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Abstract

The human gene AGTRL1 is an angiotensin II receptor-like gene expressed in vasculature, which acts as the receptor for the small pep-
tide APELIN, and a co-receptor for Human ImmunodeWciency Virus. Mammalian AGTRL1 has been shown to modulate cardiac con-
tractility, venous and arterial dilation, and endothelial cell migration in vitro, but no role in the development of the vasculature, or other
tissues, has been described. We report the identiWcation and expression of the zebraWsh ortholog of the human gene AGTRL1. ZebraWsh
agtrl1a is Wrst expressed before epiboly in dorsal precursors. During epiboly it is expressed in the enveloping layer, yolk syncytial layer
and migrating mesendoderm. During segmentation stages, expression is observed in epithelial structures such as adaxial cells, border cells
of the newly formed somites, developing lens, otic vesicles and venous vasculature.
© 2006 Elsevier B.V. All rights reserved. 

Keywords: ZebraWsh; Epiboly; Cell migration; G protein-coupled receptor; Somitogenesis; Delta/Notch; Gene expression; Veins; Vasculature; Embryo-
genesis; Angiotensin receptor
1. Results and discussion

G protein-coupled receptor proteins (GPCRs) are multi-
ple-pass transmembrane domain proteins involved in the
signal transduction of many major developmental path-
ways (Strosberg, 1996; Malbon, 2005). Angiotensin recep-
tor proteins are GPCRs that bind short polypeptide ligands
(Angiotensins) and have been intensively studied due to
their role in regulation of blood pressure (Thomas and
Mendelsohn, 2003). Angiotensin receptors deWne a verte-
brate subfamily of the GPCRs that includes Angiotensin II
receptor-like 1 (AGTRL1), also known as APJ or Msr
(Devic et al., 1996; Devic et al., 1999; O’Dowd et al., 1993),
and Angiotensin II type 1 and 2 receptors (AGTR1,
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AGTR2). Control of cell migration is a feature of many
angiotensin receptor subfamily members, for example
endothelial cells (ECs, Benndorf et al., 2003), vascular
smooth muscle cells (VSMCs, Chassagne et al., 2002) and
neurons (Cote et al., 1999). In addition, the zebraWsh che-
mokine SDF-1 and its angiotensin subfamily receptor odys-
seus/Cxcr4b are involved in the directional migration of
primodial germ cells (Doitsidou et al., 2002; Knaut et al.,
2003) and angiotensin II acts through AGTR1 to stimulate
migration of rat VSMCs (Jing et al., 2002). Angiotensin
receptors are also involved in vascular smooth muscle cell
proliferation during development (Sayeski and Ali, 2003).

AGTRL1 binds the short polypeptide ligand Apelin
(Tatemoto et al., 1998) and acts as a co-receptor for human
and simian HIV strains (Choe et al., 1998; Edinger et al.,
1998). Recently, a role for Apelin/AGTRL1 has emerged in
control of cardiovascular function (Chen et al., 2003). Ape-
lin is known to be a potent stimulator of cardiac contractil-
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ity (Szokodi et al., 2002), an arterial and venous dilator
(Cheng et al., 2003) and can stimulate gastric cell diVerenti-
ation in vitro (Wang et al., 2004). In mouse, Agtrl1 has been
shown to be an early marker of vascular development
(Devic et al., 1999; Saint-Geniez et al., 2003; Saint-Geniez
et al., 2002). However, targeted mutation of Agtrl1 in mice
had no observable eVect on embryonic development or his-
tology of various tissues that were examined (Ishida et al.,
2004), and so potential embryonic functions for AGTRL1
remain unclear. In this paper we report the discovery and
developmental expression of the zebraWsh ortholog of
human AGTRL1 in a screen for genes expressed during
somitogenesis.

