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Abstract

Through digital imaging, microscopy has evolved from primarily being a means for visual obser-
vation of life at the micro- and nano-scale, to a quantitative tool with ever-increasing resolution
and throughput. Artificial intelligence, deep neural networks, and machine learning (ML) are all
niche terms describing computational methods that have gained a pivotal role in microscopy-
based research over the past decade. This Roadmap encompasses key aspects of how ML is applied
to microscopy image data, with the aim of gaining scientific knowledge by improved image quality,
automated detection, segmentation, classification and tracking of objects, and efficient merging of
information from multiple imaging modalities. We aim to give the reader an overview of the key
developments and an understanding of possibilities and limitations of ML for microscopy. It will
be of interest to a wide cross-disciplinary audience in the physical sciences and life sciences.
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1. Introduction

The first attempts to automate the analysis of microscopy data preceded the availability of personal com-
puters and computer screens. In 1956, an instrument for the automatic screening of cytological smears
for cancer was presented [1]. This system was based on hard-wired analogue video processing circuits,
aiming to quantify the size of cell nuclei to find precancerous lesions. The more widespread availabil-
ity of computers in the 1960s and 70s made possible more ambitious and complex research projects,
e.g. aimed at developing image analysis systems with a range of biomedical applications. There were
however two major hurdles: On the one hand, even very small images of less than 100 kb would typ-
ically take up the whole working memory of a research computer of the early 1970s. On the other hand,
no screens for viewing image data were available, making method development difficult. Image pro-
cessing, where useful images were created as a result of computations, saw its first revolutionary success
with the invention of computer tomography in the 1970s [2], and the advent of the IBM personal com-
puter in 1981, with screens capable to display 640 x 200 binary monochrome graphics and up to four
colors at 320 x 200 resolution. This sparked the mass-market gaming industry, which has been one of
the major driving forces for the further development of computer and graphics power.

Automation of microscopy, including sample handling and microscope control, enables rapid col-
lection of digital image data making microscopy one of the most data-rich scientific disciplines. Ideas
about automated interpretation of image data using machine vision and artificial intelligence (AI) have
been around since the 1970s, but it is not until recent years that increasing computing power and large
amounts of annotated images of natural scenes are finally making these methods work in practice. We
now see the fast emergence of approaches to image analysis where the computer learns the task at hand
from examples and automatically exploits the input images for measurements or decisions. This is reflec-
ted by the rapid increase in the scientific community of methods combining microscopy with deep
learning (DL) (figure 1).

This Roadmap article aims to provide a concise yet authoritative overview on the present and future
of how machine learning (ML) can and will be used for microscopy-based scientific research, span-
ning from the development of tools and algorithms (sections 1-6), via enhanced microscopy techniques
(sections 7—13), single molecule detection and tracking (sections 14-22), and biomedical applications
(sections 23-31), to the establishment of software platforms and community resources (sections 32-36).

Overview
The thirty-six expert contributions of this Roadmap are arranged in five thematic blocks that map the
current landscape of ML-enabled microscopy:

Tools and algorithms (sections 1-6)

This part discusses fundamental advances that underpin the field: the mathematical stability of inverse
problems (section 1), physics-based learning for joint optics—algorithm design (section 2), interpretable
models for large 3D data (section 3), plug-and-play (PnP) reconstruction frameworks (section 4), ML
acceleration of optical-force simulations (section 5), and optical neural-network hardware for all-optical
computing and imaging (section 6).

Enhanced microscopy (sections 7—13)

These chapters show how ML pushes the spatiotemporal and functional limits of imaging modalities:
quantitative microscopy (section 7), computational phase microscopy (section 8), multimodal image
registration (section 9), fluorescence-lifetime imaging (section 10), multi-modal nonlinear microscopy
(section 11), automated scanning-probe microscopy (section 12), and DL-based restoration for scanning
systems (section 13).

Single molecules and particle dynamics (sections 14-22)

This part presents cutting-edge methods for localizing, tracking and interpreting nano- to microscale
entities: single-molecule localization (section 14), nanofluidic scattering microscopy (NSM) (section 15),
particle tracking (section 16), single-shot self-supervised object detection (section 17), force-field calib-
ration (section 18), diffusion characterization (section 19), motion analysis with MAGIK (section 20),
quantifying sub-cellular dynamics from single-particle tracks (section 21), and plankton life-trajectory
analysis (section 22).
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Figure 1. The exponential growth of microscopy with deep learning. A search for the terms ‘microscopy’, ‘deep learning), and the
combination ‘microscopy AND deep learning’ in the PubMed publication database clearly shows the fast development in the
field. Between 2000 and 2023, the number of yearly publications concerning microscopy has doubled, while the number of yearly
publications concerning artificial intelligence have increased by a factor 30, recently passing the number of yearly publications in
microscopy. The number of yearly publications combining deep learning and microscopy have followed the same trend as deep
learning, starting with 20 publications in 2002 and now reaching more than 600 publications per year.

Biological and biomedical applications (sections 23—31)

This part demonstrate with some examples how end-to-end (E2E) pipelines convert raw images into
biological or clinical insight: micro-physiological systems (MPS) (section 23), self-learning thermofluidics
(section 24), DL in digital pathology (section 25), virtual staining of histological tissue (section 26),
cell-phenotype determination via virtual staining (section 27), neuro-imaging analysis (section 28),
bio-analytical and diagnostic transmission electron microscopy (TEM) (section 29), high-content high-
throughput screening (section 30), and ultrasound and photoacoustic image formation (section 31).

Software ecosystem and community platforms (sections 32-36)

This Roadmap closes with resources that democratize ML for microscopists: equitable access to DL solu-
tions (section 32), cloud and containerized deployment strategies (section 33), DeepTrack 2 for user-
friendly pipelines (section 34), DeepImage] for ImageJ/Fiji integration (section 35), and hackathons that
spur community innovation (section 36).

All contributions adhere to a common structure—status, current and future challenges, advances
needed, and concluding remarks—to facilitate cross-comparison.

Glossary

To make the Roadmap equally accessible to DL specialists, microscopists, and policy-makers, we begin
with a compact glossary that standardizes the technical vocabulary used throughout the 36 sections.
Each entry gives a plain-language definition of a key concept—ranging from broad notions such as ML
and inverse problem to modality-specific terms like FLIM and correlative light and electron microscopy
(CLEM)—together with the meaning we adopt in this manuscript.
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Term

Definition

Artificial
intelligence (AI)

Machine learning
(ML)
Deep learning (DL)

Supervised learning

Unsupervised
learning
Self-supervised
learning
Reinforcement
learning (RL)
Physics-based/
physics-informed
learning

CNN (convolutional
neural network)
U-Net

GAN (generative
adversarial network)
Transformer

Diffusion model
Denoising

Super-resolution
(SR)
Inverse problem

Transfer learning
Domain adaptation

Explainable AI
(XAI)

FAIR data principles
Benchmark dataset

Microscopy
modality

FLIM (fluorescence
lifetime imaging
microscopy)

QPI (quantitative
phase imaging)
CLEM (correlative
light-and-electron
microscopy)
Ptychography/FP
(Fourier
ptychography)
End-to-end pipeline

Active/adaptive
imaging
Digital twin

The broad field of creating machines that perform tasks normally requiring human intelligence;
in this Roadmap the term is used generically, with a focus on its data-driven sub-domains (ML
and DL).

A subset of Al in which computer programs improve their performance on a task through
experience (data). It includes classical algorithms (e.g. SVM, random forests) and deep learning.
A family of ML methods based on artificial neural networks with many layers that learn
hierarchical data representations; the main engine behind recent advances in microscopy image
analysis.

Training a model on paired input-output examples (e.g. raw/noisy image and ground-truth
annotation) so it can predict outputs for new inputs.

