, otherwise .
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For the drop-in events, we use the model introduced by Euroformix [6]:

𝑥𝑙𝑎𝑟 = 0, 𝑂𝑙𝑎𝑟 > ℎ
𝑙
𝑟 ⟹ 𝑂𝑙𝑎𝑟 − ℎ

𝑙
𝑟 ∼ Exp(𝜆) . (9)

Two hyper-parameters based on the level of noise in negative controls
are required: the drop-in rate 𝑑rate and the 𝜆 of the exponential distri-
bution. For the expected peaks, we assume a log-normal distribution
following previous works [9]:

𝑍 = ln
𝑂𝑙𝑎𝑟
𝑥𝑙𝑎𝑟

∼  (0, 𝜎𝑙𝑎𝑟(𝐱)
2) . (10)

he standard deviation of this distribution depends on the components
f the expected peaks and their heights:

𝑙
𝑎𝑟(𝐱) =

1
𝑥𝑙𝑎𝑟

∑

𝜓∈𝛹 (𝑎)

𝑐𝜓𝑥𝑙𝜓𝑎𝑟
√

𝜒 𝑙𝜓𝑟
. (11)

e define 𝜓 ∈ 𝛹 (𝑎) = {𝑎 + 2, 𝑎 + 1, 𝑎, 𝑎 − 1}. This means that for a
ingle allele 𝑎, we consider contributions from the allelic peak 𝑎, the
ackward stutter from the 𝑎+1 peak, the forward stutter from the 𝑎−1
eak, and the double backward stutter from the 𝑎+2 peak. Our method
urrently does not consider half-backward stutter.

We use one parameter for allelic peak standard deviation (𝑐𝜓 = 𝑐𝑝
hen 𝜓 = 𝑎) and a different one for stutter peak standard deviations
𝑐𝜓 = 𝑐𝑠 when 𝜓 ≠ 𝑎). Individual parameters for the standard deviations
f different types of stutter could be introduced without significant
hanges to the model. The expected peak heights are:

𝑙
𝜓𝑎𝑟 =

∑

𝑛
𝜌𝑙(2𝑎−𝜓)𝑎𝑟𝑡

𝑙
𝜓𝑛𝑟 (12)

𝑥𝑙𝑎𝑟 =
∑

𝜓∈𝛹 (𝑎)
𝑥𝑙𝜓𝑎𝑟 . (13)

he product contribution at a selected allele 𝑎 is defined as:

𝑙
𝑎𝑛𝑟 = 𝜁 𝑙𝑎𝑛𝛼

𝑙
𝑟𝑤𝑛e

0.001𝛿𝑟𝑛(𝑚𝑙𝑎−𝑚)𝑡′𝑟 , (14)

where 𝑚𝑙𝑎 is the molecular weight of the allele, and 𝑚 is the average of
he largest and smallest observed molecular weights on the EPG within
he called peaks. The integer 𝜁 𝑙𝑎𝑛 is 1 if the genotype of contributor 𝑛

includes allele 𝑎 in locus 𝑙, and 0 otherwise. It is equal to 2 in case
of a homozygote. The scalars 𝛼𝑙𝑟 are the locus-specific amplification
efficiencies (LSAE), 𝑤𝑛 are the weights of the contributors that sum
up to 1, 𝛿𝑟𝑛 are the degradation parameters, and 𝑡′𝑟 is the total allelic
product expressed in relative fluorescent units (RFU).

Eq. (12) includes the normalised stutter ratios 𝜌 and the product
contributions from a contributor 𝑛, 𝑡𝑙𝜓𝑛𝑟. To obtain 𝜌, the unnormalised
stutter ratios 𝜋 are deduced from unambiguous profiles (see Supple-
mentary Materials for the list of models with unnormalised stutter
ratios). This is done using linear regressions based on allele designation
or longest uninterrupted sequences [9]. Normalisation is subsequently
required, since multiple types of stutter are considered at the same
time:

𝜌𝑙𝜓 ′𝑎𝑟 =

⎧

⎪

⎨

⎪

⎩

(

1 + 𝜋𝑙(𝑎−2)𝑎𝑟 + 𝜋
𝑙
(𝑎−1)𝑎𝑟 + 𝜋

𝑙
(𝑎+1)𝑎𝑟

)−1
, if 𝜓 ′ = 𝑎

𝜋𝑙𝜓 ′𝑎𝑟𝜌
𝑙
𝑎𝑎𝑟 , otherwise .

