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A B S T R A C T

We provide an internal validation study of a recently published precise DNA mixture algorithm based on
Hamiltonian Monte Carlo sampling (Susik et al., 2022). We provide results for all 428 mixtures analysed by
Riman et al. (2021) and compare the results with two state-of-the-art software products: STRmix™ v2.6 and
Euroformix v3.4.0. The comparison shows that the Hamiltonian Monte Carlo method provides reliable values of
likelihood ratios (LRs) close to the other methods. We further propose a novel large-scale precision benchmark
and quantify the precision of the Hamiltonian Monte Carlo method, indicating its improvements over existing
solutions. Finally, we analyse the influence of the factors discussed by Buckleton et al. (2022).
1. Introduction

Robust interpretation of mixed DNA profiles is at the core of foren-
sic practice. Algorithmic and computational support for this task has
greatly evolved over time, and the most recent software generation
of fully continuous methods can accurately resolve traces that were
previously considered as unresolvable [1]. Given that every mistake of
such algorithms could have drastic consequences (e.g. providing false
evidence against a suspect), any software in practical use has to be
thoroughly validated and trusted by the forensic community. Labora-
tories intending to adopt new technology should therefore have a way
to assess the correctness and reproducibility of the results produced by
a given genotyping software. A common way of validation is to check
the results of the tested algorithms on a set of known DNA mixtures
prepared under laboratory conditions [2–4]. Statistical analysis of the
results can reveal the discriminatory power of the algorithms.

All laboratories are therefore recommended to validate the software
they use before applying it in an investigation process [5,6]. The effort
required to adopt fully continuous methods is generally considered
higher than with older techniques, especially for software products
that recommend estimation of laboratory-dependent hyper-parameters.
Since most potential users do not have the possibility of preparing their
own in-house validation mixtures, it should be possible to compare
them without the need to perform a laboratory pipeline.

This requirement led to increasing efforts towards comparative eval-
uations of different methods, resulting in benchmark studies that offer

∗ Corresponding author at: Biotype GmbH, Dresden, 01109, Germany.
E-mail address: m.susik@biotype.de (M. Susik).

convenient summaries of the discriminatory power of the available
products [2,3]. These studies are performed on standardised mixtures
from the openly available PROVEDIt (Project Research Openness for
Validation with Empirical Data) dataset [7], and thanks to the study by
Riman et al. [2] it became possible to validate new inference methods
by comparing them with previous solutions. Another reason for the
importance of comparative studies is that they offer a possibility to
estimate the effects of differences between solutions on the output like-
lihood ratios (LRs). This reason has been highlighted in the President’s
Council of Advisors on Science and Technology (PCAST) report [6].

Most comparative studies so far have focused on two software
solutions: Euroformix [8] and STRmix™ [9]. The latter uses Random-
Walk Markov Chain Monte Carlo (MCMC) to estimate the probabil-
ities of possible genotype sets. The former was benchmarked using
its maximum-likelihood estimations (MLE) method. Euroformix also
offers an MCMC sampler (referred to as ‘‘Bayesian method’’ in that
software), which, however, has never been considered in comparative
benchmarks.

The results of MCMC techniques are stochastic approximations,
and the output LRs are expected to exhibit run-to-run variability.
The magnitude of this variability strongly depends on the design of
the probabilistic genotyping model and on the sampling algorithm
used, and it can be significantly reduced by appropriate choices [10].
This was demonstrated by using a Hamiltonian Monte Carlo (HMC)
sampling algorithm, which leverages Hamiltonian dynamics over the
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optimisation landscape in order to propose new samples that have high
acceptance probability and are uncorrelated to past samples. This re-
quires computing the gradient of the unnormalised log-posterior, which
can be efficiently done using automatic differentiation frameworks.
For maximum-likelihood estimators (MLE), variability is not expected.
However, it might still be observed in practice if the algorithm is not
able to find the global maximum in all runs or if the convergence was
not properly assessed.

So far, run-to-run variability is rarely systematically benchmarked,
and no comparative evaluation of HMC-based methods exists in the lit-
erature. Here, we therefore validate the HMC-based probabilistic geno-
typing method of Susik et al. [10] on the publicly available PROVEDIt
mixtures [7], and we propose a novel precision benchmark for quantify-
ing run-to-run variability. We compare the results with those provided
by STRmix™ v2.6 [2] and Euroformix v3.4.0. Doing so, we provide
dditional arguments for the robustness and correctness of the results
btained by the HMC method. We also provide a wider perspective for
omparing of different software solutions. Given that the probabilistic
odel of the tested HMC method is shared with one of the comparison
ethods [9], the present results also shed light on the reproducibility

f published studies. By comparing the results of the HMC method with
hose obtained by STRmix™ and Euroformix, we quantify the influence
f the choice of the probabilistic model and of software implementation
ifferences. We specifically analyse the effects of the choices mentioned
y Buckleton et al. [11] when discussing the results of Riman et al. [2].
e hope that the results presented here foster quantitative comparisons

nd methodologically founded discussions about the precision of the
vailable algorithms and the reproducibility of their results.

. Methods

We perform an internal validation study on publicly available mix-
ures that were also used in previous comparative studies [2]. This
llows us to compare the results between studies. Riman et al. [2]
eported results for one MCMC implementation of a log-normal model
STRmix™) and one MLE implementation of a gamma model (Euro-
ormix). The HMC method considered in this study uses a log-normal
odel closely following STRmix™’s methodology.

.1. PROVEDIt mixtures

The PROVEDIt database contains mixtures of varying contributors,
umbers of contributors, contributor ratios, and mixture qualities [7].
n many cases the mixtures have been deteriorated by treatments with
NAse I, Fragmentase®, UV irradiation, sonification, or humic acid.
he database contains mixtures analysed with different multiplexes,

nstrument models, and injection times.
We follow the study conducted by NIST [2] and perform our anal-

sis on mixtures amplified with the GlobalFiler kit with 29 PCR cycles
nd analysed on a 3500 Genetic Analyser with an injection time of 15 s.
he filtered input files are used.

