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The subdivision of proliferating 
tissues into groups of non-inter-

mingling sets of cells, termed compart-
ments, is a common process of animal 
 development. Signaling between adja-
cent compartments induces the local 
expression of morphogens that pat-
tern the surrounding tissue. Sharp and 
straight boundaries between compart-
ments stabilize the source of such mor-
phogens during tissue growth and, thus, 
are of crucial importance for pattern for-
mation. Signaling pathways required to 
maintain compartment boundaries have 
been identified, yet the physical mech-
anisms that maintain compartment 
boundaries remained elusive. Recent 
data now show that a local increase in 
actomyosin-based mechanical tension 
on cell bonds is vital for maintaining 
compartment boundaries in Drosophila.

Compartments were first identified in the 
wings and abdomen of insects by clonal 
analysis.1,2 When single cells were geneti-
cally marked during early development, 
the descendant cells (‘clone’) grew up in 
the adult structure to a boundary line (the 
compartment boundary), and frequently 
ran along it, but never extended to the 
other side. These experiments revealed 
that, in Drosophila, the developing wing 
is subdivided during embryogenesis into 
anterior (A) and posterior (P) compart-
ments (Fig. 1A) and later, during larval 
development, into dorsal (D) and ventral 
(V) compartments. Compartments were 
subsequently identified in different parts 
of the fly, including the leg, haltere, head 
and abdomen.3-7 More recently, lineage 
tracing also revealed compartments in 

vertebrate embryos,8-16 indicating that the 
formation of compartments is a common 
strategy during both insect and vertebrate 
development.

Meinhardt’s theoretical work on 
 pattern formation proposed that boundar-
ies between compartments act as reference 
lines for positional information during 
tissue development, and that they serve 
as sources of morphogen synthesis.17,18 
Indeed, many compartment boundar-
ies, both in insects and vertebrates, have 
by now been shown experimentally to be 
associated with signaling centers that pro-
duce morphogens (reviewed in refs. 19 
and 20). The defined position and shape 
of signaling centers is important for the 
establishment of precise morphogen gra-
dients and patterning.21,22 In growing tis-
sues, however, the position and shape of 
signaling centers is challenged by cell re-
arrangements that take place during cell 
division.23,24 By inducing signaling centers 
along stable and straight compartment 
boundaries, precise morphogen gradients 
can be maintained in proliferating tis-
sues.25 Compartment boundaries  therefore 
play vital roles during the patterning of 
proliferating tissues.

How are straight and sharp 
 compartment boundaries maintained 
despite cell re-arrangements caused by 
cell division? The maintenance of com-
partment boundaries often requires local 
signaling between cells from the two 
adjacent compartments. In the develop-
ing hindbrain, for example, signaling by 
Eph receptors and ephrins is required to 
maintain the boundaries between adja-
cent rhombomeres.26,27 In the developing 
wing of the fly, signaling downstream of 
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in vivo.38-40 Circumstantial evidence 
 indicates that cadherins may play a role 
in maintaining compartment boundaries. 
In the telencephalon of mouse embryos, 
for example, the interface between cells 
expressing R-cadherin and cells express-
ing cadherin-6 coincide with the cor-
tico-striatal compartment boundary.11 
Interestingly, cortical cells ectopically 
expressing cadherin-6 sort into the striatal 
compartment, and the reverse is observed 
for striatal cells engineered to express 
R-cadherin. In addition to cadherins, 
further cell adhesion proteins have been 

boundaries is due to differences in the 
affinities between cells of adjacent com-
partments.36 Earlier theoretical work by 
Malcom Steinberg had indeed proposed 
that differences in the adhesiveness of 
cells lead to cell sorting.37 Steinberg’s 
hypothesis was based on the important 
insight that cell sorting closely resem-
bles the separation of immiscible liquids 
and that quantitative differences in cell 
properties suffice to explain cell sorting. 
Cadherins are a class of Ca2+-dependent 
cell adhesion molecules that can con-
fer differential cell adhesion in vitro and 

Hedgehog and Dpp is required to  maintain 
the A/P boundary,28-31 and Notch sig-
naling is required to maintain the D/V 
boundary.32,33 The physical mechanisms 
maintaining compartment boundaries, 
however, remained elusive for a long time. 
Two recent papers, by Landsberg et al. 
and Monier et al. now provide evidence 
that actomyosin-dependent tension on 
cell bonds is an important mechanism to 
maintain straight and sharp compartment 
boundaries.34,35