1.1. Isolation of the zebraWsh ortholog of human AGTRL1/
APJ

In a whole mount in situ transcript hybridization screen
for genes involved in somitogenesis and neurogenesis
(Tamme et al., 2001), we discovered a cDNA clone (BR131)
of a gene with sequence similarity to the Angiotensin
Receptor-like subfamily of the GPCRs, expressed at high
levels in the epithelia separating newly formed somites and
at lower levels in other epithelial structures (Figs. 2, 3). We
isolated a cDNA clone containing the entire open reading
frame from a 9 to 16 h post fertilisation (hpf) library and
compared its putative peptide sequence with those of other
Angiotensin Receptor-like genes (Fig. 1A). Phylogenetic
analysis revealed that the zebraWsh gene is orthologous to
the human gene AGTRL1 (Fig. 1B; see Section 2). Recent
data base searches have revealed another zebraWsh
AGTRL1 ortholog, therefore we have named the gene stud-
ied in this manuscript zebraWsh agtrl1a (encoding the puta-
tive protein Agtrl1a).

1.2. agtrl1a expression during blastula and gastrula stages

To deWne the tissues in which agtrl1a is expressed during
embryonic development we performed whole mount in situ
transcript hybridisation on embryos throughout the Wrst
24 h post fertilisation (hpf). No maternal agtrl1a expression
was detected prior to MBT. Zygotic agtrl1a expression was
Wrst detected at the oblong stage (3.7 hpf) in a radially
asymmetric domain in the deep cells (Fig. 2A,A�), persisting
to dome stage (4.3 hpf, Figs. 2E,E�); this expression domain
was absent in Maternal-Zygotic one-eyed pinhead (MZoep)
embryos, indicating a dependence on Nodal signalling
(Gritsman et al., 1999); (data not shown). agtrl1a expres-
sion is located dorsally, as shown by double staining with
probes for transcripts of agtrl1a and for the dorsal marker
chordin (chd, Schulte-Merker et al., 1997); (Figs. 2C and D).
At dome stage (4.3 hpf), agtrl1a was also expressed in a
superWcial layer of cells, likely the enveloping layer (EVL)
(Fig. 2E,E�). Starting at germ-ring stage (5.7 hpf), agtrl1a
transcripts accumulated in the margin (arrowheads), and
could be observed in Xattened ring shapes adjacent to the
yolk over the animal pole (arrows; Fig. 2F,F�). To help dis-
tinguish these cell types, thin sections were cut and exam-
ined, and were consistent with expression in the EVL, yolk
syncytial layer (YSL) and the marginal hypoblast
(Fig. 2G1-3).

During epibolic gastrulation (6–10 hpf), agtrl1a was
expressed in a dispersed hypoblastic cell population, the
majority of which appeared to migrate animally and dor-
sally away from the margin (Figs. 2H–K�). These cells
were absent in MZoep embryos, indicating a mesendo-
dermal identity, but the larger Xattened, predominantly
animal pole staining pattern remained, conWrming this as
YSL expression (Fig. 2I,I�). Some of the agtrl1a-positive
hypoblastic cells accumulated at the dorsal midline
(arrow), and others appeared to form adaxial precursors
(arrowheads) or contribute to the prechordal plate (aster-
isk; Fig. 2J� and K�). The arrangement and number of
these cells was not dramatically perturbed in either spa-
detail (spt) or casanova (cas) mutant embryos (data not
shown), indicating that they are not entirely of anterior
trunk paraxial mesoderm, or endodermal fate (Dickmeis
et al., 2001; GriYn et al., 1998; Kikuchi et al., 2001).
Expression of agtrl1a at the 2 somite stage was consistent
with cephalic mesoendodermal identity (Fig. 2L). Thus,
migratory cells are located in regions that normally con-
tribute to heart, head mesenchyme, pharyngal endoderm,
vasculature and myeloid blood lineages. We conclude
that expression of agtrl1a in migrating cells is a feature
conserved with other angiotensin receptor subfamily
members.