.2. Past discussion on published Euroformix results

Buckleton et al. [11] criticise the choices made by Riman et al. [2].
he critique is summarised in a list of 5 points. In order to be able to
ompare HMC with the only available larger STRmix™ benchmark, we
ollow the study of Riman et al. but take the following measures:

• We re-analyse 2- and 3- contributor mixtures with Euroformix
3.4.0 with a set of hyperparameters we estimated. This responds
to points 1 and 3 raised by Buckleton et al. [11].

• We compare different rare-allele models based on results obtained
from the same likelihood ratio system [2]. This responds to point
4 raised by Buckleton et al. [11].
2

Point 2 raised by Buckleton et al. [11] criticises the use of a custom
tool to pre-filter artefact peaks. It has been independently verified (see
Supplementary Material of Ref. [10]) that this tool has indeed filtered
out some of the stutter peaks that are important for the analysis, so
this is definitely an issue. However, the study of Riman et al. [2]
is the only paper available that makes it possible to compare with
STRmix™ results, which is why we nevertheless use it.

It is our aim to provide a fair comparison. Still, as we have to
estimate the hyperparameters for Euroformix based on different mod-
elling choices (see Section 2.3), the comparison is not perfect. We
nevertheless choose this way because Euroformix v3.4.0 does not model
double-backward stutter. An alternative approach would be to force
the same limitation onto the more versatile algorithms, similarly to
how it has been done by Cheng et al. [3]. However, laboratories that
adopt solutions modelling more types of stutters will intend to use those
features (e.g. to permit lower analytical thresholds). Therefore, we feel
that such a comparison would be of limited relevance to practical
casework.

2.3. Hyperparameters settings

In order to reduce possible sources of differences between inference
methods, we reuse the parameters calculated for STRmix™ in Ref. [2]
with the exception of the parameters for the drop-in model. Since
HMC uses the drop-in model from Euroformix, we reuse the published
hyper-parameters from Euroformix for the drop-in model. The values
of all hyperparameters are available in the original paper on the HMC
algorithm [10]. Unless specified otherwise, we report sub-source LRs,
because they do not reflect any assumption about the contributor type
of the person of interest (e.g. major vs. minor). We resort to sub-sub-
source LRs whenever we analyse a mixture in depth, for example when
we report an LR for an individual locus.

Euroformix v3.4.0 enables modelling of forward stutters in addition
to backward stutters. Still, no model for double-backward stutters is
available yet. To follow these assumptions without biasing the results,
we use higher analytical thresholds (ATs), such that double-backward
stutters are filtered out and will not distort the output. We determine
these ATs by analysing the available single-source profiles (Supplemen-
tary Material 1) and removing the peaks of the contributors, backward,
and forward stutters. We follow Riman et al. [2] and use the for-
mula AT = 𝜇 + 10𝜎, where 𝜇 and 𝜎 are the mean and standard
eviation estimated from the remaining peak heights (including double-
ackward and half-backward stutters). The resulting ATs used for LR
alculation are: 60, 80, 45, 75, and 100 RFU for the blue, green,
ellow, red, and purple dyes, respectively. Under these ATs, neither
ouble-backward nor half-backward stutters were left in the 2- and 3-
ontributor mixtures. We confirmed this by comparing the left peaks
ith the ground-truth contributors’ genotypes. In practical casework,
owever, this information is not available to the laboratory, and they
eed to find another way to deal with the issue. Our higher ATs result in
nalysing 2729 peaks less than Riman et al. namely an average of 6.38
er a mixture. Degraded mixtures are affected more, given the lower
eights of their allelic peaks on the right side of the dyes.

A single drop-in model is estimated from the same single-source
rofiles as the ones used for AT estimation. The estimated drop-in
robability is 0.00073 and the lambda is 0.03846. An 𝐹𝑆𝑇 correction
f 0.01 is used, and allele frequencies are normalised.

For Euroformix, we only provide results for 2- and 3-contributor
ixtures. This is for reasons of analysis runtime, which were too

arge (regularly exceeding an hour per scenario) to be practical for
he required numbers of repetitions when using Euroformix on 4-
ontributor mixtures. There are at least two reasons for this: (1) In
rder to provide results for different PoIs (persons of interest) under the
ame hypothesis of the prosecutor, the inference process has to be run
eparately for each PoI in Euroformix. In the case of HMC, the inference
an be performed once, as the LRs for different PoIs can re-use the same
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estimation of the posterior probability distribution. (2) In cases with
few or no stutter peaks, the stutter model used by Euroformix might not
converge. The inference might then never provide an answer. In such
cases where the Euroformix model does not converge, we switch off the
stutter model that caused the issue (firstly forward, and then if it did not
help, also the backward model). Such a strategy causes an interesting
situation in which we report results with different settings of stutter
models within the same mixture. Still, we believe this is the approach
that would imitate the best an approach adopted in a laboratory, as
often the laboratories will test only one hypothesis of prosecutor. The
list of the resulting stutter model settings is available in Supplementary
Material 1.