Training a model on unlabeled data to discover structure, clusters or latent variables (e.g.
autoencoders, self-organizing maps).

A form of unsupervised learning in which the data provide their own supervision through
pretext tasks (e.g. predicting masked pixels); reduces the need for manual labeling.

Learning through sequential decision-making where an agent interacts with an environment to
maximize cumulative reward; emerging in ‘smart’ microscope control.

DL or ML models that embed known physical laws (e.g. light propagation, Poisson noise) into
the network architecture or loss, improving interpretability and data-efficiency.

A DL architecture that uses spatially shared kernels; the backbone of most 2D and 3D microscopy
image-processing networks (e.g. U-Net).

An encoder—decoder CNN with skip connections, originally developed for biomedical
segmentation; widely adopted for denoising, deconvolution and super-resolution.

A framework with a generator and discriminator trained adversarially to produce realistic
synthetic images (e.g. virtual staining, image-to-image translation).

A DL architecture based on self-attention; it excels at capturing long-range context and is
increasingly used for high-resolution microscopy data and multimodal fusion.

A generative model that learns to reverse a gradual noise-adding process, enabling high-fidelity
image synthesis or restoration.

Computational removal of noise while preserving signal; DL methods (e.g. Noise2Void, CARE)
can operate with or without clean targets.

Computational or optical techniques that produce images with resolution beyond the
diffraction-limited input; DL-SR networks up-sample low-resolution scans.

Reconstructing sample properties (phase, structure, chemistry) from indirect or degraded
measurements; solved via optimization or DL surrogates.

Re-using a network pre-trained on one dataset or task as the starting point for a related task,
reducing the need for large labeled datasets.

Techniques that align feature distributions between source (training) and target (test) domains to
maintain performance across microscopes, labs or modalities.

Methods that provide human-interpretable reasons for a model’s prediction—important for
trust in automated biomedical analysis.

Guidelines that data should be Findable, Accessible, Interoperable and Re-usable.

A publicly available, expert-curated set of images and annotations used to compare and validate
algorithms under standard conditions.

A distinct contrast mechanism or instrument family (e.g. confocal, light-sheet, electron, coherent
Raman, SHG/THG, AFM); many sections of this Roadmap discuss cross-modal fusion.
Technique measuring the excited-state lifetime of fluorophores; DL accelerates lifetime extraction
and noise suppression.

Label-free measurement of optical phase shifts to map cellular mass/thickness; physics-informed
DL improves phase retrieval.

Workflows that register fluorescence and EM images of the same specimen; DL aids alignment
and hybrid segmentation.

Computational imaging recovering phase and amplitude from multiplexed illuminations; DL
helps accelerate reconstruction.

A single DL framework that maps raw microscope data to the final scientific read-out (e.g.
segmentation masks, tracking results) without intermediate manual steps.

Real-time ML-driven control of microscope hardware (e.g. laser power, scanning path) to
optimize information content while minimizing photodamage.

A physics-accurate simulation of a microscope—sample system, used to generate synthetic
training data or to test control policies safely.
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2. Stability for inverse problems
Michael Hecht" 3 and Artur Yakimovich** 56

! Center for Advanced Systems Understanding (CASUS), Gérlitz, Germany

2 Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR), Dresden, Germany

3 Mathematical Institute, University Wroctaw, Wroctaw, Poland

4 Bladder Infection and Immunity Group (BIIG), Department of Renal Medicine, Division of Medicine,
University College London, Royal Free Hospital Campus, London, United Kingdom

> Artificial Intelligence for Life Sciences CIC, Dorset, United Kingdom

6 Roche Pharma International Informatics, Roche Diagnostics GmbH, Mannheim, Germany

Status

The ability to experience the wonders of the microscopic world with one’s own eyes has been fascinating
researchers and enthusiasts for hundreds of years. This fascination, as well as the ability to explain the
phenomena of the macroscopic scale through the occurrences in the micro-world, has led to the devel-
opment of a plethora of techniques to visualize, probe, and reconstruct minute objects from the scale
of the small animals to the scale of the atom (figure 2). These techniques include a variety of functional
(labeled by a molecular dye) and label-free light (optical) microscopy modalities, including brightfield,
epi- and confocal fluorescence, and lightsheet microscopy (reviewed in [3]). Attempts to overcome the
limitations of the light diffraction limit have led to the development of electron microscopy (EM) tech-
niques like scanning and transmission EM (SEM and TEM, respectively), featuring relatively complex
sample preparation steps. The necessity to minimize the sample preparation artifacts and visualize the
biological entities in their native state has in turn led to the development of cryo-EM techniques [4].
While the contribution of EM to our understanding of the microworld is difficult to overstate, the sheer
complexity of sample preparation and the expensiveness of the equipment has sparked in recent years
the development of super resolution microscopy (SRM). Further notable and up-and-coming techniques
include x-ray microscopy, live time-lapse microscopy, and holographic microscopy as well as atomic
force microscopy (AFM) which uses interaction force to map the microworld.

Remarkably, one common facilitator of this cambric explosion of microscopic techniques, which
occurred mostly in the past half a century, is digital microscopy. Originating from micrography, the
departure from the necessity to project the microscopic image on the microscopist retina and the ability
to capture and describe the images digitally has also has turned microscopy into a quantitative discipline.
Beyond facilitating the recording and storage of microscopy data, digitalization allowed improved image
processing, denoising, and direct pattern recognition. This, in turn, paved the way for computer vision
(CV) algorithms, including ML and DL, to facilitate further advances in microscopy, as further explored
in section 34 on the development of user-friendly DL pipelines.

Current and future challenges

Given the immense diversity of the microscopic techniques (figure 2), it becomes obvious that the
microscopy datasets are incredibly domain-specific. This represents a significant challenge for ML and
DL efforts, as out-of-domain inference is far from trivial for the vast majority of CV algorithms. This is
especially pronounced with quite different modalities, for example, EM and confocal fluorescence micro-
scopy. Furthermore, conventional image augmentation approaches that work well for ImageNet work
very poorly for microscopy datasets. Vendor-specific data formats are certainly not facilitating harmoniz-
ation and transferability of datasets. Very often, models trained on images obtained using hardware of a
specific vendor simply do not generalize to other vendors. Finally, while microscopy image data is gradu-
ally becoming available, high-quality annotations, especially those with a high level of consensus are still
problematic to obtain. All these challenges are positioning ML and DL strategies for microscopy data
into a low-data regime, dictating the choice of algorithms available to researchers.

In practice, a domain is defined not only by the sample class (e.g. HeLa cells vs. cryo-EM virus
particles) but also by the imaging system (numerical aperture, sensor noise, vendor-specific prepro-
cessing). A model that performs well on a single condition quadruplet—one sample, one microscope,
one magnification, one preparation protocol—can easily fail once any of these factors drifts. This pit-
fall is often hidden because many proof-of-principle’ papers employ highly restrictive training/test splits
such as sparse MNIST-like data-sets or one-specimen demonstrations. Hence, the key question becomes:
how much domain-specific training is acceptable before generalizability collapses? Empirically, increas-
ing domain coverage (using cross-modal augmentations, vendor-agnostic raw data, or physics-based
simulators) improves robustness but decreases peak performance on the original domain—echoing the
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Figure 2. Spatio-temporal spectrum diagram of microscopy techniques and their applications. Here, some method keywords are
aligned with a scale range, which is an approximation.

classical bias-variance dilemma and foreshadowing the stability—performance—generalizability trade-off
explored below. Similar challenges regarding domain-specificity are encountered in multimodal image
registration (section 9).