1.3. agtrl1a expression during segmentation and pharyngula 
stages

In segmentation and pharyngula stage embryos,
agtrl1a was expressed in a range of epithelial tissues
(Fig. 3). At 14 hpf, agtrl1a expression was evident in the
otic vesicle (Figs. 3A and C) and in the epithelium cover-
ing the retina, being maintained as these cells invaginated
to form the lens (Figs. 3A, B, and D). We observed
agtrl1a expression in the tailWn primordium before 24 hpf
(Fig. 3C). agtrl1a was also expressed in vascular primor-
dia and then in forming vessels such as the middle cere-
bral vein (Fig. 3E) and primary caudal vein (Figs. 3F and
G). We did not observe expression in the dorsal aorta,
suggesting that agtrl1a expression may be restricted to
venous vasculature. Thus, vascular expression is evolu-
tionarily conserved for vertebrate AGTRL1 genes. In
addition to cranial vasculature, clusters of agtrl1a-posi-
tive cells were observed in the pharyngeal region at 24 hpf
(Fig. 3H). To test whether these cells might be the endo-
derm of the pharyngal pouches, we examined expression
in oep and in cas, where pharyngeal expression of nkx2.5
is absent due to failure of endodermal diVerentiation
(Alexander et al., 1999; Schier et al., 1997). We Wnd that
agtrl1a expression was absent in both oep and cas
mutants at 24 hpf, speciWcally in the pharyngeal region
and presumptive mouth (Figs. 3I,J, asterisks).
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1.4. agtrl1a expression and regulation during somitogenesis

During somitogenesis, agtrl1a was expressed in the
posterior presomitic mesoderm (PSM) and lateral tail
bud, adaxial cells, and in stripes in 3–5 of the most
recently formed somitic epithelia (Figs. 3A and C, Fig. 4).
In addition, agtrl1a shows variability in the anterior
PSM where new somites are forming, with either one or
two strong stripes of expression (Figs. 4A and B). To
establish the part of a somite in which agtrl1a is
expressed we stained embryos simultaneously for agtrl1a
and myod (Weinberg et al., 1996) or dld (Dornseifer et al.,
1997) expression. The stripes of agtrl1a are complemen-
tary to those of myod (Fig. 4A and B) and overlap those
of dld (Fig. 4C). Note, however, that agtrl1a expression
overlaps that of myod in adaxial cells (Figs. 4A and B).
Thus, agtrl1a is expressed in the anterior half of newly
formed or forming somites. To test whether the variable
Fig. 1. Sequence and phylogenetic analysis of zebraWsh agtrl1a. (A) ClustalW alignment of a putative translation of zebraWsh agtrl1a (Dr Agtrl1a) against
a duplicate ortholog agtrl1b (Dr Agtrl1b) and their human (top) and Xenopus (bottom) orthologs. Residues conserved in all four sequences are boxed in
black shading while those conserved in three or two of the four proteins are boxed in grey. (B) Phylogenetic analysis (MRBAYES) of DNA sequences of
zebraWsh agtrl1a (Dr Agtrl1a, see arrow) and closely and distantly related G protein-coupled receptors. ZebraWsh rhodopsin was used as outgroup. Values
for node posterior probabilities are indicated where these were less than 1. See Section 2 for sequence accession numbers. The correspondence between
branch length and nucleotide substitutions per site is indicated below the tree.
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PSM expression observed reXects dynamic changes like
her1 cyclic gene transcription (Holley et al., 2000; Sawada
et al., 2000), we stained embryos simultaneously for
agtrl1a and her1. agtrl1a expression domains in the PSM
were always static in comparison to the wavefronts of
her1 expression, indicating that agtrl1a is not expressed
cyclically (Fig. 3D). Combined, these data indicate that
cells that will form the anterior epithelial border of a
somite begin to express agrtl1a approximately an hour
before the morphological appearance of the furrow.