2.4. Benchmark framework

All compared software products compute likelihood ratios [12]. This
ratio expresses the strength of the evidence and is defined as:

LR =
𝑃 (𝑉 |𝐻𝑝)
𝑃 (𝑉 |𝐻𝑑 )

, (1)

here 𝑉 is the observed electropherogram (EPG), and 𝐻𝑝 and 𝐻𝑑 are
he hypotheses of the prosecutor and the defendant, respectively. Each
𝑝 in our benchmark assumes presence of the PoI. All hypotheses in

he benchmark assume that the contributors are of Caucasian ethnicity
nd come from the U.S. population genetic background. Therefore,
IST 1036-Caucasian allele frequencies based on 361 individuals are
sed. The hypotheses include the information about the number of
ontributors. In all cases, 𝐻𝑝 assumes the inclusion of a certain person
f interest (PoI), while 𝐻𝑑 assumes that all contributors are unknown.
or each mixture, all possible scenarios with a true contributor in 𝐻𝑝

are considered against the same number of scenarios with false PoIs
(i.e. non-contributors). All contributors are assumed to be unrelated.
For example, a 3-contributor mixture will be analysed with 6 different
hypotheses: 3 with a true contributor and 3 with a false one. The false
PoIs has been chosen randomly from the genotypes of the NIST 1036-
Caucasian sample [2]. The benchmark consists of 154 two-contributor
mixtures, 147 three-contributor mixtures, and 127 four-contributor
mixtures. We define:

• Scenario: A scenario is a setting where a mixture, 𝐻𝑝, and 𝐻𝑑 are
defined. For each mixture in the benchmarks, multiple scenarios
are provided.

• Person of interest (PoI): The PoI is the person (and his/her
genotype) assumed present in the mixture under the prosecutor’s
hypothesis, but not under the defendant’s hypothesis.

• True/false hypothesis: An 𝐻𝑝 in which the PoI is a contribu-
tor to the sample is called a true hypothesis. If the PoI is a
non-contributor, then 𝐻𝑝 is called a false hypothesis.

• Opposite of the neutral threshold (OotNT): A scenario is opposite
of the neutral threshold (LR = 1) if the software outputs LR > 1
for a false hypothesis or LR < 1 for a true hypothesis.

• OotNT rate: The proportion of scenarios that are OotNT for a
given probabilistic genotyping software.

• Precision: Precision measures reproducibility of the results when
the same analysis run is repeated multiple times. The lower
the run-to-run variation, the more precise the analysis. Precision
depends on the scenario, hyperparameter values, background
population frequencies and is quantified by the LR variability.

• Ban: A ban is a logarithmic unit for base 10 logarithms. 1 ban =
10, 2 bans = 100, 3 bans = 1000, etc.

. Results

We first analyse the classification performance of the HMC method
n comparison with the established approaches. Then, we introduce a
ovel large-scale benchmark for quantifying and comparing the pre-
ision of the different methods. Finally, we quantify differences that
3

esult from different rare-allele models used by the different methods. p
Table 1
OotNT rates and absolute numbers of OotNT scenarios with true contributors and non-
contributors. We compare three analysis methods in scenarios with different numbers
of contributors (NoC).

NoC HMC STRmix™ Euroformix

Rate Non-contr. Contr. Rate Non-contr. Contr. Rate Non-contr. Contr.

2 0.002 0 1 0.008 1 4 0.023 13 1
3 0.014 2 10 0.016 2 12 0.066 57 1
4 0.021 11 10 0.024 14 10 – – –

3.1. Classification performance

Probabilistic genotyping systems are required to rarely provide
evidence in favour of an untrue hypothesis for PoIs that are unrelated
to the true contributors. Indeed, Slooten [13] noted:

‘‘To report evidence in favour of another hypothesis than the one
that is actually true is not an error when the data have been
correctly analysed for the relevant hypotheses, because then the
data were simply misleading, but one could consider it an error, or
at least very undesirable, when it is reported that there is evidence
whereas there is none, due to an inadequate model having been
used’’.

Therefore, OotNT scenarios are not necessarily a sign of malfunctioning
software. However, large OotNT rates do indicate that the software
either does not follow the principles outlined by Slooten, that the
model is unable to explain the peak heights, or that the software
code contains programming mistakes. We cannot know which of the
OotNT scenarios would be still OotNT if we had Slooten’s hypothetical
‘‘perfect’’ probabilistic genotyping system. The neutral threshold we
choose (LR = 1) has the natural statistical meaning of delineating two
alternative hypothesis. However, testing other thresholds, for example
higher thresholds for multiple-hypotheses testing in database searches,
is also useful.

We provide a comparison of OotNT cases, showing that HMC
achieves state-of-the-art results. Indeed, we find that HMC is charac-
terised by a low OotNT rate, comparable to that of STRmix™ and lower
han that of Euroformix (Table 1). For the 4-contributor mixtures the
otNT rates of the MCMC-based methods are under 2.5% (2.1% for
MC and 2.4% for STRmix™), while Euroformix provided 16.1% OotNT

cenarios in the original study [2]. For Euroformix, the hypotheses
ith non-contributors dominate the OotNT cases with a total of 70
ersus only 2 true-contributor OotNT scenarios across all 2- and 3-
ontributor mixtures. This is in contrast to the MCMC-based methods
ore often providing OotNT LRs for true hypotheses (for 21 true vs. 13

alse hypotheses in the case of HMC, 26 true vs. 17 false in the case of
TRmix™).

We further analyse the OotNT scenarios in Fig. 1. Most of them
do not provide strong evidence, with the majority of log10 LR between
−1 and 1: 67.6% (23/34) for HMC, 69.8% (30/43) for STRmix™, and
3.1% (67/72) for Euroformix.

Another popular metric for evaluating the quality of a classifica-
ion method is the area under the Receiver Operating Characteristic
ROC) [14]. We therefore plot the ROC curves for the tested methods
n Fig. 2. All tested methods achieve performances with normalised
reas under the curves close to the maximum theoretical value of 1.0,1
ee inset legends. The slight difference between STRmix™ and HMC is
ainly caused by two OotNT scenarios with LR=0 from STRmix™. In-

reasing the number of STRmix™ iterations in these scenarios increases
the area under the ROC curve for STRmix™ from 0.99600 to 0.99994
for the 2-contributor mixtures. This is then perfectly comparable to the
performance achieved by HMC.