(15)

The sum in Eq. (12) is over the assumed contributors. Finally, 𝜒 𝑙𝜓𝑟
models the fact that peak variance is inversely proportional to peak
height [30]. The rationale behind the formula is explained in Section
1 of the Supplementary Material:

𝜒 𝑙𝜓𝑟 =
1000
𝑙 + 𝑥𝑙𝜓𝑟 . (16)
4

𝑥𝜓𝑟 + 1
Table 1
The parameters of our model. One contributor weight is omitted, as it can be inferred
from the other weights (the sum of all weights has to be 1). 𝐿 is the number of loci, 𝑅
is the number of replicates, and 𝑁 is the number of contributors. We further reduce the
number of parameters if multiple replicates are performed using the same kit. In such
a case, the analysis shares the LSAEs 𝛼𝑙𝑟 across the replicates. The domain boundaries
are treated as described in Subsection 3.1 of the Supplementary Materials.

Parameter Meaning Domain Quantity

𝑐𝑠 , 𝑐𝑝 Stutter and peak height standard deviation R>0 2
𝑡′𝑟 Total allelic product R>0 𝑅
𝑤𝑛 Weights of contributors (0,1) 𝑁 − 1
𝛿𝑟𝑛 Degradation parameters R>0 𝑅𝑁
𝛼𝑙𝑟 Locus-specific amplification efficiencies (LSAE) R>0 𝐿all
𝑖2 LSAE variance R>0 1

2.2. Dropout events

In case of a dropout, the peak is unobserved because it is below the
analytical threshold. This corresponds directly to

𝑃
(

dropout ∣ 𝑥𝑙𝑎𝑟
)

= 𝑃

(

𝑍 ≤ ln
ℎ𝑙𝑟
𝑥𝑙𝑎𝑟

)

. (17)

See Supplementary Material section 1 for details.

2.3. Parameters of the model and priors

Table 1 summarises the parameters of our model. In typical sce-
narios, the total number of posterior dimensions will range from 22
(2-contributor, 1-replicate Identifiler™ mixture without modelling of
the AMEL locus) to 49 (5-contributor, 3-replicate Fusion 6C mixture
with AMEL locus included).

We define the prior probability of the parameters as:

𝑃 (𝑀) = 𝑃 (𝛼|𝑖)𝑃 (𝑖)𝑃 (𝑐𝑠)𝑃 (𝑐𝑝) . (18)

ere, 𝑃 (𝛼|𝑖) is the prior ln(𝛼𝑙𝑟) ∼  (0, 𝑖2) that prevents the amplification
fficiencies from drifting away from 1 too far. The prior variance
2 ∼ Exp(𝜎𝛼), where 𝜎𝛼 is a hyper-parameter to be optimised by the
aboratory [31]. 𝑃 (𝑐𝑠) and 𝑃 (𝑐𝑝) are priors on the peak height standard
eviation parameters, which are also present in STRmix™ [31].

.4. Other considerations

In order to provide conservative estimates of LR, we use Balding–
ichols sub-population correction [5,32], and we report sub-source
Rs [33] unless specified otherwise. We consider dropout allelic con-
ributions as separate peaks, i.e., (Q,Q) is considered heterozygous.
he total number of genotype sets is reduced by considering at most
ne drop-in per locus and using a drop-in cap. Peaks which are in
tutter position and are not included in the genotype set definition are
onsidered drop-ins if they are abnormally tall w.r.t. the origin, see
he maximum stutter ratios in Table 3. In summary, if we consider a
enotype set for a locus with a tall peak, that genotype set will not be
emoved during preprocessing if:

• the corresponding allele score is a part of any of the genotypes
from the set;

• or the height is lower than the drop-in cap and there is no other
peak that can be explained as drop-in;

• or the peak can be explained as a stutter of another peak with an
observed stutter ratio lower than the maximum stutter ratio.
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2.5. Sampling algorithm

