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A B S T R A C T

We investigate a class of DNA mixture deconvolution algorithms based on variational inference, and we show
that this can significantly reduce computational runtimes with little or no effect on the accuracy and precision
of the result. In particular, we consider Stein Variational Gradient Descent (SVGD) and Variational Inference
(VI) with an evidence lower-bound objective. Both provide alternatives to the commonly used Markov-Chain
Monte-Carlo methods for estimating the model posterior in Bayesian probabilistic genotyping. We demonstrate
that both SVGD and VI significantly reduce computational costs over the current state of the art. Importantly, VI
does so without sacrificing precision or accuracy, presenting an overall improvement over previously published
methods.
1. Introduction

DNA mixture analysis using probabilistic genotyping (PG) software
is at the core of forensic science methodologies. While the greatest
attention has to be placed on the accuracy of the results, there are
other factors that play a role. Recently, it has been shown how the
precision of a PG system can be improved [1]. Run-to-run variability
was reduced by using Hamiltonian Monte Carlo inference and enforcing
strict convergence criteria. Another factor that can be considered is
the computational runtime. In many cases, estimating a likelihood
ratio (LR) can take more than an hour. Given the workload forensic
laboratories face, faster PG algorithms are desirable as long as they
produce results of equal accuracy and precision.

The accuracy of a PG result directly depends on how well the PG
algorithm is able to approximate or estimate the probabilities of the
parameters of a model given an observed electropherogram. Often, this
is formulated as a Bayesian estimation problem where the task is to es-
timate the posterior distribution. In state-of-the-art PG models [1,2], it
is not possible to calculate the posterior directly by integrating over the
parameters in a reasonable timeframe. Instead, sampling algorithms are
used, most prominently Markov-Chain Monte-Carlo (MCMC) methods
with random walk [2] or Hamiltonian proposal distributions [1]. These
algorithms are used to provide samples for approximating the posterior
distribution.

The posterior distribution lives in a space whose dimensionality
depends on the number of unknown parameters to be estimated. Since
the computational cost of a PG algorithm scales with the number

∗ Corresponding author at: Biotype GmbH, Dresden, 01109, Germany.
E-mail address: m.susik@biotype.de (M. Susik).

of model likelihood evaluations it requires, it is desirable to have
PG methods that estimate the posterior distribution as accurately as
possible using as few samples as possible.

The cost-performance trade-off is a classic research topic in Bayesian
inference [3]. There, besides MCMC methods, also other types of algo-
rithms have been proposed. In particular variational methods have been
successful at improving the computational performance of Bayesian in-
ference [4]. It therefore seems natural to also adopt these approaches in
DNA mixture deconvolution and benchmark their performance against
the state of the art in PG.

Here, we present implementations of two variational inference tech-
niques adapted to PG applications: variational inference with an ev-
idence lower bound objective (VI) [4] and Stein Variational Gradi-
ent Descent (SVGD) [5]. We show that both SVGD and VI achieve
shorter runtimes than the MCMC-based methods. Importantly, VI does
so without sacrificing precision or accuracy, presenting an overall
improvement over the state of the art in PG.

2. Materials and methods

In the context of PG, we seek to calculate a LR that compares two
competing hypotheses: the hypothesis of the prosecutor (𝐻𝑝) and the
hypothesis of the defendant (𝐻𝑑):

LR =
𝑃 (𝑉 |𝐻𝑝)
𝑃 (𝑉 |𝐻𝑑 )

=
∑

𝑗 𝑃 (𝑉 |𝑆𝑗 )𝑃 (𝑆𝑗 |𝐻𝑝)
∑

𝑗 𝑃 (𝑉 |𝑆𝑗 )𝑃 (𝑆𝑗 |𝐻𝑑 )
. (1)
vailable online 20 May 2023
872-4973/© 2023 The Authors. Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.fsigen.2023.102890
Received 1 December 2022; Received in revised form 2 May 2023; Accepted 15 M
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ay 2023

https://www.elsevier.com/locate/fsigen
http://www.elsevier.com/locate/fsigen
mailto:m.susik@biotype.de
https://doi.org/10.1016/j.fsigen.2023.102890
https://doi.org/10.1016/j.fsigen.2023.102890
http://creativecommons.org/licenses/by/4.0/