1 Following Slooten’s argument, depending on the dataset, the maximum
ractically achievable value is slightly lower than 1.0.
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Fig. 1. Histogram of OotNT scenarios. Cyan represents OotNT scenarios with false contributors and orange the ones with true contributors. (For interpretation of the references
o colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Comparison of Receiver Operating Characteristic (ROC) curves between the tested methods. The normalised areas under the ROC curves are given in the inset legends.
They measure classification performance with a perfect classifier achieving 1.0.
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The two false negatives responsible for this behaviour are two
of the true hypotheses among the 2-contributor mixtures for which
STRmix™ falsely outputs LR=0. Riman et al. [2] therefore decided to
re-run the analysis on these cases with a larger number of iterations.
Those repeated runs provided strong evidence for the inclusion of the
respective PoIs (log10 LR of 24.88 for the mixture marked as C02 and
9.66 for case H06). Closer analysis of those two scenarios reveals
hat the initial results provided support for the inclusion of the PoI
n all loci but one (D1S1656 in C02 and D3S1358 in H06). In those
oci, the calculated LRs were 0. A biased analysis excluding those
oci would provide strong evidence for including the PoI (sub-source2

og10 LR of 27.02 and 23.41, respectively). A skilled user should notice
his imbalance between the estimated results for different loci and act
ccordingly, but the question remains why this happens. Algorithms
hat consider the genotype set as a parameter of the posterior (like
TRmix™) might struggle if the genotype of the PoI is only included
n genotype sets that are unlikely under the considered model. It is
hen possible that no Markov chain will ever explore those genotype
ets when an insufficient number of iterations is performed. This does
ot seem to be specific to the present benchmark, since an independent
xample of a mixture leading to this problem has been described by Lin
t al. [15]. Buckleton et al. [11] noted:

‘‘We would ask the question: ‘Does one want an LR system to allow
15,18 [PoI genotype – our note] in this case?’ If you answer ‘yes’
then the inevitable result is that a much higher false inclusion rate
will occur’’.

2 Assuming the other, unreported sub-sub-source LRs excluding the
roblematical single loci were 0.
4

We here show that this is actually avoidable, since the HMC method
does not display a higher false inclusion rate than STRmix™ (Table 1),
et provides strong support for the true hypothesis in those two sce-
arios. Indeed, HMC provides strong inclusion for both scenarios with
og10 LR of 24.94 for scenario C02 and 20.07 for H06. The problematic
oci, however, correctly resulted in low sub-sub-source LRs: 0.0044 for
1S1656 in C02 and 0.000041 for D3S1358 in H06.

This suggests that the behaviour of STRmix™ is caused by a com-
ination of the modelling decision to treat the genotype set as a
odelled parameter and running an insufficient number of MCMC

terations. Those decisions were made due to the computational com-
lexity of the inference and can be avoided by, for example, using GPU
cceleration [10].

An interesting question is what happens when the PoI’s genotype is
epresented in the posterior estimate of one of the chains, but absent
n the others. In this case, the intra-chain estimate for LR is 0 for all
hains except one, but the final answer to the user will still indicate
positive LR. This is an example of the nuances one has to deal with

f convergence of the estimated distribution over the discrete genotype
ets is not rigorously checked.

.2. Results on the verbal scale

Some sources recommend reporting results on a verbal scale that
eflects the strength of the evidence [16–18]. This removes small, likely
echnical, differences between analysis methods and is supposably
asier to understand in court. However, it also introduces arbitrary
hresholds by binning the possible values of LR. We analyse the effect
his binning has on the results from the tested analysis methods on two
erbal scales: the official SWGDAM scale [18] and an alternative scale
uggested by ENFSI [17].
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Table 2
A comparison between the SWGDAM verbal scale and the ENFSI recommendation for reporting LRs. The
provided log10LR ranges present the scenario of reporting the hypothesis of the prosecutor. As both of the
scales do not define precisely how to deal with LRs between below 1, we set an LR of 1.5 as the border
between grades A, B, and C.
SWGDAM scale Grade log10LR Scale suggested by ENFSI

Supports alternative A < − log10(1.5) Supports alternative
Uninformative B [− log10(1.5), log10(1.5)) Does not support any proposition

Limited support C [log10(1.5), 1) Weak support
D [1, 2) Moderate support

Moderate support E [2, 3) Moderately strong support
F [3, 4) Strong support

Strong support G [4, 6) Very strong support
Very strong support H ≥ 6 Extremely strong support
Table 3
Comparison of the results of HMC and STRmix™ when a verbal scale is used. True
hypotheses, 2-contributor scenarios.

HMC
A B C D E F G H

supports alternative proposition A 1 1 2
does not support any proposition B 1

weak support C 1
moderate support D 1

moderately strong support E 1 5 1

ST
Rm

ix
™

strong support F 2
very strong support G 1 8 1

extremely strong support H 3 279

Table 4
Comparison of the results of HMC and Euroformix when
a verbal scale is used. True hypotheses, 2-contributor
scenarios.