The marginalised (over genotype sets 𝑆𝑗) PG model from Eq. (4) is
prohibitively costly to infer using random-walk MCMC, due to the large
number of log-probabilities that need to be calculated when all possible
genotype sets are considered. We thus reduce the number of required
calculations of log-probabilities by using an adaptive-proposal sampler
that has been successfully used in other fields: Hamiltonian Monte Carlo
(HMC) [34]. The difference between HMC and random-walk MCMC
is how the proposal distribution is chosen. HMC simulates physical
(i.e. Hamiltonian) system dynamics instead of choosing a random point
from the neighbourhood of the current sample. This renders HMC
very efficient for posteriors with multi-modal or multi-funnel shapes,
significant parameter correlations, and/or high dimensionality [35].
Unlike GenoProof Mixture, which only changes the value of a single
continuous parameter in each iteration, our sampler considers multi-
variate moves. The proposal distribution for these moves is dynamically
adapted across iterations. It is determined in each iteration based on the
local gradient of the log-probability of the model [34]. This is possible
because our model is differentiable, as the discrete genotype sets are
marginalised out.

To compute the model gradients, we rely on the proven automatic
differentiation framework in TensorFlow Probability [36], where HMC
is also implemented.2 Thanks to the portability of the TensorFlow
library, we can implement both CPU and GPU versions of our infer-
ence procedure. However, a naïve TensorFlow implementation would
perform below expectations due to the combinatorial growth of the
number of possible genotype sets with increasing number of contrib-
utors. We therefore introduce an important performance improvement:
a deduplication system that can be used with any model that considers
all genotypes in a single iteration (e.g. our work, Euroformix). Ad-
ditional performance optimisations are described in Section 3 of the
Supplementary Material.

For the deduplication system, we consider a single locus 𝑙. The
expected peak heights 𝑥𝑙𝑎𝑟 and the standard deviation 𝜎𝑙𝑎𝑟(𝐱) of their
distribution (Eq. (10)) depend on the genotype sets. If we consider
the output for a single allelic position, these values depend only on
the continuous parameters and on the alleles at the allelic and stut-
ter (backward, forward, double backward) positions. When multiple
genotype sets are considered, the same values are needed multiple
times. As an example, consider the locus shown in Fig. 2 and the likely
genotype sets from Table 2 for two contributors. Computing every
expected peak (and the likelihoods of observing the ratios between
the observed and expected peaks) for genotype set {(10,13), (12,15)}
entails computations that are also identically required for the other
genotype sets. Our deduplication system ensures that each such compu-
tation is performed only once, and the result is cached and reused. This
leads to large savings in multi-contributor mixtures. As an example,
deduplication reduces the number of evaluations of the likelihood ratio
of observed and expected peak heights in the D18S51 locus of the
MIX13 Case 5 mixture from ≈1.3 million to ≈86 thousand when 4
unknown contributors are considered in 𝐻𝑑 . We use deduplication
during both the calculation of the log-probability and the calculation
of the HMC gradient. The deduplication system works as follows:
Before a run is performed, we precompute the indices of all duplicate
entries in the functions and create two data structures, one containing
the information required to evaluate the deduplicated expected peak
heights, and one containing the indices for a gather operation to be
performed after the log-probabilities of the deduplicated peaks have
been calculated. This gather operation then unfolds the deduplicated
results into a matrix that stores the log-probabilities per replicate,
allelic position, chain, and genotype set. This procedure can be thought
of as a cache: the forward propagation first generates the cache by
calculating the deduplicated log-probabilities. Then, the cache is used
during back-propagation to provide the results for all genotype sets.

2 https://www.tensorflow.org/probability/api_docs/python/tfp/mcmc/
amiltonianMonteCarlo.
5

Fig. 2. Example of a locus from a DNA mixture with two contributors.