Forensic Science International: Genetics 65 (2023) 102890M. Susik and I.F. Sbalzarini

u
l

T
o
T
e
p

𝑃

T
f
p

i
p
t

𝑃

T
t
t
(
𝐻
p

o
t
a
a
e

m
d
f
Y
e

2

i

Fig. 1. The basic structure of a probabilistic genotyping algorithm: The algorithm consists of an estimator, a tool for approximating a distribution, and a model that defines the
nnormalised posterior, usually by defining the likelihood and the prior. Different popular choices of estimator methods and PG models are given in the circles. Their choices are
argely mutually independent.
o calculate this, one introduces a model 𝑀 for the probability of
bserving the evidence, given a genotype 𝑆𝑗 (‘‘genotype weight’’).
he parameters of the model 𝑀 are estimated by Bayesian infer-
nce. In Bayesian inference, the main task is to estimate the posterior
robability of the model parameters given data/evidence 𝑉 :

(𝑀|𝑉 ) =
𝑃 (𝑉 |𝑀)𝑃 (𝑀)

𝑃 (𝑉 )
. (2)

he probability of the evidence 𝑃 (𝑉 ) is a constant that can be neglected
or the purpose of optimisation. This leads to an unnormalised value
roportional to the posterior.

The probability of observing the evidence assuming a hypothesis
s calculated as the sum over all the possible genotype sets 𝑆𝑗 . The
robability of observing the evidence assuming a genotype set can be
hen calculated from the unnormalised posterior:

(𝑀|𝑉 ) ∝ 𝑃 (𝑀)
∑

𝑗
𝑃 (𝑉 |𝑀,𝑆𝑗 ) . (3)

he proportionality comes from the fact that 𝑃 (𝑆𝑗 |𝑀) is assumed
o be a uniform distribution and is therefore dropped. In practice,
he genotype weights are estimated from the posterior distribution
Eq. 5 in Supplementary Material 3) using Bayesian inference with
𝑑 the assumed hypothesis. The likelihood ratio is independent of the

robability of the evidence, as it crosses out.
A Bayesian inference algorithm can in practice be seen as consisting

f two parts: an estimator and a model (Fig. 1). The model defines
he unnormalised posterior, and the estimator defines the way how
n approximation of this distribution is obtained. These two parts
re largely independent of each other, meaning that, for example, an
stimator can be replaced with another one.

In practice, this ideally means that data scientists can create a
odel based on observed data and/or theoretical knowledge, while
ifferent estimators can be used interchangeably in order to optimise
or computational cost and/or accuracy and precision of the PG result.
et, the model might constrain the choice of the estimator, as different
stimators have different structural limitations.

.1. Model definition

In this work, we follow the model and hyper-parameterisation used
2

n Hamiltonian Monte Carlo (HMC) [1] with a few exceptions as
described next. These minor adaptations are required for variational
estimators to work correctly. We recollect the complete description of
the original model in Supplementary Material 3. The first adaptation
to the model concerns the likelihood probability distribution suggested
by the authors of STRmix™ [2]:

ln 𝑂
𝑥

∼ 
(

0, 𝑐
2

𝑥

)

. (4)

This postulates that the ratio of the observed peak height 𝑂 to the
expected peak height 𝑥 follows a log-normal distribution with mean
0 and a variance proportional to the square of a parameter 𝑐 simulated
by the model and inversely proportional to the expected peak height
𝑥. During inference, the estimator might thus try values of 𝑐 close to
0, as long as the Gamma prior [6] does not forbid this. The probability
density 𝑓Log of this parameterised log-normal distribution can then
reach arbitrarily large values:

{𝑂 = 𝑥 ∧ 𝑥 > 0} ⇒ lim
𝑐→0

𝑓Log (𝑥) → ∞ , (5)

as the distribution collapses to a Dirac delta distribution. This is the
first issue hampering the use of variational inference methods, as any
variational estimator will exploit the resulting high likelihoods and thus
ignore reasonable values of parameters.