A number of mutations are known to aVect the forma-
tion of somites (van Eeden et al., 1996). Mutations aVect-
ing Notch signalling (e.g. beamter bea/deltac) (Julich
et al., 2005), deadly seven (des/notch1a) (Holley et al.,
2002), mind bomb (mib) (Itoh et al., 2003), and after eight
(aei/deltad) (Holley et al., 2000) lead to a loss of coordination
Fig. 2. Expression of agtrl1a during blastula and gastrula stages In situ transcript hybridisations on embryos up to 11 hpf. (A–F) Expression pattern of
agtrl1a through blastula stages. Lateral views A, B, E, and F (upper panels) and animal pole views A�, B�, E�, F� (lower panels), all with dorsal to right. C
shows dorsal expression domain of chd, D shows embryo co-hybridized with chd and agtrl1a riboprobes. In F and F� arrowheads marks the germ-ring and
arrows indicate the YSL nuclei. (G) Sections through 6 hpf embryos after in situ transcript hybridisation against agtrl1a. The diagram shows the positions
of the sections. (1) Horizontal section through mesendodermal part of the embryo (shield to top), (2) vertical section through the embryo, (3) vertical sec-
tion through the shield; y, yolk; e, enveloping layer, h, hypoblast, ysl, yolk syncitial layer. (H–K) Expression of agtrl1a during gastrula stages. Lateral views
with dorsal to right H–K, dorsal views H�, J�, K� and animal view I�. Dashed lines mark the gastrula margin; in K� the asterisk, arrow and the arrowheads
mark the prechordal plate, the axial mesoderm, and the adaxial cells, respectively. I, I� shows agtrl1a expression in MZoep embryos. (L) Flat mounted
embryo with anterior up, showing agtrl1a expression in the head.
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of cyclic gene expression in the cells of the PSM (Jiang
et al., 2000; Oates and Ho, 2002), while mutation of the
fused somites (fss/tbx24) gene results in loss of any
division of paraxial mesoderm into somites (Nikaido
et al., 2002). To understand the regulation of agtrl1a in
the paraxial mesoderm, we compared agtrl1a expression
in mutant backgrounds to wild-type (Figs. 4E–I).
Reduced “salt and pepper” expression of agtrl1a was
observed in the somitic regions of mutant embryos with
defective Notch signalling (Figs. 4F–H) while no
expression could be seen in this region in the fss/tbx24
mutant (Fig. 4I). agtrl1a expression in adaxial cells was
not aVected in any of the above mutant backgrounds.
Thus, agtrl1a expression is downstream of mechanisms
controlling the patterning of paraxial mesoderm into
segments.
Fig. 3. Expression of agtrl1a during segmentation and pharyngula stages in situ transcript hybridisations showing agtrl1a expression in embryos from 14
to 24 hpf. (A) Dorsal axial view of 14 hpf embryo. Expression is observed in the epithelium covering the retina (lens primordium, lp), putative vascular pre-
cursors (vp) lateral to mid- and hindbrain, in otic vesicles (ov), in somitic epithelia (se), presomitic mesoderm (psm) and adaxial cells (ad). (B) Lateral view
of head of embryo in A. (C) Lateral view of an embryo at 18.5 hpf showing agtrl1a expression in otic vesicles (ov), tail Wn primordium (tfp), presomitic
mesoderm (psm) and the most recently formed somite epithelium (se). (D) Transverse section at the level of the diencephalon (di) at 24 hpf showing
expression in the developing lens (l). Dorsal is up. (E) Lateral view of the developing head of an embryo at 24 hpf showing agtrl1a expression in developing
vasculature. The primordial midbrain channel (pmbc), middle cerebral vein (mcev) and developing eye (ey) are indicated. (F) Lateral view of the yolk
extension and cloaca region of an embryo at 24 hpf showing expression in the primary caudal vein (pcv) and intermediate cell mass (icm). (G) Transverse
section at the level of the yolk extension at 24 hpf showing expression in the primary caudal vein. (H–J) agtrl1a expression in the pharyngeal endoderm
(pe) in wt (H), is absent in cas (I) and oep (J) embryos (asterisk) at 24 hpf seen in lateral oblique view, anterior to left.
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2. Experimental procedures

2.1. Cloning of agtrl1a cDNA

Clone BR131 was isolated in a whole mount in situ transcript
hybridisation screen for genes involved in somitogenesis and neurogen-
esis (Tamme et al., 2001). Primers BaRa1 (5�-ACTACAGTAGACG
ACAC TGGG-3� and 5�-TCTTCAGCACATGAAAAGGCG-3�) were
designed from BR131 sequence and used to screen �-bacteriophage sub-
libraries (Lardelli, 2002) generated from a 9 to 16 hpf library kindly
donated by D. Grunwald (University of Utah, Salt Lake City). A cDNA
clone containing the entire open reading frame of agtrl1a was subse-
quently isolated and sequence submitted to GenBank with the Acces-
sion No. DQ983235.