Advances in science and technology to meet challenges

Recent advances in ML methodology for microscopy have decisively demonstrated the ability of the
established ML/DL algorithms to meet the pre-described challenges or their combinations [5], and
provide solutions for image processing and analysis. Thus far, this has allowed to successfully address
microscopy ML tasks, such as image reconstruction and superresolution, classification and generation,
denoising, segmentation, cell tracking, feature selections [5-9] (see also sections 7—13). However, as
discussed in reference [8], domain overfitting often hurts generalization. Conversely, attempts to gen-
eralize across modalities cause trade-offs [10]. Attempts to overcome these include physics-informed
regularization [11]. The gravitation of the established algorithms towards the abovementioned low-data
regime motivated Li et al [12] to investigate the techniques by asking the questions: ‘How reliable are
such algorithms when applied in the sciences?” and ‘do Al-based algorithms have an unavoidable Achilles
heel: instability?’

In mathematical terms, the mentioned tasks seek solutions of non-linear, inverse problems. However,
the Universal Instability Theorem [13, 14] proves general inverse problems to be inherently unstable. The
issue is illustrated in figure 3. Here, the forward model is given by x-projection of a 2D-curved plane
onto a curved line. The loss of information in the forward direction (null space) can cause reconstruc-
tion distances of arbitrary close instances to become arbitrarily large. In other words: small noise per-
turbations of an observable x can cause a huge change in the reconstruction of y.

While stable solutions to linear inverse problems can be given by classic principal component analysis
(PCA), the non-linearity present here demands the development of novel strategies resisting the instabil-
ity phenomenon. Recently, approaches addressing the robustness for classification and denoising tasks
proposed adversarial re-training, generative-adversarial-network-based denoising, and explicit kernel (null
space) control to prevent this issue. These results were discussed and complemented by novel regres-
sion techniques in Li et al [12]. Furthermore, the current state of research suggests that, when following
and incorporating the mathematical insights and delivered ML techniques, stability can be ensured for a
general instance class of inverse problems relevant here. Altogether, this suggests that employing novel
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Figure 3. Geometric illustration of the instability for general inverse problems. Though the distance between x3 and x4 is small,
the distance between the reconstructions y3 and y, can become arbitrarily large [10-12].

more stable ML/DL algorithms may help avoid the inherent instability in ML/DL models for micro-
scopy. Additionally, these approaches may facilitate generative algorithms alleviating low-data regimes
and improving generalization.

For example, recent work suggests that these three objectives cannot be optimized simultaneously;
improving any two degrades the third. Several strategies are emerging to balance this triangle. For
example:

e Domain-adaptive fine-tuning—first train a stable backbone on large, heterogeneous data, then fine-
tune lightweight heads for each new microscope or sample while freezing the core layers.

e Physics-informed regularizers—embed the forward model or conservation laws into the loss to anchor
learning and reduce instability, even when the network is exposed to unseen domains.

e Uncertainty-quantification layers—Bayesian or ensemble heads that output pixel-wise confidence maps
let users decide whether apparent performance is worth the risk of instability in unfamiliar regimes.

e Modular ‘universal platforms’ such as Biolmage Model Zoo and MONALI use self-supervision, feder-
ated learning and model-card metadata to offer PnP models whose expected stability range is explicit
to the end user (see also sections 32—35).

These trends indicate that rather than chasing a single ‘best’ model, future work will revolve around
adaptive stacks that expose the trade-offs transparently and let practitioners dial-in the desired balance
for a given task.

Concluding remarks

Recent advances in microscopy techniques and ML algorithms go hand in hand in powering a new gen-
eration of biomedical imaging methods. However, data scarcity and domain-specificity of microscopic
datasets represent a major obstacle to this synergy. Furthermore, we identified a bottleneck for provid-
ing the strong reliability requested for scientific reasoning. That is the necessity of ensuring the stabil-
ity of the ML methods addressing the (inverse) problems occurring for microscopy image processing
tasks. While enriching the low-data regime may suppress the occurrence of instabilities, we pointed to
the objectives hampering this strategy that are omnipresent in practice. Being aware of the mathematical
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limitations, however, provides an exit strategy from the dilemma by incorporating techniques that deliver
the needed resistance to the instability phenomenon in practice.
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Status

Computational imaging focuses on the co-design of imaging optics and algorithms to create better and
more capable imagers that can see more than just 2D images. In astronomy, this co-design enabled the
first pictures of a black hole. In photography, computational imaging allows us to take high-dynamic-
range and portrait-mode photos with an extremely compact camera. Here, we focus on microscopy,
where computational imaging has been used for super-resolution, single-shot 3D, and phase microscopy,
with great potential to push new scientific discovery by allowing us to observe smaller, faster, invisible
things in more dimensions.

Physics-based learning refers to any ML approach in which a differentiable physical model of light
propagation is embedded directly in the training loop. In optics, this usually takes the form of a wave-
optics forward model that enforces Maxwell’s equations. In medical-physics applications, the same idea is
applied to x-ray transport, ultrasound propagation, or radiative-transfer models for optical tomography.
There are in fact parallels to analogous efforts in magnetic-resonance imaging, computed tomography
(CT) and radiation-therapy planning, where physics-based learning is already accelerating both image
reconstruction and scanner design.

Both the optical design and the algorithm design are critical for computational microscopes. Over
the years, optical design has largely been based on heuristics, such as lens sharpness and hand-designed
metrics for performance, which were not necessarily optimal given the reconstruction algorithms or ima-
ging task. Similarly, the algorithms have largely been based on optimization approaches consisting of a
data-fidelity term and hand-picked priors. These algorithms are often slow, taking many iterations to
converge, relied on priors that were not necessarily optimal for the application, and could suffer from
model-mismatch given any errors in the optical model. More recently, DL-based approaches have been
introduced, which can more tightly couple the optical design with the algorithms [15] and improve
algorithms through a data-driven approach [16].

DL-based reconstruction algorithms leverage trainable neural networks (NNs) and large datasets
to learn better ways of solving imaging inverse problems. These methods have shown great promise
for speeding up imaging inverse problems by multiple orders of magnitude, improving image quality
[17], and providing better priors for underdetermined problems, such as compressive single-shot 3D
microscopy [18] (see also the challenges of learning interpretable physical models in section 3). Two fla-
vors of physics-based learning are now common. (i) Model-consistent learning keeps the optical hard-
ware fixed and uses a differentiable forward model only to constrain the network during image recon-
struction. (ii) E2E hardware-in-the-loop learning treats unknown optical parameters—phase masks, illu-
mination patterns or even freeform lens surfaces—as trainable variables, updating them with the same
back-propagation used for the NN. The latter is our focus here because it fundamentally changes how
microscopes are designed.

By using differentiable physics-based optical models, the optical design can be represented as the first
layer of the NN, and optimized E2E with the reconstruction algorithm [15, 19] (figure 4). This breaks
the paradigm of traditional optical design, and opens the door for a new era of optical design where
each element in a microscope is tailored specifically for a given algorithm and higher-level task, rather
than for a sharpness metric.

Current and future challenges
Despite its promise, physics-based learning is not yet turn-key. Joint hardware-software optimization fre-
quently yields freeform phase masks, multiplexed illumination codes or multilayer diffractive elements
that require sub-wavelength lithography or multi-photon 3D printing. Even when printable, the resulting
elements may demand sub-micron alignment tolerances or active axial positioning during use. Likewise,
wavefront shaping with deformable mirrors introduces calibration overheads and feedback-control com-
plexity that few biology labs possess. Finally, integrating a learned optical design into an existing com-
mercial microscope often voids warranties and necessitates low-level firmware access; hence extensive
engineering know-how is still a prerequisite.