The second issue is similar: Consider the prior probability distribu-
tions for the locus-specific amplification efficiencies (LSAE) 𝛼 with a
hyper-parameter 𝜎𝛼 set by the laboratory:

log10 𝛼 ∼  (0, 𝑖2) , (6)

𝑖2 ∼ Exp(𝜎𝛼) . (7)

The prior density for the LSAEs 𝑓LSAE is then also unbounded:

{𝛼 = 1} ⇒ lim
𝑖→0

𝑓 (0,𝑖2)(log10 𝛼) → ∞ . (8)

These singularities are not a problem for HMC estimators, who will
avoid them because of the high curvature of the posterior in the vicinity
of the singularities. When the sampler tries to explore these parts of
the posterior, the trajectory of the simulated Hamiltonian differs too
much from the expected Hamiltonian. The sample is then rejected and

marked as a ‘‘divergence’’. These samples then negatively impact the
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Table 1
Estimated priors based on 37 2- and 3-contributor Globalfiler™ ProvedIT mixtures not
used for the test benchmark.

Prior Distribution

Stutter peak height standard deviation 𝑐𝑠 − 6.086∼LogN(2.485, 1.031)
Allelic peak height standard deviation 𝑐𝑝 − 1.63∼LogN(1.975, 0.325)
LSAE standard deviation hyper-prior 𝑖∼LogL(−1.894, 0.236)

runtime of the algorithm. The convergence of the chains is slower and,
in extreme cases, can lead to a bias in the estimate.

Variational inference estimators, however, are not able to work with
posteriors that contain singularities. Any evaluation of the gradient
around a singular point would result in a drastic, possibly infinite
change of learnable parameters that renders inference unstable. We
therefore modify the model as follows:

• use shifted log-normal (LogN) priors for allele and stutter peak-
height standard deviations, instead of the Gamma priors used by
STRmix™.

• use a log–logistic (LogL) hyper-prior for the LSAE standard devi-
ation, instead of an exponential one on LSAE variance (Eq. (7)).

The exact choice of the prior distribution families, in our case log-
normal and log–logistic, is not crucial as long as the estimates densities
protect the algorithms from the singularities.

To estimate the parameters of these prior distributions, we start with
posterior estimation of a training set of DNA mixtures1 using flat priors.
We then extract, for each mixture, the samples (peak height variance,
stutter height variance, LSAE variance) that are larger than the 90th
percentile of the estimated parameter distribution. Finally, we choose
the parameters of the prior distributions that maximise the likelihood
of this subsample, following the ‘‘empirical Bayes’’ method.

For the following results, we used 37 2- and 3-contributor filtered
Globalfiler™ mixtures that were not a part of the test benchmark [8,9].
For the list of mixtures, please see Supplementary Material 1. The
estimated priors are presented in Table 1 and compared with the priors
from Riman et al. [8] in Supplementary Material 4, Figure 1.

The shifted peak-height standard deviation priors prohibit parame-
ter values smaller than the shift. The procedure behind the variational
algorithms will therefore never explore parameter values that cause
the undesirable behaviour. One could argue that this introduces a bias
into the analysis, as the ‘‘true’’ value of the parameter might not be
accessible to the estimator. While this is true, it is not specific to our
work. Indeed, also in other models these distributions are shifted to
the right of the estimates from the model, see, e.g., Figure 4 from
Taylor et al. [7]. Moreover, a natural meaning of the peak height
standard deviation parameter is the confidence of the model when
estimating peak heights. The lower the value of the parameter, the
more confident the model. An overestimation of these parameters might
be then desirable, since this increases the level of uncertainty of the
estimator.