HMC
A B C D E F G H

A
B 1 2
C 1 1
D 2 1 1 1
E 2 1 1
F 1 2 2

Eu
ro

fo
rm

ix

G 1 1 8 14
H 1 264

Both scales are compared in Table 2.
We present 10 contingency tables to compare the results on the

erbal scale between HMC and the other softwares (STRmix™ or Eu-
roformix). For each number of contributors, we present two tables:
one where 𝐻𝑝 with the true contributors is tested, and one where the
support for the defendant (i.e. support for 𝐻𝑑) is tested for false con-
tributors. As HMC and STRmix™ are based on similar models, the verbal
scale classification of their results is similar. On the higher-resolution
scale suggested by ENFSI for true hypotheses over 2-contributor mix-
tures, these two methods produce the same verbal classification in
96.43% of scenarios (297/308, Table 3). For true hypotheses over 3-
contributor mixtures, they agree in 92.74% of scenarios (409/441, Ta-
ble 6) and for 4-contributor mixtures in 88.19% of scenarios (448/508,
Table 11). Thus, consensus becomes rarer with larger increasing num-
ber of contributors. It is also rarer when the false hypotheses are
considered: 93.18% for 2-contributor scenarios (287/308, Table 5),
82.09% (362/441, Table 7) for 3-contributor scenarios, and 70.67%
(359/508, Table 12) for 4-contributor scenarios. This is likely because
both methods become less precise when LRs are low (cf. Fig. 7) and
the genotype set of the suspect is unlikely in at least some of the loci.

The discrepancy between HMC and Euroformix is larger, which may
be explained by the different probabilistic models, ATs, and optimi-
sation formulations (Euroformix has been run in MLE mode, though
an MCMC implementation is available, in order to be able to directly
compare the results with Riman et al. [2] who also used the MLE mode).
In cases where there is a difference in the reported grades, HMC tends
5

Table 5
Comparison of results of HMC and STRmix™ when a
verbal scale is used. False hypotheses, 2-contributor
scenarios.

HMC
A B C D E F G H

A
B 1
C 1
D 4 2
E 1 1

ST
Rm

ix
™

F 2
G 1 2 2 4
H 1 5 5 276

Table 6
Comparison of results of HMC and STRmix™ when a verbal
scale is used. True hypotheses, 3-contributor scenarios.

HMC
A B C D E F G H

A 7 2 1
B 1 1
C 1 8 2
D 3 10 1 1
E 3 10 1

ST
Rm

ix
™

F 11 3
G 3 30 3
H 6 333

Table 7
Comparison of results of HMC and STRmix™ when a verbal
scale is used. False hypotheses, 3-contributor scenarios.

HMC
A B C D E F G H

A 2
B
C 1 6 1
D 10 11 1
E 1 3 15

ST
Rm

ix
™

F 13 8 1
G 1 4 14 18 1
H 1 2 25 302

Table 8
Comparison of results of HMC and Euroformix when
a verbal scale is used. False hypotheses, 2-contributor
scenarios.

HMC
A B C D E F G H

A 1 1 1 1 5
B 1 3 2 3 4
C 4 1 1 3
D 2 3 1 16
E 1 1 1 3 16
F 15

Eu
ro

fo
rm

ix

G 1 10
H 207
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Table 9
Comparison of results of HMC and Euroformix when a verbal
scale is used. True hypotheses, 3-contributor scenarios.

HMC
A B C D E F G H

A
B 5 2
C 4 1 8 5 1
D 1 4 6 5 2 3
E 1 1 2 2 1 3 1
F 1 1 6 10 1

Eu
ro

fo
rm

ix

G 6 19 21
H 1 5 312

Table 10
Comparison of results of HMC and Euroformix when a verbal
scale is used. False hypotheses, 3-contributor scenarios.

HMC
A B C D E F G H

A 2 3 4 1 3 7
B 1 6 11 26 12 14 27
C 2 6 7 5 12 44
D 3 13 50
E 1 3 46
F 1 26

Eu
ro

fo
rm

ix

G 30
H 75

Table 11
Comparison of results of HMC and STRmix™ when a verbal
scale is used. True hypotheses, 4-contributor scenarios.

HMC
A B C D E F G H

A 3 2 2
B 1 2 3
C 2 11 3 1
D 1 20 4
E 7 27 2 1

ST
Rm

ix
™

F 7 30 1
G 5 63 9
H 1 1 7 292

Table 12
Comparison of results of HMC and STRmix™ when a verbal
scale is used. False hypotheses, 4-contributor scenarios.

HMC
A B C D E F G H

A 9 2 1
B 4
C 2 34 7
D 8 32 15 1 3 1
E 12 34 13 2 1

ST
Rm

ix
™

F 2 19 20 3 2
G 4 19 27 16
H 16 199

to provide stronger support in scenarios with true 𝐻𝑝. This is the case
for 9.42% (29/308, Table 4) of all 2-contributor scenarios and 12.47%
(55/441, Table 9) of 3-contributor scenarios. In the 3-contributor cases,
Euroformix provides a stronger verbal equivalent in 33 (7.48%) of
cases.

The largest discrepancies can be observed between Euroformix and
HMC under the false hypotheses. In many of these cases, HMC pro-
vides stronger negative evidence. This is the case in 31.82% (98/308,
Table 8) of 2-contributor scenarios and 81.86% (361/441, Table 10)
of 3-contributor scenarios. When compared with the original bench-
mark [2], HMC provides stronger negative evidence in 94.29%
(479/508) of the 4-contributor scenarios. The opposite situation, where
Euroformix provides stronger negative verbal equivalent, is rare, with
only one scenario among 2-contributor ones and no scenarios among
3-contributors ones.
6

I

3.3. Results on the numerical scale

In order to provide a refined comparison, we plot in Fig. 3 all of
the computed LRs when true hypotheses were considered. This again
highlights that HMC and STRmix™ provide similar results. In 95.54%
(1201/1257) of all scenarios the difference between the LRs computed
by these two methods is smaller than 2 bans. In 98.97% (1244/1257)
of cases the difference is smaller than 4 bans, and only in 3 scenarios
the difference is larger than 6 bans. These extreme cases are CO2 and
H06, which were already discussed in Ref. [2] and in Section 3.1, as
well as E05_RD14−0003−33_34_35_36−1;4;4;1−M2a−0.63GF (E05).
n scenario E05 with Contributor 33 the PoI, HMC computes log10 LR =
−0.0852, while STRmix™ outputs 6.5106. We analyse this case in detail
in Supplementary Material 2.