Table 2
Three likely genotype sets 𝑺𝒋 and the resulting contributions to the
peaks of the locus in Fig. 2 from two contributors. 𝐶𝑛,𝑎 = 𝜌𝑎𝑎1𝑡𝑎𝑛1 is
the contribution of contributor 𝑛 from a single copy (i.e. 𝑟 = 1) of allele 𝑎.
𝐶 ′
𝑛,𝑎 = 𝜌(𝑎−1)𝑎1𝑡𝑎𝑛1 is the contribution from stutter originating from allele 𝑎. For

simplicity, only single-backward stutter and a single replicate are considered.
Duplicate entries are highlighted with the same colour.

𝑆𝑗 10 12 13 14 15 Q
(15,Q), (10,13) 𝐶2,10 𝐶 ′

2,13 𝐶2,13 𝐶 ′
1,15 𝐶1,15 𝐶1,𝑄

(10,Q), (13,15) 𝐶1,10 𝐶 ′
2,13 𝐶2,13 𝐶 ′

2,15 𝐶2,15 𝐶1,𝑄

(10,13), (12,15) 𝐶1,10 𝐶 ′
1,13 + 𝐶2,12 𝐶1,13 𝐶 ′

2,15 𝐶2,15 0

Table 3
Hyper-parameter values used in the present benchmarks. SR stands for stutter
ratio. The values of the variance rates and the standard deviation of the locus-specific
amplification efficiency (LSAE) were adjusted to our formulation of the model (i.e.,
natural logarithm instead of log10, 1/mean for LSAE standard deviation).

Hyper-parameter ProvedIt MIX05, MIX13

Drop-in rate (𝑑rate) 0.0015 0
Drop-in (𝜆) 0.032 N/A
Allele variance (𝑐2𝑝 ) shape 5.653 3.57
Allele variance (𝑐2𝑝 ) rate 15.7 5.196
Stutter variance (𝑐2𝑠 ) shape 1.501 6.97
Stutter variance (𝑐2𝑠 ) rate 148.462 9.279
LSAE (𝛼𝑙𝑟) standard deviation 32.258 33.333
Rare allele frequency 2.5 ÷ 361 2.5 ÷ 202
Drop-in cap 3 ℎ𝑙𝑟
Max. observed backward SR 0.3
Max. observed forward SR 0.15
Max. observed double backward SR 0.05
Wright’s 𝐹𝑆𝑇 for Balding–Nichols 0.01
Number of chains 4
Number of burnin steps 1200
Leapfrog steps per sample 10
GR stopping threshold 1.05

3. Results and discussions

Reliable forensic genotyping should minimise the number of false
inclusions and false exclusions, exhibit high precision and have low in-
ference runtime. We quantify these aspects for our proposed solution on
publicly available test mixtures from previously published benchmarks:
the ProvedIt dataset [37] and the MIX05 and MIX13 studies [38].
For the GlobalFiler™ mixtures from the ProvedIt dataset, we use the
hyper-parametrisation suggested by Riman et al. [21] (Table 3). For
the MIX05 and MIX13 datasets, we use the hyper-parametrisation from
Buckleton et al. [39]. For MIX05, MIX13, and precision studies we
use the FBI extended caucasian population [40] genetic background
model. For the challenging mixtures of Section 3.3, we use the NIST
1036-Caucasian background allele frequencies [41].

We denote the contributors in the hypotheses by plus-delimited
strings. U stands for an unknown contributor, W is a witness, V is a
victim, and all other entries denote suspects. The hypothesis V+W+S+U
for example has 4 contributors: the victim, the witness, the suspect,
and one unknown person. In all benchmark cases, the defendant’s
hypothesis is the prosecutor’s hypothesis with the suspect replaced
by an unknown contributor. All benchmark mixtures were created in
laboratories with known ground-truth genotypes of the contributors.

The linear stutter models are fitted on single-source profiles (for-

ward, backward, and double-backward stutter for ProvedIt and MIX13)

https://www.tensorflow.org/probability/api_docs/python/tfp/mcmc/HamiltonianMonteCarlo
https://www.tensorflow.org/probability/api_docs/python/tfp/mcmc/HamiltonianMonteCarlo
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Table 4
Accuracy of our method. Average LRs over 10 runs for our method (‘‘HMC’’) in
comparison with other solutions on the MIX05 and MIX13 benchmarks with known
ground truth. In most cases, all tested methods correctly return LRs larger than 1
for ground-truth inclusion or smaller than 1 for ground-truth exclusion. For MIX13,
we compare with the reported results of Euroformix (‘‘EFM’’) version 1.11.4 and
STRmix™ [39]. The TPOX locus was ignored in the MIX05 Case 4, due to a tri-allelic
pattern of the perpetrator.