2.2. Variational inference

In Bayesian inference, one typically distinguishes sampling meth-
ods, such as MCMC and HMC, from variational methods. Sampling
methods iteratively draw samples from the posterior. They construct
a Markov chain of the samples. The chains, as long as they are ergodic,

1 In our experiments, the use of mixture profiles instead of single-source
rofiles for calibrating the model provided wider posterior estimates for the
eak-height standard deviation, as also previously reported [7], which avoided
odel restriction issues
3

c

converge to the desired stationary distribution, which is the (unnor-
malised) posterior of the model in the limit of infinitely many samples.
In practice, however, the number of samples is finite. Therefore, con-
vergence criteria (e.g. the Gelman–Rubin test) are used to determine
when to stop the sampler. This trades off computational cost, which
is proportional to the number of samples drawn, with accuracy and
precision (i.e., reproducibility) of the result. Variational methods avoid
this trade-off by directly building an approximation to the posterior.
This approximation comes from a family of distributions, called the
variational family, which is selected by the design of the algorithm.
For simpler models, it is sometimes possible to construct an exact
variational family, but this is not the case for the model considered
here. Once an LR needs to be calculated, a variational method provides
a sample from its variational distribution. We note, however, that
sampling in VI is significantly cheaper than inference.

The principles behind the two implemented methods are illustrated
in Fig. 2 and explained in more detail in the next two sub-sections.

2.2.1. Variational inference with an evidence lower-bound objective
The first variational method we consider uses multivariate normal

distributions as the variational family Q parameterised with 𝑀 . It then
aims to minimise the Kullback–Leibler (KL) divergence of a variational
distribution 𝑄 ∈ Q:

KL (𝑄 (𝑀) ∥ 𝑃 (𝑀|𝑉 )) = ∫𝑀
𝑞(𝑚) log

(

𝑞(𝑚)
𝑝(𝑚|𝑉 )

)

d𝑚 , (9)

where 𝑝(𝑚|𝑉 ) and 𝑞(𝑚) are the densities of the posterior and the
variational distributions, respectively. The final result of VI is the
distribution from the variational family that resembles the posterior
the most, where resemblance is measured by the KL divergence be-
tween the two distributions. While KL divergence cannot be calculated
directly in our case, it can be shown that in general:

KL (𝑄 (𝑀) ∥ 𝑃 (𝑀|𝑉 )) = log𝑃 (𝑉 ) − ELBO , (10)

LBO = E𝑚′∼𝑄

[

log
𝑝(𝑚′, 𝑉 )
𝑞(𝑚′)

]

, (11)

here ELBO is the so-called ‘‘evidence lower-bound objective’’. Since
he log-evidence is a constant independent of the model, the KL di-
ergence is minimised by maximising ELBO. This formulation of the
ptimisation problem is flexible w.r.t. the choice of the variational
amily. In order to consider a wide choice of possible solutions, we here
se a multivariate Gaussian family with full covariance matrix.

This choice of variational family could harm the quality of the
esults if the true posterior distribution cannot be approximated by
ultivariate Gaussians. Empirically, however, we observe that the pos-

erior estimated by HMC, which should be a close approximation of the
rue posterior, is similar to a transformed multivariate Gaussian.2 We

therefore expect VI to work well. We compare the posterior estimated
by the different methods in Supplementary Material 4, Figure 2. We run
all three methods identically with the priors presented in Section 2.1 on
the F04_RD14−0003−42_43−1;9−M3a−0.15GF−Q0.5_06.15sec (re-
erred to as ‘‘F04’’) mixture from the ProvedIT dataset [10]. Since the
robability space is transformed [1], the marginal density plots do not
lways look Gaussian. A transformed normal distribution output by VI,
owever, approximates well the answer provided by HMC. Still, we
ote some differences exist, such as decreased variance of the estimated
arginal degradation distributions.