Using DL-based techniques for computational microscopy often necessitates large, custom datasets
during the training phase. For example, in order to learn the best optical ‘encoder’ and ‘decoder’ for
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Figure 4. End-to-end design for computational microscopy. Traditionally, the optical hardware and inverse algorithms were
heuristically designed. With differentiable optics, the optics can be represented as the first layer of a neural network and jointly
learned with an inverse algorithm, and optionally a higher-level task. In this way, the optics can be optimized directly for a given
task (here shown for neural activity tracking with 3D single-shot microscopy), rather than optimizing for the best image quality.
Reprinted with permission from [103] © The Optical Society Reproduced from [293]. CC BY 4.0.

hyperspectral microscopy, there is a need for a large dataset of high-resolution hyperspectral images to
use during training. For certain imaging modalities or tasks, such datasets do not exist, are too small,
have insufficient resolution, or may be infeasible to acquire. For other areas of ML, such as self-driving
vehicle research, high-quality physics-based simulators have shown great success in synthesizing realistic
sensor data. Similarly, generating accurate physics-based simulators for microscopy (e.g. modeling com-
plex light interactions, multiple-scatting, and complex biological samples) could enable computational
microscopes to be trained using mostly synthetic datasets, eliminating the need for real experimental
datasets. Alternatively, unsupervised learning approaches have the potential to leverage the structure of
NNs, but without needing training data [20, 21]. In addition, building and maintaining the data-to-
device pipeline is far from PnP: the optical design must be re-trained whenever the illumination source
drifts, a component is replaced, or a specimen with different scattering properties is introduced.

Combining domain knowledge of optical physics with DL has the potential to improve the inter-
pretability and performance of DL-based reconstructions [17, 19, 22]. Off-the-shelf networks, such as
convolutional neural networks (CNNs), have no knowledge of optical physics and must therefore learn
this information from scratch when used to solve an inverse problem, leading to the need for large data-
sets and lengthy training times. Physics-based networks, in contrast, use differentiable physical models
to incorporate optical domain knowledge and create physics-informed networks that are more efficient.
These physics-informed networks can also be used to calibrate optical systems, such as by learning how
to synthesize and represent realistic camera noise [22], or potentially by learning other effects such as
aberrations and non-linearities. This could be useful for synthesizing realistic datasets for a given optical
system, or perhaps could be incorporated into the reconstruction pipeline as more accurate, nonlinear
forward models.

Finally, computational imaging approaches excel in creating task-specific microscopes that are optim-
ized for a specific higher-level task (e.g. cell counting, disease diagnosis). For many scientific and clinical
applications, a high-resolution image is not needed to make a decision—there may be certain features
within that image (e.g. polarization, wavelengths, phase) that are more important than others. Through
E2E design, where the optics are learned together with the reconstruction and higher-level task, there is
the potential to create better, faster, smaller, and more capable microscopes that are specially tailored to
make decisions, or extract the most useful information from the world. Overcoming the practical bottle-
necks of component fabrication, alignment and instrument control is therefore as critical as progress on
the algorithmic side.

Advances in science and technology to meet challenges

Despite the promise of DL for computational imaging, major challenges include robustness and guar-
antees. A microscope that you cannot trust is a microscope that is unsuitable for scientific and clinical
applications. For ML-based reconstruction algorithms, knowing when the algorithm works and when
you can trust the reconstruction is difficult. The structure of the network and the training data used can
impact the solution and potentially introduce artifacts that are indistinguishable from signal. Research in
DL theory on uncertainty quantification [23] and robustness has the potential to resolve some of these
challenges. Furthermore, fundamental research in signal processing applied to DL could bring some of
the mathematical guarantees from classic signal processing, such as compressive sensing, to the realm
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of DL [24]. Building in guarantees and quantifying uncertainty will be pivotal in the broad adoption of
ML-based algorithms for scientific and medical computational microscopes. Furthermore, similar con-
cerns about uncertainty quantification are highlighted in the context of particle tracking and force field
calibration in sections 16—18.

Concluding remarks

Using DL-based methods to learn better optical designs and algorithms is fundamentally changing the
way we design microscopes, helping push the limits of what we can observe, while potentially delivering
devices that are smaller, cheaper, and more compact. Although this avenue has many exciting possibilit-
ies, there exist a number of scientific challenges that need to be addressed. Open problems include build-
ing in interpretability into learned optical designs and algorithms, robustness, quantifying uncertainty,
and the need for high quality datasets. Building in domain-specific knowledge and known physics into
NNs has promise in addressing some of these challenges. Moving forward, interdisciplinary collaborative
research between ML theorists, optical physicists, and microscopists has the potential to further address
these challenges and bring in a new era of more capable, ML-designed computational microscopes.
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Status

With the advent of volumetric microscopy modalities in biology, such as light-sheet microscopy, it
became possible to image entire developing tissues and embryos at sub-cellular resolution over the full
time-course of development [25]. This accelerated developmental biology and our understanding of
how cells form tissues by providing us with a direct means of observation. However, it also created a
new problem: handling the terabytes of image data these microscopes produce at rates of one to five
Gigabytes per second [26], depending on the number of cameras used. This is on par with the image
sizes produced in astronomy and cosmology [27]. There, a host of approaches has been developed for
image compression, sparse representation, and dictionary projection in order to save storage [28, 29].
A key difference with microscopy is that astronomy images are mostly 2D and composed of objects
with known expected shape or appearance and slow (if any) time dynamics. The most important dif-
ference, however, is that microscopy experiments are typically based on applying a perturbation to the
live sample and watching its response.

Since the response to a perturbation can be unpredictable, it is not always clear at the onset of an
experiment what the important information in the images is going to be. One solution is to visualize the
time-lapse images in real time, as they are being acquired, and only record and analyze the ‘interesting’
events. But unlike particle physics, where events of interest can be defined a-priori and detected algorith-
mically, biological interest depends on a human observer. For 3D + time microscopy images, human
observation is best done using virtual reality (VR) displays. Originally, VR was developed for geomet-
ric data, such as triangulated surfaces and point clouds [30]. This can visualize the results of image seg-
mentation, but not the raw voxel volume itself. Using volume rendering, VR has been extended to dense
data, notably in medical imaging [31]. Compared to microscopy, however, the data volumes in medical
imaging are relatively small. Scaling VR volume rendering to work at the required 120 frames/second on
Terabyte-sized microscopy images is not trivial. Another difference between medical imaging and micro-
scopy is that microscopy typically is time-resolved. This calls for real-time visualization while the micro-
scope acquires the data, and it allows for interaction with the sample. Therefore, VR in microscopy is
not limited to visualization but also enables new user interaction modalities with the microscope itself
and with the sample [32]. An example for this is the open-source platform scenery [33]. With a render-
ing performance of several giga-voxels per second, scenery has enabled real-time VR microscopy on com-
modity hardware, even for the fastest microscopes. This has also enabled the use of natural user inter-
faces, such as eye tracking, for data analysis [34] and for actual physical perturbation of the sample [35].
Together, such methods help advance our intuition of the complex space-time organization of tissues
and its role in disease [36].

Moving from observation to prediction, one would like to formalize this intuition in predictive
mathematical models that are physically consistent. It has been shown that governing equations for the
space-time dynamics of fluorescently labeled molecules can be algorithmically inferred from microscopy
videos with sufficient robustness against imaging noise [37] and guaranteed physical consistency [38].
This extends pioneering works from applied mathematics and ML [39] to the noisy data of microscopy.
So far, however, it has not been feasible to apply these ideas on the large 3D images produced by state-
of-the-art volumetric microscopy. This is because the dimensionality of the resulting sparse regression
problem is beyond the computationally feasible. A promising approach is to represent the raw images
on a lower-dimensional data structure than a full regular grid of pixels. Approaches such as the adapt-
ive particle representation (APR) of images [40], for example, improve the information-to-data ratio
of the images by adaptively re-sampling them, storing intensity only where it contributes information
to the image (figure 5). While the concept of adaptive sampling is classic in signal processing, the APR
provides unprecedented approximation and optimality guarantees not present in previous approaches
like supervoxels [41]. The APR can also directly be used for downstream image processing [42—44],
which is not possible with, e.g. wavelet multi-resolution pyramids [45]. This enables E2E APR-native
pipelines for images up to the Petabyte scale on consumer GPUs [43] and significantly reduces the com-
pute needs of CNNs on large 3D images [44].