2.2. Phylogenetic analysis

AGTRL-related DNA sequences (accession numbers below) were
aligned using ClustalW. Bayesian analysis was conducted using the
MRBAYES v3.1.2 program with Danio rerio rhodopsin as an outgroup
(Huelsenbeck and Ronquist, 2001; Ronquist and Huelsenbeck, 2003).
Markov Chain Monte Carlo convergence was conducted essentially as
described (Larget and Simon, 1999) using a General Time-Reversible
model with invariable sites and gamma distribution values included
(GTR + I + G, Tamura and Nei, 1993; Yang, 1993). We ran four simul-
taneous MCMC chains for 40000 generations Wve times to generate Wve
distinct data sets, each with distinct random seeds. Trees were sampled
every 40 generations, and a total of 751 trees were saved for each data
set. The data sets were summarized and statistically analysed indepen-
dently and in conjunction to conWrm consistency between runs. The
combined dataset summary was used to determine the most probable
tree topology, branch lengths, and to calculate Wnal Bayesian posterior
probabilities. All MCMC analysis was performed using MRBAYES
v3.1.2. For our phylogenetic analysis we have used the agtrl1a sequence
previously deposited by others (see accession number BC056308) but
note that we believe this to contain the entire open reading frame (see
Fig. 1A), agtrl1b (BC097125), C. auratus-somatostatin-r (AF252879),
H. sapiens-somatostatin-r2 (BC019610), M. musculus-G-protein-cou-
pled-r1 (BC032934), H. sapiens-G-protein-coupled-r1 (BC067833), X.
laevis-mesenchyme-associated-serpentine-r (XLXMSRGEN), M. mus-
culus-angiotensin-rlike1 (BC039224), M. musculus-angiotensin-r1
(BC036175), X. laevis-angiotensin-II-r (S73274), H. sapiens-b-chemo-
kine-r-CCR4 (AB023889), M. musculus-chemokine-r (MMU15208), M.
musculus-il8-r-beta (BC051677), H. sapiens-chemokine-orphan-r1
(BC036661), D. rerio-rhodopsin (NM_131084), H. sapiens-AGTRL1
(NM_005161).

2.3. In situ transcript hybridization on whole-mount zebraWsh 
embryos

Embryos were raised at 28.5°C and staged as previously described
(Kimmel et al., 1995). In situ transcript hybridisation was performed as
described (Tamme et al., 2001) using single-stranded RNA probes
labelled with digoxigenin-UTP or FITC-UTP (Roche Ltd, Basel, Swit-
zerland). Riboprobes were synthesized directly from cDNA clones in
the Bluescript SK vector (Stratagene) or were synthesised used T7 RNA
polymerase after PCR ampliWcation of the template with M13 and
M13R primers.

2.4. Sectioning of embryos

6 hpf embryos were prepared routinely for paraYn embedding after
in situ hybridisation against agtrl1a. 5 �m thick sections were cut with a
rotary microtome.
Fig. 4. Expression of agtrl1a in somites and in mutants aVecting somitogenesis (A–D) In situ transcript hybridisations of 15–16 hpf (12–14 somite) wild-
type embryos, dorsal views over the posterior notochord (centre), anterior to top. (A and B) agtrl1a and myod; (C) agtrl1a and dld; (D) agtrl1a and her1:
agtrl1a expression is stained blue while myod, her1 and dld expression is red. B is a magniWcation of the region marked with the box in A; a, anterior somite
half, p, posterior somite half, arrow indicates the most recently formed somite furrow. (E–I) In situ transcript hybridisation to detect agtrl1a expression at
16 hpf in mutant zebraWsh embryos. (E) Wild-type embryo, normal somites are indicated with arrowheads. Embryos homozygous for the mutations (F)
after eight (aeitr233), (G) deadly seven (destp37), (H) beamter (beatm98) with region of disrupted agtrl1a expression indicated with an asterisk, and (I) fused
somites/tbx24 (fss/tbx24te314a).
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