Case 𝐻𝑝 Truth log10 LR

HMC EFM STRmix™
MIX05 Case 1 Perpetrator+U Incl. 19.34 – –
MIX05 Case 2 Perpetrator+U Incl. 25.67 – –
MIX05 Case 3 Perpetrator+U Incl. 22.32 – –
MIX05 Case 4 Perpetrator+U Incl. 10.44 – –
MIX13 Case 1 V+S01A Incl. 20.15 20.18 20.15
MIX13 Case 2 S02A+U+U Incl. 17.03 17.28 16.98
MIX13 Case 2 S02B+U+U Incl. 7.50 7.88 7.26
MIX13 Case 2 S02C+U+U Incl. 5.41 6.11 5.83
MIX13 Case 2 S02D+U+U Excl. −16.18 −2.36 −14.03
MIX13 Case 3 V+W+S03A Incl. 7.87 6.82 7.69
MIX13 Case 3 V+W+S03B Excl. −∞ −∞ −∞
MIX13 Case 4 V+S Incl. 20.23 19.91 20.15
MIX13 Case 5 S05A+U+U Incl. 3.38 9.26 3.45
MIX13 Case 5 S05B+U+U Incl. 1.61 9.38 3.32
MIX13 Case 5 S05C+U+U Excl. −8.66 6.45 −9.22
MIX13 Case 5 S05A+U+U+U Incl. 6.20 – –
MIX13 Case 5 S05B+U+U+U Incl. 5.96 – –
MIX13 Case 5 S05C+U+U+U Excl. 2.63 – –

or on data provided by the kit manufacturer (only backward stut-
ter for MIX05). The stutter models are available in Section 4 of the
Supplementary Material.

All experiments are performed on affordable hardware in the cloud.
We use NC8as_T4_v3 instances from Azure Cloud (8 vCPUs, Nvidia
Tesla T4 GPU with 16 GB VRAM). An exception has been made for
ProvedIt Sample 3, which does not fit within 16 GB of VRAM. For this
case we rented a Google Cloud virtual machine with a Nvidia A100
GPU with 40 GB VRAM.

3.1. Accuracy: MIX05 and MIX13 benchmarks

We first benchmark the performance of our method on inter-
laboratory studies organised by NIST: MIX05 and MIX13 [38]. For
MIX05, we analyse simultaneously replicates from different kits: ABI’s
COFiler, ABI’s SGM Plus, Promega’s Powerplex 16, and ABI’s Profiler
Plus. For MIX13, we follow the published studies in using only ABI’s
AmpFLSTR IdentiFiler Plus replicate. All cases are analysed with a
global analytical threshold of 50 and the ground truth number of
contributors with two exceptions: Case 5 from MIX13 is also anal-
ysed with 3 contributors (since most laboratories taking part in the
original study estimated this number), and Case 2 from MIX13 uses
an analytical threshold of 30 (following the recommendation from
NIST). For the capillary electrophoresis fragment analysis files, we
use default GeneMapper™ ID-X 1.4 analysis settings. The results are
presented in Table 4. Our algorithm reproduces most of the results
of other solutions, suggesting its validity. Similar to other solutions,
our algorithm provides more conservative LR values when a smaller
number of contributors is chosen [39]. The only case in which our
model provided LR larger than 1 for a false suspect is S05C in MIX13
Case 5. The genotype of this suspect had been deliberately constructed
to share alleles with the true contributors in every locus. 74 out of 108
laboratories have included this suspect in the original study [38]; our
method excludes it in a 3-contributor scenario. For MIX13 Case 4, our
algorithm provides a higher LR than the reciprocal of the random match
probability. An explanation for this behaviour is given in Subsection 2.1
of the Supplementary Material.
6

l

Fig. 3. Precision of our HMC method using different stopping criteria in com-
parison with STRmix™. We use four different GeneMapper™ analysis methods (A, B,
C, D) [14] on Sample 1. Every case is run 100 times, and the resulting per-run LRs
are shown as dots. The corresponding maximum likelihood estimations of a normal
distribution are shown in the plots below. With standard stopping criteria, our method
(cyan) reduces the standard deviation of log10 LR around 10 fold over STRmix™ (blue).
From the published STRmix™ results, we ignored the result provided by participant
L4A1 (no known contributor included) and the second run of participant L1A1 (missing
in the plots of the original work [14]). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