A longstanding hypothesis posed 
that the sorting of cells at compartment 

Figure 1. Increased cell bond tension at compartment boundaries in Drosophila. (A) The Drosophila wing imaginal disc is subdivided into anterior 
(A) and posterior (P) compartments. (B) Myosin II and F-actin (green lines) are enriched at the cell bonds between anterior cells and posterior cells 
compared to cell bonds elsewhere in the tissue. Mechanical tension (arrows) on cell bonds along the A/P boundary is increased. (C) Measurement 
of cell bond tension by laser ablation. Arrowheads depict the site of ablation. The two vertices at the ends of the ablated cell bond are displaced. (D 
and E) Sequential images of an E-cadherin-GFP-labelled cell bond within the anterior compartment (D) or at the A/P boundary (E) before and after 
laser ablation in wing imaginal discs. (F) Each parasegment of the Drosophila embryo is subdivided into anterior and posterior compartments. (G) 
Chromophore-assisted laser inactivation (CALI) to locally reduce Myosin II (green lines) in cells along the parasegment boundary (boxed area). As a 
consequence, dividing cells at the parasegment boundary intermingle.
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is simulated by randomly selecting a cell, 
increasing its area two-fold, and dividing 
the cell at a random angle. The energy 
in the whole network is then minimized 
and the procedure is repeated. Simulation 
of tissue growth renders the initially 
straight and sharp interface between the 
two compartments rough and irregu-
lar.34 However, by increasing locally cell 
bond tension at the interface between the 
two simulated compartments, the inter-
face remains straight.34 These computer 
simulations provide evidence that a local 
increase in cell bond tension is sufficient 
to maintain straight boundaries between 
compartments in proliferating tissues.

Monier et al. analyzed boundaries in 
the Drosophila embryo.35 The embryonic 
epidermis is subdivided into parasegments, 
and cells from adjacent parasegments do 
not intermingle53 (Fig. 1F). Similar to the 
D/V and A/P boundaries of larval wing 
imaginal discs, the authors found that 
the parasegment boundaries also display 
elevated levels of F-actin and Myosin 
II.35 Injection of the Rho-kinase inhibitor 
Y-27632 into embryos, or expression of a 
dominant-negative form of zipper, resulted 
in cell sorting defects at the parasegment 
boundaries. Live imaging of embryos 
furthermore showed that mitotic cells 
locally deform the parasegment bound-
aries, but that the boundaries straighten 
out at the onset of cytokinesis. When 
Myosin II activity was locally reduced 
by chromophore-assisted laser inactiva-
tion (CALI), the parasegment boundar-
ies failed to straighten out after cells had 
divided, and anterior and posterior cells 
partially intermingled35 (Fig. 1G). These 
results demonstrate an important role for 
Myosin II in separating anterior and pos-
terior cells at parasegment boundaries.

Cell sorting is a general phenomenon 
of developing animals not restricted to 
compartment boundaries. A well-studied 
example is the sorting out of cells from 
the different germ layers during gastru-
lation. Interestingly, during zebrafish 
gastrulation, differential actomyosin-de-
pendent cell-cortex tension has recently 
been implicated in the sorting out of cells 
from different germ layers.54 A differential 
mechanical tension might, therefore, be a 
general mechanism to prevent the mixing 
of cells in developing animals.

between bonds of cells.24,47 Landsberg et 
al.  demonstrate that the two rows of cells 
along the A/P boundary display a unique 
shape and that angles between cell bonds 
along the A/P boundary are widened, pro-
viding evidence that mechanical tension is 
elevated along these cell bonds.34 Distinct 
shapes have also been previously reported 
for cells along compartment boundaries 
in Oncopeltus,48 indicating that they are 
commonly associated with compartment 
boundaries.