We maximise the ELBO using the Adamax algorithm [11]. This algo-
ithm internally uses a Monte-Carlo estimator for the ELBO according
o Eq. (10). We use 10 samples per estimation and a variable learning

2 The transformation is required, as the algorithms we use cannot work on
onstrained subspaces.
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Fig. 2. A visual illustration of the concepts behind the algorithms used here to estimate the posterior distribution. The true posterior distribution in this two-dimensional example
is shown by the cyan cloud. Top: VI starts with an initial distribution from the variational family (left), here a multi-variate Gaussian shown by the outline of its covariance ellipse
(black). A Monte Carlo sample is drawn from the current distribution (middle), and the model gradient is computed at each sample (arrows). The parameters of the distribution are
adapted accordingly, and the procedure is repeated until the estimated distribution fits the posterior (right). Bottom: In SVGD, particles are initialised randomly (left). An update
rule attracts the particles to the posterior’s probability mass and repels them from one another (middle). These updates are repeated until the particle density fits the posterior
(right). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
rate3 (LRate) schedule: The first iterations are performed with LRate
= 0.01; then, after every 100 iterations, the LRate is multiplied by
1.5 until it reaches 0.05. This adaptation prevents diverging gradients
that could otherwise be caused by bad initialisation of the variational
family. Indeed, during the first few iterations, gradient computation
could become numerically unstable, as an outlier sampled from the
variational distribution could cause it to significantly depart from rea-
sonable parameter values. Convergence of the optimiser is monitored
by comparing the mean value of the ELBO every 100 iterations. If this
mean is smaller than the mean from the previous hundred iterations,
the optimiser is stopped, since no further improvement was achieved.

2.2.2. Stein variational gradient descent
Stein variational gradient descent (SVGD) [5] intends to find a

composition of transformations for an ensemble of 𝑛 particles 𝑥 that
maps an initial distribution to the best approximation of the true
posterior as quantified by the KL divergence. The optimal trajectory
for particles is approximated by taking a discretisation schema. A single
iteration is defined as:

𝑥𝑖 ← 𝑥𝑖 +
𝜖
𝑛

𝑛
∑

𝑗=1

[

𝑘(𝑥𝑖, 𝑥𝑗 )∇𝑥𝑗 log 𝑝(𝑥𝑗 ) + ∇𝑥𝑗𝑘(𝑥𝑖, 𝑥𝑗 )
]

. (12)

The scalar 𝜖 is the learning rate, and ∇ denotes a gradient operator
w.r.t. the subscripted variable. Intuitively, Eq. (12) means that:

• The particles prefer to be in regions of high probability density,
as indicated by the gradient of the log-posterior. The log-posterior
of the neighbours will dominate this term for any particle given
the multiplication with the kernel.

• At the same time they are repelled from one another by the
gradient of the kernel in order to not collapse into a single mode
and cover the whole posterior.

Following Liu & Wang [5], we use a radial basis function kernel
𝑘(𝑥𝑖, 𝑥𝑗 ) = exp

(

−‖𝑥𝑖 − 𝑥𝑗‖22∕ℎ
)

, and we set bandwidth ℎ to med2∕ ln 𝑛
where med is the median of the pairwise distances between the 𝑛
particles. In our experiments, we use 100 particles and run 500 updates.

3 The learning rate is hyper-parameter that scales the magnitude of the
radient-descent updates.
4

The number of particles is manually chosen to balance the quality of
posterior estimation and the speed of inference. Our implementation
uses the Adamax algorithm [11] with learning rate 0.25 to efficiently
approximate the gradient descent in Eq. (12). Adjusting the learning
rate, as done for VI, is not necessary, since instabilities in the gradient
computation cannot occur.

When only one particle is used, 𝑛 = 1, SVGD reduces to maximum
a posteriori estimation, which is the method used in Euroformix [12].

We reduce memory consumption by iteratively evaluating the un-
normalised posterior 𝑝 in 10 equal batches of 10 particles each. This
hyper-parameter can be adjusted depending on the available compu-
tational resources. Memory consumption scales linearly with batch
size.