14



10P Publishing J. Phys. Photonics 8 (2026) 012501 G Volpe et al

Figure 5. The adaptive particle representation (APR). The APR of images [40] provides an information-optimal sampling of an
image at a fraction of the computational cost. (a) An embryo with cells segmented (original image: data set ‘Fluo-N3DL-TRIF’
from the publicly available ISBI cell tracking challenge; segmentation and visualization: Joel Jonsson, Sbalzarini lab). (b) A single
A549 cell from the cell tracking challenge. (c) APR particles (shown as individual dots) of the cell from (b) with color encoding
the intensity signal (APR and visualization by Joel Jonsson, Sbalzarini lab).

Current and future challenges

Current microscopy datasets are chronically under-used in large bio-imaging studies. Analyzing the
images and turning them into scientific insight and knowledge currently is the rate-limiting step. We
envision a future where volumetric microscopy data sets can be immersively experienced in VR envir-
onments, from within which the user can interact with the sample in real time using hand gestures to,
e.g. apply optogenetic manipulations or laser ablation and thereby train ML modules running in-the-
loop. This brings within reach human-augmented algorithmic inference of the physical laws and pro-
cesses that characterize the dynamic self-organization of living matter. While the bits and pieces for mak-
ing this vision a reality are becoming available, combining them remains a challenge.

It is, for example, challenging to combine the APR [40] with real-time VR rendering, because
the performance of rendering algorithms on GPUs deteriorates on irregular, adaptive data structures.
Another example is that, while learning interpretable mathematical models on limited and noisy micro-
scopy image data is becoming possible [37], this does not currently scale to large 3D data.

Successfully scaling to large data, DL architectures have been adapted to biological imaging. This
includes graph neural networks (GNNs) to estimate physical properties of biological systems directly
from microscopy videos [46] and the variational autoencoder Cytoself to infer models of intra-cellular
mesoscale organization from microscopy images [47], inspiring thoughts of a sequence-to-image generat-
ive model. Since they can be trained in a self-supervised way, not requiring manually annotated ground-
truth data, autoencoders are a promising architecture for microscopy. In particular, they allow mapping
images into a joint latent space with genetic and chemical states of cells, providing exciting prospects for
drug screening [48] and cancer [49]. Other approaches are presented in sections 16-20.

The physical and biochemical interpretation of such DL models, however, remains a challenge,
which could potentially be addressed by combining them with mathematical model inference. This
could include endowing them with a notion of spatial interaction [50]. Currently, deep neural net-
works (DNNs) operate on the morphological appearance of objects in the image, but not on their spatial
arrangement with respect to each other and with respect to reference structures, such as the cell nucleus
or the plasma membrane. Concepts from spatial statistics could be re-cast in a data-driven framework to
enable the next leap in understanding the spatial organization of living matter using DL.
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Figure 6. Vision of human-AlI co-working in a virtual-reality space. The top panel shows a scientist interacting with a fruit fly
embryo in the microscope in 3D virtual reality in real time (photo credit: Ulrik Giinther, HZDR & Sbalzarini lab). The bottom
panel shows output (synthetic image) of a simulation model [52] of the cells, the forces acting on them, and their velocity fields
(image with permission by Vladimir Ulman, Technical University of Ostrava).

Advances in science and technology to meet challenges

Both scientific and technological advancements are needed to realize the vision of integrating immersive
visualization and ML to infer interpretable physical models from large-scale 3D image data. Importantly,
this needs to be linked with algorithms that extract physical fields, such as velocity fields of flows and
deformations, from the images and use those to infer mathematical models that are simple enough to be
physically interpreted, but complex enough to explain the dynamics observed in the data.

This link is likely going to come from modern ML architectures, such as transformer networks or
GNNss (section 20). A key challenge in applying DL to microscopy data, however, is the limited avail-
ability of annotated ground-truth training data. Approaches such as self-supervised training, contrastive
learning, geometric learning, and transfer learning from simulated synthetic data are hence going to be
pivotal [51]. Combining this with data- and energy-efficient compute architectures, as well as immersive
human-in-the-loop natural user interfaces, could define a new inference loop for future microscopy.

This inference loop potentially enables experiments in which scientists use hand gestures in a VR
environment to interactively ablate a tissue in the sample, are able to directly observe the recoil and tis-
sue rearrangement this causes, and within seconds get the estimated elastic constants of the tissue as
well as a simulation results overlaid with the image (figure 6). Further interacting with the sample, or
manually correcting estimation mistakes, the human re-trains the ML or simulation model in an act-
ive learning loop. An interesting question is how to visualize uncertainty in ML output to the users in
order to focus their attention and prompt for additional perturbations that carry significant new inform-
ation. Finally, bringing these advances in ML and bio-imaging into everyday laboratory usage requires
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user-friendly, accessible, easily deployable, and robust software implementations with support for cloud
computing.

Concluding remarks

Exciting times for biological live-cell microscopy! We are witnessing accelerated progress in the molecu-
lar markers and sensors available, the optics of the microscopes, and our ability to use light to perform
quantitative measurements in living, growing, and deforming organs and organisms [53]. The challenge
is to ensure that the computational tools for handling, storing, processing, and visualizing the images
progress on par, and that we work toward making better use of the information contained in the images,
e.g. by providing ML solutions that increase the throughput at which physically interpretable, mechan-
istic models can be inferred from the data. This ideally goes directly from images or videos to equations,
models, and knowledge, bypassing the so-far common intermediate CV steps of segmentation and track-
ing. This will not only make large bio-imaging projects more insightful, but also potentially more accur-
ate and less resource-demanding. Ultimately, a new ecosystem of biological imaging arises, combining
approaches from VR, Al, and signal theory, which could all become common laboratory methods in a
couple of years from now, just like single-particle tracking (SPT) has become a robust commodity [54].
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The performance of any computational imaging system is determined, in part, by the performance of
its reconstruction algorithm. The role of a computational imaging reconstruction algorithm is to recon-
struct a signal/image of interest x from measurements y of the form

y:A(x)v

where A(x) represents the system’s forward model. This mathematical model is general and can repres-
ent almost any measurement process, from sampling K-space in magnetic resonance imaging (MRI) to
capturing band-pass filtered images in Fourier Ptychographic microscopes.

Classically, computational imaging reconstruction has been performed by framing imaging as an
optimization problem

x= argmxin flx)+r(x),

where f(x) is a data fidelity term, which ensures x is consistent with the measurements y, and r(x) is a
regularization penalty, which ensures x is consistent with our prior beliefs on how x should be struc-
tured. In the special case that f{x) = —In p(y|x) and r(x) = —In p(x), solving the above optimization
problem provides a maximum a posteriori (MAP) estimate of x.

Assuming the optimization problem is sufficiently convex, one can minimize the objective, f(x) +
r(x), using any number of algorithms, such as proximal gradient descent:

VT =¥ — V,f(x),

xt+ 1

= argmxion — it H2 +7r(x).

The first line above takes a gradient step to minimize f{x) while the latter, which is known as a prox-
imal mapping, reduces r(x).

Classical iterative algorithms such as proximal gradient descent offer several benefits: They are easy
to interpret and, by changing the data fidelity term f{x), can easily incorporate domain expertise about
the measurement process A (). Unfortunately, the performance of classical algorithms falls well behind
that of purely DL-based methods, which, given a vast training set of paired examples {(x;, yl)}lel, can
teach a NN to effectively map measurements y to images x. This performance generally comes at the cost
of flexibility—a network is trained and specialized for a specific measurement process A(+), and if the
measurement process changes the network is useless.

