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Abstract/ Synopsis 

 

Type 2 diabetes is complex polygenic metabolic disorder of epidemic proportions. This 

review provides a brief overview of the susceptibility genes in type 2 diabetes that 

primarily affect pancreatic β-cells, with emphasis on their function and most relevant 

polymorphisms. More in detail we focus on Calpain 10, the only susceptibility gene 

identified thus far through a positional cloning approach in diabetic subjects. 
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Introduction 

Diabetes mellitus is a complex metabolic disorder with epidemic proportions. It currently 

affects 170 million people worldwide, and its prevalence is dramatically rising. Diabetes 

develops when the insulin production and secretion are not sufficient to satisfy the 

metabolic demands of the organism. The insulin hormone lowers the blood glucose 

levels, and any insufficiency in the insulin secretion and/or action leads to hyperglycemia 

and diabetes. According to the American Diabetes Association (ADA), diabetes can be 

classified as type 1 diabetes, type 2 diabetes, gestational diabetes, and other specific types 

of diabetes that cannot be included into any of the previous forms such as maturity-onset 

diabetes of the young (MODY) (1). In addition, an intermediate group of pre-diabetic 

subjects is recognized whose glucose levels, although not meeting the criteria for 

diabetes, are still too high to be considered normal, and is classified as impaired glucose 

tolerance (IGT) and impaired fasting glucose (IFG) (Table 1).   

 

Type 2 diabetes is the most common form of diabetes accounting for approximately 90% 

of all patients. Its frequent association with other metabolic disorders has given rise to the 

so called “metabolic syndrome” (2) whose concept has developed in the last 80 years (3, 

4), but has been recently questioned (5, 6). While the definitions of the metabolic 

syndrome by the WHO (7) and the National Cholesterol Education Program’s Adult 

Treatment Panel III (NCEP:ATP III) (8) are different, there is wide agreement that its 

essential components include glucose intolerance, obesity, hypertension and 

dyslipidaemia. Many factors contribute to the development of type 2 diabetes. Often 

environmental and behavioral factors as well as obesity contribute to its pathogenesis (9). 

Genetic factors, however, have also been shown to play a key role in the development of 
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diabetes. Sixty percent of the offspring from diabetic patients is estimated to have 

abnormal glucose tolerance by the age of 60 years (10). In MODYs the mutation of a 

single gene that is inherited as an autosomal-dominant trait causes diabetes. In recent 

years most MODY genes have been identified. The genetic background of type 2 

diabetes, which is the most common form of the disease, is instead only partially known. 

From a genetic point of view, type 2 diabetes is a complex polygenic disorder associated 

with polymorphisms of multiple genes whose frequency varies among different ethnic 

groups (11). Many of these genes are involved in glucose sensing or insulin secretion and 

action, while others are associated with increased susceptibility for metabolic conditions 

such as obesity and lipid disorders, which in turn, promote diabetes development. This 

review provides first a brief overview of the genes that confer susceptibility to type 2 

diabetes primarily by affecting β-cells, with emphasis on their function. For those genes 

which do not appear to directly impair β-cell function, such as peroxisome proliferating 

receptor-gamma (PPAR-γ), beta-3-adrenergic receptor (ADRB3) or adiponectin 

(ADIPOQ), the reader is referred to specific reviews on the topic (12, 13). The second 

part of this review summarizes recent advances in our understanding of insulin gene 

expression, which could be related to the association between polymorphisms in the 

calpain 10 gene and the increased susceptibility to type 2 diabetes (14). 
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Type 2 diabetes susceptibility genes of β-cells 

 

Glucose transporter 2 (GLUT2). This transporter is mostly responsible for the entry of 

glucose in β-cells. It is constitutively expressed at their surface, as well as in liver and 

intestinal cells. Since its capacity to transport glucose is very high, its opening enables the 

equilibrium between extracellular and intracellular glucose to be reached very rapidly. 