2.3. Implementation details

From the estimated posteriors, we compute LRs as described [1].
We first draw a sample from the estimated posterior distribution. For
SVGD, the 100 particles directly represent the sample [5]. For VI,
we sample 1000 points from the estimated Gaussian. We note that
increasing the number of particles in SVGD would linearly increase the
computational time, while in case of VI we sample from an explicit
Gaussian distribution only after the inference is finished, and thus we
can afford a larger sample. Subsequently, the same approach as in
HMC is used for both algorithms: we calculate the deconvolution by
averaging the values across all samples.

We implement both the SVGD and VI estimators using the Ten-
sorflow Probability library [13]. Gradients are computed using Ten-
sorflow’s automatic differentiation. All benchmarks are performed on
NC4as T4 v3 Azure cloud GPU instances unless specified otherwise.

3. Results

We validate the use of variational inference for forensic PG and
provide a comparative study between the two presented methods,
SVGD and VI, and HMC. We benchmark three characteristics important
for any PG system: the accuracy of the method, its precision, and
the computational runtime. We use the term scenario to indicate the
combination of a DNA mixture with a certain prosecutor/defendant

hypothesis.
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Table 2
Performance metrics for the three tested algorithms (HMC: Hamiltonian Monte Carlo
[1]; SVGD: Stein variational gradient descent [this work]; VI: variational inference with
evidence lower-bound objective [this work]) on the ProvedIT benchmark [10]; OotNT
= Opposite of the Neutral Threshold [9].

HMC SVGD VI

ROC AUC

2 contributors 0.99999 0.99999 0.99997
3 contributors 0.99894 0.99892 0.99886
4 contributors 0.99812 0.99643 0.99819
Combined 0.99896 0.99843 0.99887

OotNT with false
contributors

2 contributors 0 1 1
3 contributors 2 2 2
4 contributors 11 13 13

OotNT with true
contributors

2 contributors 1 1 0
3 contributors 10 10 14
4 contributors 10 11 9

OotNT rate
2 contributors 0.002 0.002 0.003
3 contributors 0.014 0.014 0.018
4 contributors 0.021 0.024 0.022

We compare the results on the ProvedIT mixtures from the NIST
omparative study [8]. The benchmark consists of 154 two-person
ixtures, 147 three-person mixtures, and 127 four person mixtures. For

ach mixture, we test all possible scenarios with one true contributor
nd the same number of scenarios with random false contributors, fol-
owing the work of Riman et al. [8]. Therefore, each scenario contains
ne assumed contributor (the ‘‘person of interest’’, POI) in 𝐻𝑝, and

only unknown contributors in 𝐻𝑑 . With the exception of the precision
benchmark, each scenario is run once. Many of the mixtures in the
dataset were degraded before analysis, and there are mixtures with
different amounts of template and different fractions of contributor
DNA material.

3.1. Accuracy

We observe almost identical performance in terms of the ROC area-
under-the-curve (AUC) between HMC (0.99896) and VI (0.99887), see
Table 2. SVGD performs slightly worse (0.99843), which is caused by
one scenario with true contributor 33 resulting in a large negative
log10 LR of −16.3753, see Supplementary Material 4, Figure 5. This is
mixture E05, which was already described in Supplementary Material
2 of Ref. [9]. The LR for the locus D12S391 and the sub-sub-source
hypothesis that resulted in the largest LR overall is 2.71 ⋅ 10−27. When
we consider the same alternative scenario as in Ref. [9], with the peak
18.3 (1220 RFU) added in locus D12S391, SVGD estimates a log10 LR of
11.646, which is close to the HMC estimate of 12.8367 in the same case.
The sub-sub-source LR for the D12S391 locus then becomes 89.2053.

An interesting question is why SVGD is more sensitive to such
missed peaks than both HMC and VI (log10 LR of 2.4072). It is known
that SVGD is particularly prone to the curse of dimensionality [14].
In Supplementary Material 4, Figure 2, we present data showing that
SVGD underestimates (compared to the other estimators) the allele
peak-height standard deviation. This increases the confidence of the
model. Therefore, this estimator is less robust against extreme obser-
vations, such as an uncalled peak with an RFU larger than 1000. It
is likely that this improves when a larger number of particles is used,
at the expense of increased computational cost. However, we do not
further consider this here, since VI outperforms SVGD in both accuracy
and performance then.