PnP optimization is a hybrid reconstruction framework which allows one to maintain the inter-
pretability and flexibility of classical algorithms while taking full advantage of powerful data-driven
priors [55]. The key idea behind PnP optimization is that one can interpret an off-the-shelf (learning-
based) image denoiser D(z) as a solution to

D(z) = argmxin{Hx—ZH2 -I-r(x)}7

for some implicit, data-driven prior r(x). This interpretation allows one to ‘plug-in’ the denoiser into an
existing iterative algorithm. For example, PnP proximal gradient descent can be written

V=o' — Vo (),

X1 =D ().

This algorithm follows the same form as standard proximal gradient descent, but with the proximal
mapping step replaced by a powerful image denoising algorithm.

PnP algorithms stand apart from purely data-driven and purely classical computational imaging
reconstruction techniques in their unique ability to combine (1) domain expertise, in the form of the
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Figure 7. Plug-and-play methods. Plug-and-play methods are hybrid algorithms which can take advantage of both domain
expertise about the measurement process and powerful data-driven learned priors. This combination makes them both adapt-
able and effective.

forward measurement operator A (+), and (2) data-driven-priors on the distribution of the dataset, in
the form of an image denoiser trained using a vast set of training examples {xl}lel (figure 7). PnP
algorithms represent the current state-of-the-art in computational imaging reconstruction [56]. Related
hybrid strategies combining domain knowledge and learned priors are also employed in physics-based
computational microscopy (section 2). Unsupervised neural-network-based methods can also make use
of domain expertise about the forward process, but they are generally incapable of using training data;
accordingly, the resulting priors are far weaker.

Current and future challenges
PnP algorithms face several hurdles which can make them challenging to apply in practice.

Forward model mismatch: Like almost any other reconstruction method, PnP algorithms rely on accurate
knowledge of the forward measurement model A (-). If this forward model is mis-specified severe arti-

facts can appear in the reconstructions.

Denoiser model mismatch: PnP algorithms typically use off-the-shelf denoising algorithms, which often
assume the noise they are removing follows an additive white Gaussian distribution. In general, however,
the ‘effective noise) i.e. the difference between the true signal and the intermediate solution fed into the
denoiser, is neither Gaussian nor white, making existing denoising algorithms suboptimal. In addition,
denoisers are trained on a specific class of data (e.g. natural images) and their performance can suffer
when applied to other distributions (e.g. MRI).

Parameter tuning: Most PnP algorithms have multiple hyperparameters (step sizes, regularization
strengths, etc). These parameters can vary iteration to iteration and setting them correctly is critical to
getting the best performance. One solution to the parameter tuning problem is to ‘unroll’ an iterative
PnP algorithm into a feedforward NN (figure 8), whose parameters can be automatically tuned with
training data and backpropagation [57]. However, unrolling gives up flexibility, the network is now spe-
cific to a particular forward operator A (-), and comes with its own set of limitations.

Memory usage: To train an unrolled algorithm, one needs to back-propagate errors through multiple
copies of the denoiser, which requires storing many intermediate variables. When dealing with high-
dimensional data, e.g. time-varying volumetric data, the memory costs associated with storing all these
intermediate variables can become prohibitive (see also section 3).
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Figure 8. The unrolling process. One can ‘unroll’ N iterations of a PnP algorithm into an N-layer feedforward neural network.
Unrolling allows one to use training data to tune and optimize its many parameters but comes at the cost of flexibility: The result-
ing network becomes specialized for a particular forward measurement process.

Advances in science and technology to meet challenges
A host of solutions have been put forward to address the above challenges.

Forward model mismatch: If one is dealing with a parametric forward model A, (-), one can jointly
recover the target image x and the forward model parameters y through alternating minimization.
Specifically, in addition to the usual PnP steps, one can also minimize the objective function with respect
to the forward model parameters. Variations on this idea have been applied successfully to x-ray CT

[58], MRI [59], and holography [60].

Denoiser model mismatch: Denoiser model mismatch comes in the form of mismatched noise distribu-
tions and mismatched data distributions. The former problem can be addressed through unrolling [57]
or by careful characterization of the per iteration noise distribution [61]. The latter problem is largely
still open, though denoisers tend to be relatively robust to this mismatch in practice.

Parameter tuning: While unrolling is the most straightforward way to perform parameter tuning [57],
unrolled algorithms largely (though not entirely [59]) give up the ability to adapt to new measurement
operators. Alternative parameter tuning methods, such as reinforcement learning [62], have recently been
put forward to avoid this trade-off.

Memory usage: One can reduce the massive memory costs associated with training an unrolled algorithm
by utilizing invertible network architectures, which allow one to recompute intermediate activation

from a network’s output [63]. Alternatively, one can improve memory usage by relying upon stochastic
approximations of the data fidelity update step [64].

Concluding remarks

PnP algorithms provide a convenient framework to combine the adaptability and interpretability of clas-
sical optimization-based computational imaging reconstruction methods with the powerful priors and
efficiency of DL. Here, we have highlighted some of the recent developments in PnP reconstruction and
have described some of the pitfalls to avoid when applying learning-based PnP algorithms.
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Status

Optical tweezers (OTs) are a powerful tool for manipulating and handling microscopic samples, whether
in liquids, in gases, or in vacuum [65]. Since their invention by Arthur Ashkin [66], OT have developed
as a robust tool that is routinely employed in multiple disciplines [67]. OT use the optical force of light
to trap and manipulate objects; in their simplest form OT can be thought of as an optical harmonic
spring, which, under the right circumstances, can allow a particle to be held in all three dimensions and
moved around by simply moving the optical beam focus. The strength of the spring is proportional to
the beam’s optical power. When the optical trap is well characterized, i.e. the stiffness of the spring is
well known, OTs become a powerful method for measuring piconewton scale forces, nanometer displace-
ments, and torques by directly monitoring how the particle moves while held in the trap.

Simulations and models of OT have often aided their development, and can be useful for verifying
and understanding experimental observations [68]. For instance, when trying to understand the observed
dynamics of an optically trapped motile bacterium, a thorough understanding of the optical forces can
help to shed light on the non-optical forces involved in the bacterium’s motility. Depending on the size
and shape of the particle, different descriptions of the trap are often needed, ranging from simple meth-
ods analogous to one or more harmonic springs, through to methods solving Maxwell’s equations. The
main limitation has often been the ability to use these models to make predictions about experiments.
This can be either due to computational constraints, when advances in computing power are needed
to evaluate models [69] or due to how easy-to-use and well-documented available codes are. Complex
models often have many parameters and verifying that these models accurately describe a given experi-
ment can be difficult.

ML, which encompasses a range of techniques including DL and computer-enabled statistical infer-
ence, has seen a huge growth in popularity in recent years. Aided by a rise in computational power
and simultaneously an increase in the number of easily accessible algorithms, ML has been adopted
into many fields. In the past few years, we have seen ML techniques applied to OTs related problems,
including modeling optical forces [70, 71] and extracting relevant information from experiments [72,
73]. These early works are very promising and suggest ML could significantly accelerate OT simula-
tions, while simultaneously making accurate models more accessible for researchers wanting to model
and understand their experiments.

Current and future challenges
Multiple challenges limit the application of accurate OT models including available computational power,
verifying models accurately represent reality, and accessibility of models to researchers.

Accurately modeling large, complex particles, and structured light fields can be difficult. Although com-
puters have significantly improved in speed and memory capacity (extending the range of cases that
can be modelled), for many researchers it is still difficult to model even large spherical particles using
available hardware®, let alone the more complex geometries of bacteria or deformable cells often stud-
ied using OT. To simulate the dynamics of these particles in OT, the simulations must be sufficiently
fast. One solution to modeling large and complex particles/beams is to pre-compute the forces using a
more powerful computer or computer cluster. Interpolation can then be used to approximate the forces
at intermediate points not included in the data set. However, this simply transfers the problem from
being a processor-limited problem, to a memory/storage problem. An alternative option is to use ML
to encode all this information in a much smaller representation. One of the main challenges in using
interpolation or this kind of ML is generating sufficient training data spanning a representative range of
parameters (beam shape, particle size, etc).