GLUT2 is encoded by the SLC2A2 gene that is located on human chromosome 3 and 

contains 11 exons. Its product is a peptide with 12 membrane spanning domains 

containing several sites for glucose binding. A single nucleotide polymorphism (SNP) 

that replaces threonine 110 with isoleucine within the second membrane spanning 

domain is modestly increased in type 2 diabetic patients. Mutation of valine 197 to 

isoleucine in the fifth membrane spanning domain impairs glucose transport and has been 

found in a diabetic patient (15-17). 

 

Glucokinase. Once it is inside the cytosol of β-cells, glucose is phosphorylated to 

glucose-6-phosphate by an atypical member of the hexokinase family called glucokinase 

(GCK, or hexokinase IV). The gene GCK is located on human chromosome 7 and 

contains 12 exons and acts as the “glucose sensor” of β-cells. Activation of GCK only 

occurs when glucose concentrations are above 5 mM (18). Contrary to the other members 

of the hexokinase family, GCK is not inhibited by its product, thus enabling GCK to 

remain active while glucose is abundant. This enzyme regulates therefore the metabolic 

flux of glucose into β-cells and is the rate-limiting step for glycolysis. This key metabolic 

pathway produces ATP from the anaerobic and aerobic oxidation of glucose metabolites, 

and eventually induces the secretion of insulin. The importance of GCK in glucose 
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homeostasis and diabetes is highlighted by the identification of many GCK mutations that 

alter the threshold for glucose-stimulated insulin release. On one hand, activating 

mutations can lower the threshold for insulin release to 1.5 mM, thereby causing 

persistent hyperinsulinemic hypoglycemia of infancy (PHHI) (19). Inactivating mutations 

on both GCK alleles, on the other hand, increase the levels of glucose required to 

stimulate insulin secretion, hence leading to permanent neonatal diabetes (diabetes at 

birth) (20). Inheriting inactivating mutations on a single GCK allele are responsible 

instead for mild hyperglycemia and MODY2 (21).  

 

Insulin.  

Insulin was the first hormone to be identified (22). Most animals have a single copy of 

the insulin gene, which in human is located on the short arm of chromosome 11. Rodents 

have two non-allelic insulin genes (I and II) that encode identical polypeptide chains, but 

differ in the number of introns and chromosomal location (23). The initial translation 

product of the insulin mRNA is preproinsulin, which is converted into proinsulin 

following the co-translational removal of its signal peptide. After its exit from the Golgi 

complex and sorting into secretory granules (SGs), proinsulin is cleaved by two Ca2+ 

dependent converting proteases termed protein convertase 1/3 (PC1/3) (24-27), and 2 

(PC2) (28). These cleavages separate proinsulin into three polypeptides named chain A 

(21 amino acids), chain B (30 amino acids) and the intervening C-peptide, respectively. 

Chains A and B remain associated by two disulfide bridges and together form insulin. 

Several SNPs and mutations have been identified within the insulin gene, which are 

associated with an increased risk for type 2 diabetes. The phenylalanine at position 24 is 

highly conserved and its aromatic ring is thought to be important for anchoring insulin to 
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the insulin receptor (IR, see below). Mutations affecting this residue are associated with 

diabetes (29). Another point mutation that converts arginine 65 into histidine prevents 

proinsulin cleavage, thereby causing increased proinsulin secretion and diabetes (30, 31). 

 

ATP-sensitive K+ channels (KATP channels). ATP production from glycolysis increases 

the ATP/ADP ratio within β-cells, hence favoring the binding of ATP to ATP-sensitive 

K+ channels (KATP channels) (32) and their closure. This causes the depolarization of β-

cell membranes (33), the opening of voltage-gated Ca2+ channels, and the entry of Ca2+. 

Ca2+, in turn, acts as a second messenger that triggers the exocytosis of insulin SGs. 

Insulin is secreted in two temporally distinct phases in response to glucose stimulation. 

The first phase of insulin secretion has its peak ~2-4 minutes after glycemia has reached 

the threshold value of ~5.5 mM and generally lasts up to 10 minutes. The second phase 

begins ~20 minutes after glucose stimulation, it reaches its plateau within 15 minutes and 

usually does not last longer than 60 minutes. Among several pathways inducing glucose-

stimulated insulin secretion, the KATP channel-dependent or triggering pathway is the one 

responsible for the first phase of insulin secretion, which results from the exocytosis of 

insulin SGs that are already docked to the plasma membrane. 