3.2. Precision: ProvedIt benchmark

Next we analyse the precision of our method in comparison with
STRmix™ on the ProvedIt inter-laboratory benchmark [14]. We use the
same analytical thresholds as Kelly et al. [42] (75, 100, 60, 80, and 100
RFU for the blue, green, yellow, red, and purple dyes, respectively) and
report sub-sub-source LRs following Ref. [14].

We focus on the ‘Sample 1’ case, which was previously used to
determine the precision of STRmix™ [14].3 Four different analysis
methods of GeneMapper™ are used in comparison (called A, B, C,
nd D). Analysis method A includes smoothing, no normalisation, and
baseline window of 51. The other methods differ slightly: B uses

ormalisation, C uses a baseline window of 33, and D does not use
moothing. The results are shown in Fig. 3. For STRmix™, a 10-fold
un-to-run variability in the LRs is observed with the default stopping
riterion (blue), which has been attributed to the stochastic nature
f MCMC [14]. In our HMC method, we check the GR diagnostic
very 300 iterations and stop when it is below 1.05 for all parameters.
his results in roughly 10 orders of magnitude reduction in the LR

3 Our method displays high precision also for a simpler ‘Sample 2’ with
og LR = 29.0144 ± 0.00254 in case of Analysis Method A.
10
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Table 5
Inference runtimes. We report the average (over 10 repetitions) inference times on a
single-GPU cloud instance for the listed cases with different numbers of contributors
(NoC) in minutes (m) and seconds (s).

Case NoC NoC known Inference time

MIX13 Case 2 3 0 3 m 59 s
MIX13 Case 3 3 0 1 m 59 s
MIX13 Case 5 3 0 4 m 37 s
MIX13 Case 5 4 0 31 m 15 s
ProvedIt Sample 1 4 1 4 m 13 s
ProvedIt Sample 1b 4 0 19 m 39 s
ProvedIt Sample 2b 3 0 6 m 55 s
ProvedIt Sample 3 5 1 59 m 55 s
ProvedIt Sample 4 5 1 27 m 15 s

standard deviation (cyan). For GeneMapper™ analysis method A, the
tandard deviation of log10 LR is 10.08 times lower in our method than
n STRmix™ [14] (Fig. 3A). For analysis method B (Fig. 3B), it is 8.76
imes lower, for analysis method C 10.99 times lower (Fig. 3C), and for
nalysis method D 10.76 times lower (Fig. 3D).

In the same Fig. 3, we also quantify the influence of the convergence
iagnostic on the precision of our algorithm by testing two alternative
topping criteria: In the first, we calculate the mean of GR values and
top when this mean is <1.2 (orange). In the second, we use the same
onvergence metric as STRmix™, but with our threshold value of 1.05
brown). Due to the efficiency of our HMC sampler, we were unable to
imulate chains that resulted in values of this metric reaching as high
s 1.2. Interestingly, however, we find that the STRmix™ criterion was
ometimes satisfied with threshold 1.05 when some GR values were still
1.2.

Taken together, these results show that our approach is able to
ignificantly improve precision over the STRmix™ method, and that
his improvement is due to the stricter convergence criteria, as enabled
y our purely continuous model parametrisation with genotype sets
arginalised out.

.3. Performance: computationally challenging mixtures

Finally, we quantify the performance of our HMC method on the
ost challenging cases of mixtures with 3 to 5 contributors. This serves

o test our approach on cases that are not simple to resolve and that are
hallenging both from a precision point of view and for computational
untime. For these cases, we use the set of low analytical thresholds
rom Riman et al. [21].