Larger discrepancies are observed between HMC and Euroformix,
with 22.43% (168/749) of scenarios with a true contributor in 𝐻𝑝
resulting in LRs that differ by more than 2 bans, 4.01% (30/749) by
more than four bans, and 0.8% (6/749) by more than six bans. These
differences are visualised again as log10 LR histograms in Fig. 4.

For the false hypotheses, a slight trend towards stronger negative
evidence can be observed in the results of STRmix™ (Fig. 5). There
are 61 2-contributor scenarios where log10 LR is lower when STR-

ix™ is used (and 11 scenarios with the opposite being true), 244
-contributor scenarios (57 otherwise), and 262 4-contributor scenarios
203 otherwise). We note, however, that the number of scenarios where
TRmix™ resorted to trivial rejection of the hypothesis (i.e. LR=0) is
arger than for HMC: 202 3-contributor scenarios for STRmix™ vs. 155
or HMC; 71 4-contributor scenarios for STRmix™ vs. 54 for HMC. Two
lgorithmic factors influence the occurrence of inference results with
R=0. First, the way the considered genotype sets are pruned by re-
oving unlikely ones may lead the algorithm to ignore the genotype of

he PoI. The second factor is the general behaviour of MCMC methods
o consider a single genotype set at a time, as discussed in Section 3.1.

For scenarios resulting in stronger negative LRs, a larger discrepancy
etween HMC and STRmix™ is observed. We believe the main reason

for this is that the unlikely genotypes of the false contributors are
better explained by the tails of the estimated posterior, especially
the right tails of the peak-height standard deviation parameters. Any
difference between the methods becomes more apparent in the tails
and, combined with the lower precision in these cases (see Fig. 7),
results in more noise.

When comparing HMC with Euroformix, we observe that Euro-
formix tends to not provide strong negative evidence (Fig. 6). The
largest differences (if HMC did not result in LR=0) are observed for
the scenarios:

• 2-contributor: mixture
B04_RD14−0003−42_43−1;9−M2U60−0.15GF, PoI is C06C_
Cauc - Euroformix log10 LR = −1.19, HMC −23.9.

• 3-contributor: mixture
B01_RD14−0003−36_37_38−1;2;1−M2a−0.5GF, PoI is PT84183
_AA - Euroformix log10 LR = −8.21, HMC −164.73.

owever, this would be important only in cases in which the expert
as to report the strength of the negative evidence.

.4. A new precision benchmark

Most previous studies [2,3] compared methods by running them
nce on every scenario. Two notable exceptions are the study by Bright
t al. [19], in which STRmix™ has been tested multiple times on a set
f in-house 2-contributor mixtures, and the study by Riman et al. [2],
here the computations for 8 scenarios were repeated twice. Among

hese 8 scenarios were the two scenarios described in Subsection 3.1
nd 6 scenarios in which the convergence metric of STRmix™ remained
bove the threshold of 1.2 suggested by the authors of the algorithm.
n those 6 scenarios the average difference between the two runs was



Forensic Science International: Genetics 64 (2023) 102840M. Susik and I.F. Sbalzarini

2

0
r
t
m

d
p
a
m
4
a

S

Fig. 3. Comparison of the computed LRs for all tested true hypotheses between HMC (𝑦 axes) and the other tested methods (𝑥 axes, STRmix™ and Euroformix (EFM)). The two
-contributor scenarios for which STRmix™ outputs an LR of 0 are omitted from the plots, since log10 LR is undefined in those cases.
.282 bans [2]. The inverse of the run-to-run variability over multiple
uns with identical hyper-parametrisation on the same EPG data for
he same hypotheses defines the precision of a probabilistic genotyping
ethod. Precision has to be considered in addition to accuracy [20].

In order to quantify the precision of the HMC method, we here intro-
uce a new benchmark that expands upon earlier results [10]. Because
recision studies of other methods are not available, we cannot provide
comparison. In order to keep the benchmark tractable, we select 23
ixtures uniformly at random (7 2-contributor, 6 3-contributor, and 10
-contributor mixtures).3 For each mixture, we run HMC inference for
ll scenarios provided in Ref. [2], thus a total of 144 scenarios. We run

3 The list of mixtures and the detailed results are available in
upplementary Material 1.
7

each scenario 10 times, resulting in 1440 runs, and display the resulting
LRs in Fig. 7. In one of the scenarios, HMC provides an OotNT result:
the 4-contributor scenario G06 results in log10 LR between −0.937 and
−0.637 when Contributor 33 is the PoI.

We quantify the precision of HMC inference by the standard devi-
ation of the log10 LR and their min–max span (Fig. 8). Supporting the
hypothesis set out in the Supplementary Material of Ref. [10], we gen-
erally observe lower precision when considering false hypotheses. The
average ± standard deviation of the standard deviations of the log10 LR
across all 2-contributor scenarios was 0.0415±0.0372, 0.0335±0.0293 for
3-contributor scenarios, and 0.0213±0.0156 for 4-contributor scenarios.
The outlier among 3-contributor scenarios with false hypotheses is the
case with the lowest estimated log10 LR (excluding cases for which all
11 runs result in LR=0): H04 3p with ZT80028_Hisp as the PoI. In this

case, all per-run log10 LR < −60. Taken together, these results confirm
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Fig. 4. Histograms of the differences in log10 LR between HMC, STRmix™, and Euroformix for both true (cyan) and false (orange) hypotheses. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Comparison of HMC and STRmix™ for all false hypotheses. The plots marked with 2p, 3p, and 4p present scenarios with two, three, and four contributors, respectively,
for which both methods output non-zero LR. The histograms at the bottom-right show the distributions of LRs from the respective other method in scenarios for which exactly
one of the methods outputs LR=0. In addition, there are 236 2-contributor, 140 3-contributor, and 43 4-contributor scenarios were both methods output LR=0.
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Fig. 6. Comparison of HMC and Euroformix (EFM) for all false hypotheses. The plots
marked with 2p and 3p present scenarios with two and three contributors, respectively,
for which HMC outputs non-zero LR. The histograms at the bottom-left show the
distributions of LRs from Euroformix in scenarios for which HMC outputs LR=0.
Euroformix outputs non-zero LR for all scenarios in the benchmark.