Ablation of cell bonds generates dis-
placements of the corners (vertices) of the 
ablated bonds, providing direct evidence 
for tension on cell bonds.49 Landsberg et 
al. ablated individual cell bonds in wing 
imaginal discs using an UV laser beam, 
and quantified the displacements of the 
two vertices of the ablated cell bonds 
(Fig. 1C–E). The relative initial velocities 
with which these vertices are separated in 
response to laser ablation is a relative mea-
sure of cell bond tension.50 Ablation of cell 
bonds within the anterior compartment 
and the posterior compartment resulted 
in similar initial velocities.34 However, 
when cell bonds along the A/P boundary 
were ablated, the initial velocity of vertex 
separation was approximately 2.5-fold 
higher.34 Displacements of cell vertices 
after laser ablation were strongly reduced 
in the presence of Y-27632, a drug that 
specifically inhibits Rho-kinase,51 which 
is a major activator of Myosin II.52 These 
results suggest that actomyosin-based cell 
bond tension along the A/P boundary is 
increased 2.5-fold compared to the  tension 
on cell bonds located elsewhere.

Is a local increase in cell bond tension 
sufficient to maintain straight interfaces 
between proliferating groups of cells? 
To test this, Landsberg et al. simulated 
the growth of a tissue based on a vertex 
model.24 In this model, the network of 
adherens junctions in a tissue is described 
by polygons characterized by the position 
of vertices. Stable configurations of this 
network are local minima of an energy 
function that describes the area elasticity 
of cells, cell bond tension, and the elastic-
ity of cell perimeters. In these simulations, 
two adjacent cell populations, anterior 
and posterior compartments, separated by 
a straight and sharp interface, are intro-
duced into this network. Tissue growth 

implicated in maintaining compartment 
boundaries. In the Drosophila wing ima-
ginal disc, an epithelium that gives rise to 
the adult wing, the two leucine-rich-repeat 
domain proteins Capricious and Tartan 
are expressed specifically in cells of the 
dorsal compartment.41 Strikingly, forced 
expression of either of these proteins in 
the dorsal compartment can restore a nor-
mal straight and sharp D/V boundary 
in mutants for apterous, the selector gene 
required to establish this boundary.41

More recent hypotheses to explain the 
sorting of cells in animal development 
are based on differential surface contrac-
tion42 or differential interfacial tension.43 
These hypotheses do not treat cells as liq-
uid molecules, as Steinberg’s differential 
adhesion hypothesis does, but emphasize 
that cells can generate mechanical ten-
sion that allows them to contract the 
surface to neighboring cells. Minimizing 
cell surfaces at interfaces between differ-
ent cell  populations could contribute to 
cell sorting.

Mechanical tension in cells can be 
generated by tensile elements located at 
the cellular cortex underlying the plasma 
membrane, including contractile acto-
myosin filaments (reviewed in ref. 44). 
Irvine and colleagues made the impor-
tant observation that, in Drosophila wing 
imaginal discs, Filamentous (F)-actin and 
the motor protein non-muscle Myosin II 
(Myosin II) were enriched at adherens 
junctions along the D/V boundary,45,46 
indicating a distinct mechanical prop-
erty of bonds between cells along this 
compartment boundary. Moreover, these 
authors found that in mutants for zipper, 
which encodes myosin heavy chain, the 
D/V boundary was irregular,46 showing a 
requirement for Myosin II in maintaining 
this boundary.

Landsberg et al. show that F-actin and 
Myosin II were also enriched on cell bonds 
along the A/P boundary in Drosophila 
wing imaginal discs, and that also the 
A/P boundary was irregular in zipper 
mutants.34 Moreover, they now provide 
direct evidence that mechanical tension 
at cell bonds along the A/P boundary 
is increased (Fig. 1B). Differences in 
mechanical tension on cell bonds have 
been proposed to result in differences 
in the shape of cells and the angles 
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In addition to biochemical mechanisms, 
mechanical signals have also been shown 
to help localize Myosin II to specific sites 
within cells. During germband elongation 
in the Drosophila embryo, for example, 
cell bonds that are under high tension 
have elevated levels of Myosin II, and the 
experimental application of mechanical 
force is sufficient to recruit Myosin II to 
the cell cortex.60 Increased tension at cell 
bonds along compartment boundaries 
might, therefore, be also a consequence of 
both biochemical and mechanical mecha-
nisms. It will be interesting to investigate 
the nature of these mechanisms, and 
how they are linked to the developmen-
tal  signals that control the formation of 
 compartment boundaries.
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