 

Most KATP channels consist of two different subunits - Kir6.2 and SUR1. Kir6.2 and 

SUR1 genes are adjacent to each other in the short arm of human chromosome 11. KATP 

channels are thought to be a complex including four SUR1 and four Kir6.2 proteins. 

SUR1 is a member of the ATP-binding cassette transporter family of proteins, which use 

the energy of ATP to transport molecules across membranes, and typically contain two 

ATP binding domains (also know as nucleotide binding folds (NBF 1 and 2) and two 
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transmembrane domains. Mutations in Kir6.2 or SUR1 can alter the nucleotide sensitivity 

and closure probability of KATP channels. There are mutations reported for NBF1 and 

NBF2 in SUR1 that favor the closure of the KATP channel, and are associated with 

increased insulin release and PHHI (34-36). Especially frequent in Kir6.2 is the 

replacement of glutamic acid 23 to lysine (E23K), which decreases insulin release (37-

39). A SUR1 variant, which is often linked to Kir6.2 E23K, has an alanine instead of a 

serine at position 1369 (S1369A) and is also associated with defects in insulin release and 

diabetes.  

 

Insulin receptor (IR). The gene encoding the IR is located on human chromosome 19. It 

contains 23 exons, and it is primarily expressed in insulin target cells, including 

hepatocytes, muscle cells, adipocytes and β-cells. The receptor is a heterotetrameric 

tyrosine kinase consisting of two insulin-binding extracellular α subunits and two 

predominantly intracellular β subunits (40), linked by disulfide bridges. Insulin binding 

elicits the kinase activity of the IR, which autophosphorylates first its β subunits and then 

insulin receptor substrates 1 (IRS1) and 2 (IRS2), which bind the phosphorylated 

receptor. Phosphorylated IRS1 and IRS2, in turn, act as adaptor proteins for the 

recruitment of factors associated with two distinct signaling pathways. One pathway is 

Ras-dependent and leads to the activation of MAP kinases, which are primarily 

responsible for the mitogenic effect of insulin. The other pathway is Ras-independent and 

prompts the activation of the serine/threonine kinase AKT/PKB following the generation 

of phosphatidylinositol 3-phosphates by phosphatidylinositol-3 kinase (PI3K). Among 

other functions, AKT/PKB triggers the translocation of the glucose transporter GLUT4 to 

the plasma membrane, thereby allowing glucose uptake by hepatocytes, muscle cells and 
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adipocytes. In β-cells the IR signaling is mostly relevant to sustain beta-cell mass and 

insulin secretion (41, 42). 

 

Mutations of the insulin receptor are responsible for leprechaunism, severe insulin 

resistance (43) with diabetes, acanthosis nigricans (44) and polycystic ovary syndrome 

(45). Knockout of mouse IR in beta cells was sufficient to reduce the first phase of 

insulin secretion and led to glucose intolerance (41). Polymorphisms in the IR gene, do 

not appear to be a common trait among the large majority of patients with type 2 

diabetes.  

 

IRS1. The gene encoding IRS1 is located on human chromosome 2. There are several 

missense variants of the IRS1 gene characterized by amino acid replacement, namely 

G81R, P512A, S892G and G972R, which have been suggested to be more common 

among type 2 diabetes patients then in control subjects (46, 47). Glycine 972, in 

particular, is located in close proximity to the two tyrosine phosphorylation sites that are 

involved in the binding of PI3K. Its replacement into arginine could therefore impair 

insulin by affecting the PI3K/AKT pathway (47).  

 

Phosphoinositide-3 kinase (PI-3K). PI-3K has a catalytic and regulatory subunit. The 

gene encoding the regulatory PI-3K subunit is located on human chromosome 5. This 

subunit contains two SH2 domains that bind tyrosine phosphorylated residues in motifs 

that are present in IR (two) and in IRS1 (four). The full activation of the PI-3K requires 

both SH2 domains to bind the tyrosine-phosphorylated motifs present in the IRS1. The 
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PI-3K missense variant M326I and the intronic variant SNP42 are associated with 

increased diabetes risk and have been proposed to affect glucose homeostasis (48-50). 