We analyse 4 mixtures: Sample 1 and Sample 2 from Bright et al. [14]
nalysed here without a known contributor (referred here to as Sample
b and Sample 2b, respectively), and two following 5-person mixtures
rom ProvedIt with one known contributor:

• A05_RD14-0003-30_31_32_33_34-1;1;1;1;1-M3I22-0.315GF-Q1.3_01.15 s
(named here Sample 3, known contributor is Contributor 31)

• E04_RD14-0003-48_49_50_29_30-1;1;2;4;1-M2d-0.279GF-Q2.1_05.15 s
(named here Sample 4, known contributor is Contributor 29)

e use previously suggested analytical thresholds: 35 RFU for the blue
hannel, 65 for the green, 45 for the yellow, 50 for the red, and 60
or the purple [21]. The filtered .csv data are used. For each case,
e construct all possible prosecutor hypotheses with 1 suspect. We
lso construct the same number of false hypotheses by choosing the
uspects randomly from the NIST 1036 U.S. Population Dataset [41]. To
uantify precision, we run our method 10 times for each ProvedIt case.
he results are shown in Fig. 4. In all cases, our algorithm correctly
lassifies contributors and non-contributors with high precision. In all
ut one case where the true contributors are considered, the difference
etween extremal values of log10 LR is under 0.2. The only exception is
ample 2b when the suspect is Contributor 30. This is further analysed
n Section 2 of the Supplementary Material.
7

The inference runtimes on the benchmark cloud instances are shown
n Table 5. We show the results for all the mixtures we analysed with 3
r more unknown contributors. The results are better than the reported
untimes of previous versions of PG software solutions [13]. This
uggests that despite the increased computational complexity of our
arginalised model, the efficiency of HMC sampling and the efficient
PU implementation recover state-of-the-art runtimes as required for
ractical use of the method.

. Conclusions and future work

High precision, i.e. low run-to-run variability, of the results pro-
ided by probabilistic genotyping methods is key to building trust
nd to ensuring reliable discriminatory power of the analyses. While
un-to-run variability has previously been attributed to the inherent
tochasticity of MCMC algorithms [14,15], we have shown that it
an be significantly reduced by an adjusted model formulation and
tricter convergence criteria. We hypothesised that the convergence of
robabilistic genotyping models is hard to assess if models contain both
ontinuous and discrete (e.g. genotype sets) dimensions. We therefore
resented a model where the discrete dimensions are marginalised
ut, leading to a purely continuous and differentiable formulation. We
chieved state-of-the-art inference runtimes by implementing an effi-
ient marginalisation strategy using a deduplication system, exploiting
PU acceleration, and using a HMC sampler.

The benchmark experiments presented have shown a reduction in
he standard deviation of the resulting log-likelihood ratios by around
n order of magnitude when using our method compared to the state-
f-the-art STRmix™ software. They have also provided validation of the
nference results against known ground truth by close reproduction of
reviously published results.

In the future, we plan to compare our method with other PG soft-
are on the ProvedIt benchmarks [e.g. 21,43], provide a comparative
nalysis of the two main algorithmic approaches (Bayesian inference
s. maximum likelihood estimation) when the same probabilistic model
s used, and work on further improvements of the model.

In addition to the run-to-run variability of the inference algorithm,
he overall precision observed on a sample in the laboratory also de-
ends on multiple other factors, including the frequency of the suspect’s
enotype in the background population, the proportion of the suspect’s
emplate, the quality of the sample, and the hyper-parametrisation of
he data-processing methods. All of these must therefore be fixed when
omparing different probabilistic genotyping algorithms. However, it
ight be insightful to explore which of these factors have the largest

nfluence on the precision of final results, and to bound the precision
n the worst case.
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Fig. 4. Precision for computationally challenging ProvedIt mixtures. Panel titles indicate the case (top row) and the suspect (bottom row). Each combination is run 10 times,
and we plot sub-source log10 LR. We do not plot exclusion scenarios with LR = 0 for all runs. These are: Sample 2b—non-contributors C18C_Cauc, C99B_AA, and ZT80925_Hisp;
Sample 3—non-contributors GT38089_Cauc, JT51484_AA, and WT51359_Cauc. Inclusion cases with correct suspect are plotted in cyan, correct exclusion cases in orange. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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