68 We were only able to simulate particles up to about 100 um and 1 mm with implementations of generalized Lorentz-Mie theory and
geometric optics via the optical tweezers toolbox and optical tweezers simulations software packages. We only tested if these methods
would run in a feasible amount of time for these sizes. No checks were made to see if the results for these sizes were accurate.
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Figure 9. Comparison of the current classical, machine learning enabled and prospective capabilities of different methods used
to model optical tweezers. Shaded regions indicate how well the methods work in terms of time, usability, memory, and prob-
lem complexity: larger regions correspond to better performance/usability. Plots broadly group different methodical approaches
to modeling optical tweezers: (a) basis function methods (such as T-matrix and dipole approximation based methods), (b) dis-
crete methods (including discrete dipole approximation and finite difference based methods), (c) geometric optics, and (d) the
prospective advancements enabled by a combined ML approach (as described in the text).

One of the main difficulties with developing computational models for OT is determining whether
these models accurately depict reality. Not all models work well on different size scales: for instance, the
dipole approximation can be very effective for dipole-sized particles but give unreliable results for lar-
ger particles; similarly, geometric optics can be great for large particles, but produce erroneous results
for small particles. Sometimes it can be necessary to combine multiple models, and care must be taken
for when a particular model should be used/is valid. Often it is up to the user to assess if the model is
suitable/accurate for the particular experiment they are trying to model. Care must be taken when using
both traditional models and ML enabled models that the model predictions accurately depict reality.

The final challenge is usability and accessibility. There are many excellent models for optically trapped
particles, however many of them are not the easiest to use or access. In some cases, users need specific
operating systems or familiarity with certain programming languages to use/run codes (some of which
may be proprietary). Once the user has a running model, they need to learn how to use it and assess
its validity. For example, the discrete dipole approximation is extremely useful in modeling a range of
particles but the choice of voxel placement, size, and spacing can have huge effects on the simulation
results and care must be taken to choose the appropriate parameters and verify results. This requires
good documentation including good release notes highlighting differences between versions of the code.
This extra work sometimes creates a barrier between researchers who develop codes and users wanting
to apply these codes to their experiments. Further still, in some cases researchers are hesitant to release
code in the fear that it might be used incorrectly.

Advances in science and technology to meet challenges
There is no shortage of good algorithms for modeling OT. While there are still plenty of active chal-
lenges (for example, see sections 7—11 of [74]), for many researchers working with OT the problems are
rather in accessibility/usability. In some cases this is due to computational limits, uncertainties about
applicability to a particular problem, or simply how easy the method is to download/install. To summar-
ize this problem, figure 9 shows a current version of the methods’ comparison in Bui et al [68] with the
addition of a usability axis. We have grouped methods into three broad categories. Tractable problem
complexity is represented by a single axis (somewhat representing minimum/maximum size and beam/-
particle complexity).

ML has already pushed the boundaries of what traditional techniques can achieve. For example, in
our work [70], we showed how an artificial neural network (ANN) (i.e. a specific ML technique) depic-
ted in figure 10(a) can be used to significantly reduce simulation memory and time requirements. This
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Figure 10. Graphical depictions of different machine learning models for optical tweezers simulation and classification. (a) A
5-degree-of-freedom network for calculating forces on a spherical particle in Gaussian beam optical tweezers (Reproduced

from [70]. CC BY 4.0.). (b) A more general target for ML where the network transforms any beam, particle distribution into a
force field. (c) Example of a recurrent network for extracting optical potentials from experimental time-series measurements
(Reproduced from [73]. CC BY 4.0. CC BY 4.0.). (d) A network which estimates if the given beam/particle are good predictors of
an observed trajectory.

network is trained on representative force values for a particular beam/particle combination and can rap-
idly predict values at other locations while using significantly less memory compared to interpolation.
We demonstrated the technique for the T-matrix method and a similar approach has since been demon-
strated for accelerating geometric optics simulations [71]. The technique has the potential to increase
accessibility/usability since the resulting networks are often small and fast enough to be embedded in an
interactive web-browser based simulation. The main shortcoming of these kinds of models is generaliz-
ability: i.e. a model trained on spherical particles is not well suited to predicting forces and torques on
ellipsoidal particles. Ideally, we would want a model that looks more like figure 10(b): taking a beam and
particle as input and predicting the corresponding force field®. This would be a significant undertaking,
with many challenges including the generation of sufficient training data, development of efficient ways
to represent the problem and identification of the current limitations in numerical techniques for mod-
eling OT. For this to be achieved, sufficient training data must be generated and collated. This will likely
involve choosing a network architecture which generalizes well to learn features with much less train-

ing data. For instance, a convolutional network might perform better when given images of the optical
field and particle as compared to the network in figure 10(b). Other techniques such as transfer learn-
ing or model re-training might also be key to reducing the required volume of training data. While it is
unlikely that ML used in this context will identify new physics, it may help to reveal emergent behavior
from the dynamics of particles moving in OT—behaviors that are difficult to predict with traditional
models due to computational limitations.

ML also offers a potential solution to validating models correctly describe experiments. ML tech-
niques have been used to analyze experimental measurements, and can be used, for instance, to extract
potentials from particle trajectories [72] (see also sections 16-20). Figure 10(c) shows a depiction of a
recurrent neural network (RNN) (another ML technique) which converts a time series measurement into
a potential. By comparing these potentials with model predicted optical forces, we can verify the accur-
acy of our models—while this verification could conceivably be performed without ML, the use of ML
significantly simplifies the process. A extension to this idea is depicted in figure 10(d), showing a net-
work that discriminates between if a model (beam/particle description) is sufficient to describe a partic-
ular experimental observation with some confidence level. One advantage of this problem formulation is
that we can apply the same optimization functions we used to train the network also for optimizing the
model parameters (beam/particle shape).

As a final note, the ML boom has coincided with many other advances in available tools for sharing
and collaborating on code and ML model training. Particular tools of note include:

69 For non-spherical particles, this would be a 6-dimensional space spanning possible positions and orientations of the particle.
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1. Version control software (such as Git and SVN) and related hosting sites (such as GitHub and
GitLab) which provide tools for tracking both code and known issues/features/developments.

2. Papers with Code: a website where anyone can share implementations of algorithms described in
papers.

3. Containers (such as Docker and Singularity) offer a way to package not just the code but the entire
working environment (i.e. specific software versions and dependencies).

4. Read the Docs: an online documentation hosting site which can be setup to automatically hook into
popular source distribution tools and automatically generate and publish documentation when a new
version of the code is released.

The availability of easy-to-use tools is only part of the solution. In addition, there needs to be a cul-
tural shift to encourage the publication of ML OT models and acknowledgment of the additional work
required developing documentation, maintaining models and responding to user requests/feedback.