Next, we consider the numbers of OotNT (Opposite of the Neutral
Threshold [9]) scenarios with true and false contributors, as well as the
OotNT rates [9]. The results are again given in Table 2. In these metrics,
both SVGD and VI perform slightly worse than HMC. For example, VI
provided 4 OotNT scenarios with true contributors more than HMC for
the 3-contributor mixtures, and both SVGD and VI provided 2 OotNT
5

scenarios with false contributors more than HMC for the 4-contributor
mixtures. All of these scenarios are characterised by low certainty.
For example, the additional 3-contributor OotNT scenarios with true
contributors had log10 LRs of −0.7756, −0.2065, −0.2970, and −0.3269
in case of VI, and 0.1248, 0.3516, 0.2888, and 0.462 in case of HMC.
The detailed results are available in Supplementary Material 1.

Visualisations of the full results are given in Supplementary Material
4, Figures 3–8. All comparisons confirm the strong agreement between
the compared methods, with the difference between the log10 LRs from
the different methods rarely exceeding 2 bans (see Fig. 3). In the few
scenarios where differences are larger, both methods provide strong
evidence. The results for HMC are taken from the supplementary mate-
rials of Ref. [9], where the priors of Riman et al. [8] were used, whereas
here we use the modified priors described in Section 2.1. This indicates
that the exact choice of priors is not crucial to the reported results.

3.2. Precision

A desirable property of a PG software is low run-to-run variability.
It has been shown that HMC greatly reduces this variability compared
to random-walk MCMC [1]. Low run-to-run variability implies high
reproducibility of the results, which is known as precision. We compare
the precision of HMC as previously benchmarked [9] with the precision
of SVGD and VI. For this, we perform 10 independent repetitions of
the analyses for each scenario and compare two statistics: the standard
deviation of the resulting log10 LR and the difference between the
largest and smallest log10 LR. The measurements are presented in Fig. 4.
SVGD is overall less precise than the other two algorithms, with 8
scenarios having a run-to-run standard deviation of the log10 LR larger
than 0.2. The other two algorithms result in 3 scenarios each where
the standard deviations are larger than 0.1. In 14 (HMC) and 13 (VI)
scenarios, the standard deviations across runs are larger than 0.05. The
precision of SVGD can be improved by either increasing the number
of particles or using more iterations with learning-rate annealing. As
we will see below in Section 3.3, however, this would not compare
well against VI in terms of the computational cost and is therefore not
explored.

Visualisations of the full results are available in Supplementary
Material 2, with the raw data provided in Supplementary Material 1.

3.3. Runtime

The third performance metric of interest is the computational run-
time. Variational techniques are usually faster, which is the main
reason why they became popular with the deep-learning community.
We confirm this here for PG, observing significant speedups as shown
in Fig. 5. We compare the runtimes on identical computer hardware for
all 4-contributor scenarios of the benchmark [8]. The computationally
most demanding mixture takes 1 h and 54 min to be solved with HMC.
For SVGD, the longest observed inference time is 36 min 28 s. VI
provides the largest speedups, with the slowest inference completing
in 18 min and 27 s. On average, VI is 4.33 times faster than HMC and
1.72 times faster than SVGD on 4-contributor scenarios. In 81.1% of the
4-contributor scenarios (103/127) VI completes the inference in under
10 min and in 96.1% (122/127) in under 12 min. SVGD completes
91.4% (116/127) of these scenarios in under 20 min.