 

Hepatocyte nuclear factor 1-α  (HNF-1α). HNF-1α is a transcription factor that plays a 

key role in the development and function of the pancreatic β-cells by regulating the 

expression of many genes, including insulin and HNF4α (51). In addition to β-cells, it is 

highly expressed in liver and kidney. The HNF1α gene is located on human chromosome 

12. The HNF1α protein is active as a homodimer, which is stabilized by the co-factor 

DCOH (52). A subset of mutations which destabilizes the formation of HNF1α dimers  

accounts for the deficient insulin production and secretion in MODY3 (53, 54). Due to its 

role in β-cell development there is growing evidence that HNF1α missense variations 

may also play a role in the development of type 2 diabetes. Common HNF1α missense 

variants A98V, S319G and P447L are associated with lower insulin secretion (55), 

whereas  the I27L variant is linked to reduced insulin sensitivity. Recent meta-analysis 

studies, however, have suggested that common HNF1α variants, with the exception of 

the rare V98 allele, play only a minor role in type 2 diabetes unless associated with other 

genetic or environmental predisposing factors (56, 57). 

  

Hepatocyte nuclear factor 4-α  (HNF-4α). The gene encoding HNF4α is located on 

human chromosome 20. It regulates gene expression in liver, pancreatic β-cells, kidney 

and intestine during embryonic development, but also in adult life. Specifically, it 

controls the expression of insulin, GLUT2, mitochondrial uncoupling protein-2 and other 

genes linked to insulin secretion (58). Mutations of this gene cause insulinopenia, thereby 

indicating that reduced levels of HNF4α lead to β-cell dysfunction (59-61). 
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In particular, coding genetic variants of HNF4α have been identified in MODY1 patients. 

Other genetic variants associated with both MODY1 and type 2 diabetes are found in the 

HNF4α alternative promoter region called P2, where HNF1α binds (62-64, 51). 

 

NEUROD1. NeuroD1 is a basic helix-loop-helix (bHLH) transcription factor that is 

important for cell fate determination during neurogenesis (65). The NEUROD1 gene is 

mapped on human chromosome 2 and it is highly expressed in brain as well as in the 

precursor of several islet cells, including β-cells. Specifically, it regulates insulin gene 

expression by binding to a critical E-box motif in the insulin promoter (66). Accordingly, 

NeuroD1 knockout mice display an abnormal pancreatic islet morphogenesis and 

diabetes (66). Insertion of a cytosine at position 206 in NEUROD1 generates a truncated 

polypeptide lacking the C-terminal trans-activation domain and is responsible for 

impaired insulin secretion and MODY6. Replacement of arginine 111 with leucine 

(R111L) within the bHLH domain, which is responsible for DNA binding, is associated 

instead with type 2 diabetes.  

 

Calpain-10 (CAPN10) 

Unlike the above mentioned type 2 diabetes susceptibility genes, CAPN10 was not 

identified using a candidate gene approach, but through a unique positional cloning 

strategy following a genome-wide scanning in diabetic sibling pairs (67, 14). In 

particular, linkage studies in the Mexican-American population localized a major 

susceptibility locus for type 2 diabetes on a region of chromosome 2q, which contains the 

CAPN10 gene. Subsequent analyses revealed that an intronic G/A polymorphism in 

CAPN10 termed SNP-43 was linked to type 2 diabetes. However, the association of 
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SNP-43 with the disease was weak (14), except in Pima Indians (68)  and African-

Americans (69). Inclusion of two additional intronic SNPs, defined as SNP-19 and SNP-

63, allowed the further identification of two major CAPN10 haplotypes, which have been 

termed 112 and 121 and whose combination is associated instead with type 2 diabetes 

among multiple ethnic groups (14, 70-77). The 112/121 haplotype has a variable 

population frequency and correlates with reduced levels of CAPN10 mRNA in muscle 

cells and insulin resistance (14, 68, 71).  