the high precision of the HMC method [10]. In all considered cases, the
min–max span of the LRs in scenarios with true hypotheses was smaller
than 0.5 bans with standard deviation below 0.1 bans.

Next, we count how often the result on the ENFSI verbal scale
(cf. Section 3.2) changed between repeated runs on the same scenario.
Considering the grades assigned to the prosecutor’s hypotheses, 48
scenarios are classified as extremely strong support, 9 scenarios as very
strong support, and 6 as strong support, 4 as moderately strong support, and
3 as moderate support unanimously in all 11 runs. The only case where
the grades differed between runs of the HMC method was mixture D03
4p with Contributor 47 as PoI: 9 runs classified it as strong support,
but 2 runs as moderately strong support. In this case, however, avoiding
the variance between the verbal strength categories is hard, given that
HMC estimates log10 LR very close to the scale threshold of 3: the
lowest LR is 2.9864 and the highest 3.0287, the difference between
them is only 0.0423 of a ban. None of the benchmark scenarios was
classified as weak support. One scenario (A02 4p with false contributor
ZT80070_Hisp) unanimously resulted in LRs in all 11 runs that do not
support any hypothesis. All other scenarios, including the false nega-
9

tive in one scenario from the G06 4p mixture, unanimously provided
support for the alternative hypothesis in all 11 runs. We conclude that
a situation in which HMC provides different verbal equivalents when
run multiple times is rare, with only one (out of 120) case observed in
our benchmark.

Finally, we also measure the computer time spent by the HMC algo-
rithm on each of the considered scenarios (Fig. 9). Every 3-contributor
case was solved in under 11 min, and every 4-contributor case in
under 1 h and 3 min. These times include the compilation of the
computational graph by the Accelerated Linear Algebra library [21]
used in HMC.

3.5. Differences between rare-allele models

Buckleton et al. [11] suggested that different rare allele treatment
might distort the results of method comparisons (‘‘There was no compen-
sation for the different rare allele models used by each software’’. [11]). We
therefore quantify the effect of the rare-allele model by recalculating all
LRs of HMC with the posterior mean allele frequency model by Triggs
and Curran [22], reusing the deconvolution provided by the previous
HMC inference. We then compare the results with LRs obtained using
the 5/2N rare-allele model [23]. Both sets of results are calculated
assuming contributors from the NIST-1036 Caucasian population [24];
therefore, N=361. We provide a list of the rare alleles within the
true contributors according to the NIST-1036 Caucasian population in
Supplementary Material 1, tab ‘‘Rare contributor alleles’’. Using the
example of the STRidER’s [25] European population, we also show that
the number of rare alleles drops when a larger population sample is
used.

The results in Fig. 10 show that different rare-allele models lead
to differences in log10 LR that are larger that the run-to-run variability
and therefore should be considered significant. The data points for true
contributors can be visually clustered into three categories: PoIs with
no rare alleles present in their genotypes, PoIs with one rare allele, and
PoIs with two rare alleles. The majority of points from these clusters
lie around the horizontal line at 0 for cases with no rare alleles, 0.22
for cases with one rare allele, and 0.44 for cases with two rare alleles.
To be precise, the 25th and 75th percentiles of the differences on the
logarithmic scale are 0.221…0.439 for true contributors with two rare
alleles, 0.013…0.226 for true contributors with one rare allele, and
0.000…0.017 for true contributors with no rare alleles. The source of
this behaviour might be sought in the estimated rare allele frequencies.
Let us consider the value of log10

𝜃+(1−𝜃)𝑓1
𝜃+(1−𝜃)𝑓2

, where 𝑓1 is the rare allele
requency from the 5∕2𝑁 model, 𝑓2 from the posterior mean allele

frequency model and 𝜃 is the co-ancestry correction factor. This value
is close to 0.22 for all of the rare allele loci: for SE33 the value is 0.225,
for D22S1045 0.223, and for TPOX 0.219 with 39, 15, and 8 distinct
allele scores in the population, respectively.

Points away from the respective line of their cluster are often caused
by the rare allele(s) dropping out from the mixture. This was often
the case especially for alleles 19.2 and 28 in the FGA locus and for
Contributor 50’s rare allele 7 in the TPOX locus. The corresponding
markers are located towards the right ends of the dyes, such that these
peaks risk to drop out in degraded mixtures.

When there are rare alleles present in both the PoI’s genotype and
the mixture, the log10 LR difference between the 5/2N model and the
posterior allele frequency model will depend on the value of 𝑁 in the
5/2N formula and therefore on the population allele frequencies. For
different values of N, the data points will cluster around horizontal lines
at different values. Following the same reasoning as above, the points
would be expected to cluster around 0.52 for N=100, and around 0.095
for N=1000.