These runtime benchmarks used GPU hardware. Most
forensic laboratories, however, still use CPUs to compute. We
therefore confirm the runtimes of the best-performing algorithm,
VI, on four vCPU cores (AMD EPYC 7V12 Rome) for the
F03_RD14−0003−48_49_50_29−1;4;4;4−M2U15−0.403GF−Q1.3_06.15sec mixture.
For this scenario, VI runs for 10 min and 13 s on the GPU, whereas the
same inference on the CPU takes 67 min and 14 s. We note, however,
that the code contains no CPU-specific optimisations so that this figure
could probably be improved if needed.
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Fig. 3. Box plots of the absolute values of LR differences between estimators across all scenarios with true contributors, except for mixture E05 with Contributor 33.
Fig. 4. Precision comparison of the tested algorithms both in terms of the log10 LR standard deviation (top) and the difference between the largest and smallest log10 LR (bottom)
cross 10 independent repetitions for each scenario (1 scenario = 1 dot).
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. Conclusions

We presented two variational Bayesian inference algorithms for
robabilistic genotyping (PG): Stein variational gradient descent
SVGD) and variational inference with an evidence lower-bound ob-
ective (VI). These are applicable to PG models that are free of singu-
arities. We have therefore also shown how to adapt the PG models
f STRmix™ [2] to allow for variational inference. We then described
6

T

he algorithms and explained their working principles and underlying
ssumptions.

We then validated the algorithms and checked the validity of the
ssumptions on the ProvedIT mixtures from the NIST comparative
tudy [8] and compared with the Hamiltonian Monte Carlo (HMC)
ethod, which was recently benchmarked on the same data set [9].
ll three methods, HMC, SVGD, and VI were comparable in terms
f accuracy with HMC slightly more accurate than the other two.

his could, however, also be due to the different priors used in the
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Fig. 5. Comparison of the computational runtime of the different algorithms on the same 4-contributor mixtures. Each dot represents a different scenario.
HMC model. Importantly, VI achieved significantly lower computa-
tional runtimes than both SVGD and HMC, while maintaining the
high precision of HMC. It therefore could be a candidate for replacing
MCMC-based algorithms in practice and provide better user experience
due to faster runtimes. Faster runtimes would also enable laboratories
to run independent repetitions of the inference in order to quantify
reproducibility.

The run-to-run variability of all tested methods can be reduced at
the expense of additional computational cost. For HMC, this can be
achieved by performing more iterations. For SVGD, it can be done by
using more particles and/or by lowering the learning rate. For VI, one
could increase the size of the sample in the Monte Carlo scheme and/or
reduce the learning rate over iterations. In all cases, however, this
would increase the computational time of the inference, representing
the typical precision/runtime trade-off. The key question therefore is
which method offers the best trade-off while still maintaining high
accuracy. The present results suggest that VI offers the best trade-off
between accuracy, precision, and runtime.

While not outperforming in the benchmarks, SVGD is an algorithmi-
cally interesting method that offers ample opportunity for optimisation
and links to established mathematical frameworks such as particle
filters [15] for which efficient parallel software exists [16]. While our
implementation of SVGD was significantly faster than HMC, it was
overly sensitive to missing peaks as seen in case of the E05 mixture.

An important limitation of the present work is that our imple-
mentation of VI was limited to a multivariate Gaussian approximation
of the posterior. Recently, it has been shown that it is possible to
construct more general approximations using VI, theoretically even
a universal one [17]. This greater approximation power is achieved
by learning invertible distribution transformations, called normalising
flows. We tested possible flow architectures and obtained promising
results with inverse autoregressive flows [18]. Then, we often observed
improved quality of the posterior estimation, but the method had two
significant drawbacks: First, the computation time increased to become
comparable with that of HMC. Second, we could not find a robust way
to prevent gradient divergence, which happened occasionally when
normalising flows were used.

Taken together, our results not only provide a way of accelerating
inference in Bayesian PG without sacrificing much accuracy or preci-
sion, but they also open the field of research toward a more diverse
range of inference algorithms beyond sampling-based MCMC methods.
We hope this might trigger a discussion in the field and reinvigo-
rate the search for better, more scalable, and mathematically founded
7

algorithms for DNA mixture deconvolution in forensic genetics.
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