 

Calpains are cytosolic cysteine proteases that catalyze the endoproteolytic cleavage of a 

wide array of substrates, including cytoskeletal proteins, kinases, phosphatases and 

transcription factors (78, 79). The human genome includes 14 calpain genes. Most 

information about calpains has been gathered through studies on calpain-1 and calpain-2, 

which are ubiquitously expressed and are activated in vitro by low and high levels of 

Ca2+, respectively. Calpains preferentially recognize bonds between protein domains, 

thereby leading to the generation of large peptide fragments that retain functionally intact 

domains. Calpains are regarded therefore as bio-modulators, since the properties of 

substrate proteins are often modified after calpain hydrolysis (79-82). In addition to type 

2 diabetes, deficits in calpain activity have been associated with the development of 

autosomal recessive limb-girdle muscular dystrophy type 2A (LGMD2A), cataracts, and 

age-related hypertension (83). 

 

How is CAPN10 contributing to the development of type 2 diabetes? Until today there is 

no clear answer to this question, especially because the specific function of CAPN10 

remains to be elucidated. Inhibition of CAPN10 activity was originally associated with 
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~60% decrease in insulin-stimulated glucose uptake into cultured mouse adipocytes 

because of impaired translocation of glucose transporter 4 (GLUT4)-containing vesicles 

to the plasma membrane (84). Recent studies, however, have shown that deficits of 

GLUT4 vesicle translocation resulted from the inhibition of proteasome cysteine 

proteases, rather than calpains (85). In β-cells CAPN10 activation is required for 

promoting apopotosis in response to ryanodine, fatty acids, and low glucose (86). 

Increasing evidence indicates that calpains can also regulate β-cell secretion. Exposure of 

mouse islets to calpain inhibitors lead to increased glucose-dependent insulin release 

(87), possibly by acting on proteins involved in the exocytosis of the insulin-containing 

secretory granules. Conversely, calpain inhibition decreased insulin secretion from rat 

insulinoma cells (88). This diminution may result from the reduced proteolysis of SNAP-

25 (89), a protein implicated in the fusion of secretory granules with the plasma 

membrane. These inhibitors, however, can affect other calpains in addition to CAPN10. 

Recent studies, in particular, have pointed to the role of calpain-1 (Figure 1) in the up-

regulation of insulin production through the cleavage of the receptor tyrosine 

phosphatase-like protein ICA512/IA-2 (90). ICA512 is enriched in the membrane of 

insulin secretory granules (91) and is involved in the regulation of insulin secretion (92). 

Upon secretory granules exocytosis, ICA512 is transiently inserted into the plasma 

membrane where its cytoplasmic domain is proteolyzed by calpain-1. The ICA512 

cytosolic fragment resulting from this cleavage is then targeted to the nucleus, where it 

up-regulates the expression of insulin (90) and other secretory granule components (our 

unpublished observations)(Figure 2). Through this novel pathway β-cells could directly 

adjust the production of secretory granules to their consumption. Hence, it would be 

interesting to determine whether ICA512 is also cleaved by CAPN10, and if so, whether 
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this process is linked to the increased susceptibility to type 2 diabetes in carriers of the 

112/121 haplotype.   

 

Conclusions 

Diabetes and its complications represent one of the major threats to public health 

worldwide. Increasing evidence in human and animal models indicate that deficient β-

cell function is an essential factor for the development of the disease. Genetic studies 

have led to the identification of numerous susceptibility genes for type 2 diabetes, most 

of which regulate β-cell glucose metabolism, gene expression and/or insulin secretion. 

Hence, the need for elucidating further the physiology of β-cells in normal and 

pathological conditions, and hopefully alleviate the burden of diabetes, could not be more 

compelling. 
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Figure legends 

 

Figure 1. Schematic representation of CAPN 1, CAPN4 and CAPN10 domain structure.  

Figure 2. Schematic representation of the ICA512 signaling pathway. 
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