3.6. Differences between two settings of Euroformix

As discussed in Section 2.3, our benchmark setting required rais-
ing the analytical thresholds. This must be done in order to avoid
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Fig. 7. Run-to-run variability of HMC. Each small plot shows the log10 LR computed across 11 runs for one of the 120 scenarios (see Supplementary Material 1 for the list of
cenarios). True hypotheses are plotted in cyan, false ones in orange. 24 scenarios that resulted in LR=0 in all 10 runs are skipped. (For interpretation of the references to colour
n this figure legend, the reader is referred to the web version of this article.)
ouble-backward stutters that are not modelled by Euroformix. In case
ny double-backward stutter was present in a profile, it could signifi-
antly distort the result. When the analytical threshold (AT) is raised,
e expect the results to express lower confidence (i.e. lower LRs for

rue contributors, higher LRs for false contributors). This is because less
nformation is retained from the mixture at higher ATs, as analysed in
upplementary Material 3. We therefore compare the results obtained
y Riman et al. [2] with Euroformix version 2.1.0 at lower ATs with
10
the results we obtained here with Euroformix version 3.4.0 and higher
ATs. The comparison is presented in Fig. 11. As expected, higher ATs
mostly lead to lower strengths of evidence. The exceptions are the 2-
contributor mixtures with forward stutter peaks. Since these stutters
are not modelled in Euroformix 2.1.0, the resulting deconvolution must
be sub-optimal. This behaviour has independently been observed by
Cheng et al. [3]. While the use of higher ATs might be perceived as a
disadvantage for Euroformix, we note that this was required because of
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T

Fig. 8. Standard deviations and min–max spans of the log10 LR values in all scenarios of the precision benchmark across 11 repeated runs of the HMC method for each scenario.

he presented results also include Samples 1b and 2b from Ref. [10]. Scenarios with LR=0 are omitted.
Fig. 9. Execution times of the HMC method. Each dot represents a single run of one of the scenarios from the present benchmark. All runs were performed on a single Nvidia
Tesla T4 GPU.
the limitations of the model. An alternative benchmark design would
involve all the methods tested with higher ATs.

4. Conclusions

We provided a large-scale validation study of the HMC method for
probabilistic genotyping [10] and compared it with the current state
11
of the art. The results revealed that the HMC method achieves state-of-
the-art classification performance at high precision (i.e., low run-to-run
variability). In OotNT scenarios, HMC did not provide large positive or
negative LR values, and correctly manifested uncertainty.

The classification results obtained by HMC were similar to those
obtained using the popular software STRmix™. The similarity can be
explained by the fact that the probabilistic genotyping model used
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Fig. 10. Difference between the log10 LR obtained by HMC with two different rare-allele models: the 5/2N model (Method A) and the posterior mean allele frequency model
(Method B). Colours denote whether the PoI is a true contributor and, if so, how many rare alleles are present in his/her genotype. The dashed horizontal lines are at differences
of 0.22 and 0.44. The true hypotheses with PoIs with rare alleles cluster around those lines. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
Fig. 11. Difference between the results obtained with versions 2.1.0 and 3.4.0 of Euroformix (EFM) at different analytical thresholds (AT). Top row: Scatter plots of the scenarios
for 2-contributor (left) and 3-contributor (right) mixtures. True hypotheses are in cyan, false ones in orange. Scenarios where any of the software versions computed log10 LR below

40 are omitted. Bottom row: Histograms of the differences for all scenarios with true PoI in 2-contributor (left) and 3-contributor (right) mixtures. (For interpretation of the
eferences to colour in this figure legend, the reader is referred to the web version of this article.)
t
t
s
a
s

y HMC is based on the work by Taylor et al. [9]. Compared to
uroformix, HMC exhibited a lower OotNT rate, a significantly better
bility to provide negative evidence, and a slightly higher area under
he ROC curve for 3-contributor mixtures.

We further introduced a new precision benchmark that can serve
s a baseline for future methods development and comparison. This
enchmark provided additional results corroborating the high precision
f HMC, which stems from the fact that this algorithm considers
enotype sets in every iteration and assures proper chain convergence.

In Supplementary Material 3, we analysed the factors influencing
he strength of the evidence provided by the HMC method and how
12
hese factors correlate with algorithmic differences between HMC and
he other algorithms. We find that the information content of the
hort tandem repeat mixtures influences the confidence of the HMC
lgorithm, corroborating earlier results [3,26]. This provided additional
upport that the strength of the evidence decreases with:

• decreasing total amount of DNA material in the mixture,
• decreasing amount of DNA material coming from the PoI,
• decreased weight of the contributor, and
• decreased sample quality (i.e., increased ‘‘quality index’’).



Forensic Science International: Genetics 64 (2023) 102840M. Susik and I.F. Sbalzarini

w
a
t
d

D

s

A

G
t
Ø
u

A

a
t
a
m
i

R

While this study focused on understanding the differences between
the algorithms, all of the compared methods are characterised by high
accuracy and a healthy ability to provide a lower strength of evidence
when the information content in the electropherogram is lower. We
note, however, that our approach of analysing all mixtures of the
benchmark might not directly reflect individual casework pipelines.
This is because:

• Laboratories might impose additional conditions on the quality of
a mixture. If these conditions are not satisfied, a mixture might
not be analysed at all or not reported, or a different replicate
might be used. We discussed an example of such an issue with
one of the mixtures in Supplementary Material 2.

• Human expert analysts will scrutinise the results output by an
algorithm. For example, in the case of the two scenarios discussed
in Section 3.1, an experienced analyst would immediately notice
the unnatural distribution of per-locus LRs.

• Despite great efforts by the PROVEDit team to create a plausible
laboratory simulation of sample degradation, there remains the
possibility of a covariate shift between the crime-scene samples
and the ones created in a laboratory.

An interesting extension of the benchmarks would be to scenarios in
hich the (simulated) relatives of the true contributors are considered
s PoIs. Such experiments would be more challenging for probabilis-
ic genotyping methods. Initial analyses, though without comparing
ifferent models, have already been performed [27].
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