Concluding remarks

We have already seen that ML can improve access to powerful OT models without users needing super-
powerful computers. We have also seen knock-on effects of the ML boom improving software tools for
better documentation and collaboration. Improvements in particle tracking and OT calibration, enabled
by ML, have the capabilities to ensure the models we generate are accurate. The advances described
above are summarized in figure 9. We currently envision these being extended further, one of the main
limitations is resources including time to generate large data sets, train models, and explore alternative
model architectures. We should expect to see new ML models pushing the bounds of what is possible in
OT simulation. We might even envisage a universal OT simulator that spans and unifies the capabilities
of our present numerical models for a range of cases that would be useful to the OT community. This
would require accurate datasets spanning a wide range of beams and particles. In order to achieve this
goal, we need to make the existing models more accessible. While we have focused on OT here, many
of these techniques could be applied to simulation of other systems such as acoustic tweezers, electro-
dynamic traps and optical imaging.
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Status

Optical NNs have a long history. It started in 1985 in seminal experiments that implemented an optical
version of Hopfield networks [75]. The prime motivation, which remains unchanged, was to exploit
attributes inherently linked to optics: massive parallelism and the resulting advantage for the connec-
tionist NN computing concepts. And this promise actually materialized, as real-time face recognition
was demonstrated in an experiment that holographically stored weights optimized during a training
procedure [76].

Since then, AI went through numerous hype and bust cycles, until it became the indispensable tool
of today. Today’s high-performance electronics can implement NN topologies with ever-increasing com-
plexity and capabilities. Yet, the fundamental mismatch between computational hardware and NN topo-
logy creates enormous challenges in terms of scalability, energy consumption and speed. Similar motiv-
ations to overcome hardware limitations through novel learning-based designs are also driving devel-
opments in PnP optimization frameworks, as discussed in section 4. The result is that adding NN-
functionality to other devices comes associated with a substantial power budget, and that real-time pro-
cessing of high-volume data is unattainable. Employing NNs for either real-time high-resolution wide-
field microscopy or small, non-lab-based systems remains challenging. Optical NN, therefore, remains of
interest, and recently, attention towards such unconventional hardware exploded.

Current and future challenges

Currently, efforts toward next-generation photonic hardware for NNs include integrated photonic
solutions [77] and free-space [78-80], but also efforts towards addressing the fundamental challenge
when integrating NNs using 3D photonic integration [81] or unlocking the ultra-fast potential of fully
parallel and autonomous photonic NN [82].

As a free-space optical computing platform, diffractive deep neural networks (D*NNs) have attrac-
ted growing interest as they compute a given task by engineering light diffraction through a series of
complex, spatially structured surfaces, one layer following another. Given a targeted task, these layers
are optimized using DL concepts to minimize a task-specific loss function. The resulting diffractive lay-
ers collectively form an all-optical computer, performing the desired transformation between the input
and the output fields-of-view. Once the DL-based training is complete, the diffractive layers can be fab-
ricated through e.g. 3D printing or lithography, creating a physical network that performs the designed
computational task at the speed of light propagation without requiring any external power except for the
illumination light.

Since its first demonstration in 2018 [78], diffractive NNs have been successfully employed for vari-
ous applications, for example, holography, quantitative phase imaging (QPI) [83] and class-specific
imaging [83]. Compared to using electronic digital processors, D°NN inference in computational ima-
ging offers some unique advantages since the optical information of a scene is directly accessible to a dif-
fractive network. This shares conceptual parallels with physics-based learning approaches to direct phase
retrieval without heavy pre-processing, highlighted in section 2. Therefore, no digitization or complicated
pre-processing steps (such as phase retrieval) are needed, enabling computer-free ‘computational ima-
ging’. Using a trained D’NN, the spatial information of any unknown objects can be instantly retrieved
from raw holograms at the speed of light propagation without requiring any digital processors [84], or
can be used to directly convert the phase information of an arbitrary input scene into an intensity dis-
tribution at its output plane, creating an all-optical QPI system (figure 11(a)). It was demonstrated that
this QPI diffractive network could generalize to unseen, entirely new phase objects.

D?NNs have also been applied to imaging through diffusive media, which is crucial across various
fields such as biomedical optics, atmospheric physics, astronomy, oceanography, and autonomous sys-
tems. A trained D°NN was demonstrated to all-optically recover the images of arbitrary objects com-
pletely distorted by unknown, random phase diffusers, presenting a real-time, computer-free, and power-
efficient solution to imaging through random and unknown diffusers (figure 11(b)).
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Figure 11. Examples of D?°NN applications for computational imaging. (a) Using D?NNs for quantitative phase imaging (QPI)
[83]. John Wiley & Sons. © 2022 Wiley-VCH GmbH. (b) Using D?NNs for imaging through random, unknown diffusers.
Reproduced from [85]. CC BY 4.0. (c) Using D?NNs to design class-specific cameras. Reproduced from [86]. CC BY 4.0.
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Figure 12. (a) Schematic illustration of three-dimensional (3D) integrating nine Haar filters (F1-F9). A 3D-printed waveguide
architecture realizing all nine filters in parallel is shown on the right, with filter F2 highlighted in orange. Reprinted with per-
mission from [81] © The Optical Society. (b) Implementation of a recurrent neural network inside a multimode large-aperture
vertical-cavity surface-emitting laser (LA-VCSEL). The optical weights are written by a digital micromirror device (DMD)
through a multimode fiber (MMF). The modulated output is read by a high-speed detector (DET), enabling fully parallel lin-
ear and nonlinear operations at 20 GHz bandwidth. Reproduced from [82]. CC BY 4.0.

As another example, D*NNs also present unique opportunities for designing novel computational
camera systems with customized functions that cannot be implemented through standard optical designs.
As an example, a new type of privacy-preserving imager was designed based on D*NNs, which images
only certain desired types of objects, while all-optically and instantaneously erasing other undesired types
of objects from its output images (figure 11(c)).

Advances in science and technology to meet challenges
There exist, therefore, a wide range of high-potential applications. An important challenge remains to
physically integrate the many values that define a NN’s topology, i.e. the weights to its connections. In
two dimensions, such physical implementations do not scale, and recent attention has shifted towards
full-scale integration in 3D. Moughames et al [81] demonstrated optical convolutional filters integrated
via 3D photonic waveguides (figure 12(a)), while some of the advances in the associated fabrication
technology now allow for low-loss and large-scale 3D photonic integration of optical couplers [87, 88].
Finally, substantially improving the speed of NN computation requires implementing all the involved
processes in parallel hardware, abolishing the slow-down induced through the large-scale serial com-
munication used in schemes that do not leverage full parallelism on each computation stage. This was
recently demonstrated by implementing an optical NN in the high-dimensional space of a multi-mode
semiconductor laser diode, while trainable network weights were realized via a spatial light modulator.
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As a consequence, both the linear operations through optimized weights as well as the nonlinear trans-
formations happened in parallel and with approximately 20 GHz bandwidth [82], see figure 12(b).

Concluding remarks

In summary, using fully parallel optical NNs, computational imaging tasks can be executed at the

speed of light propagation through compact, and potentially integrated photonic systems, establishing
low-power and fast all-optical computing platforms beyond what existing electronic systems can offer.
Free-space diffractive computing framework is scalable to different parts of the electromagnetic spec-
trum, including the visible and infrared wavelengths, which could find wide-ranging applications for
high-throughput computing tasks and inspire the design of intelligent optical front-ends for advanced
machine vision and communication systems. Three-dimensional (3D) photonic integration, on the
other hand, provides the tools and techniques to enable scalable photonic integration of such con-
cepts, while the use of high-dimensional nonlinear optical media such as semiconductor lasers unlocks
another potential of photonics for computing: ultra-high speed. Despite these exciting developments
and the unique advantages of optical networks, some challenges also remain that need further work and
advances; for example, in situ training methods that are resilient to hardware and fabrication imper-
fections and potential misalignments and temporal variations in the optical set-up are highly sought
with several innovative approaches emerging as potential solutions [89]. Similarly, the experimental data
throughput and learning speed of physical systems based on optical hardware also need further advances
to enable fast and periodic training for performance assurance (i.e. quality control) of optical network
inference in the autonomous deployment stage of the system. These needs require a blend of innova-
tions in both optical devices and algorithms, working hand in hand to address some of these emerging
challenges.
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Status

Optical microscopy has had a tremendous impact on our understanding of the microscopic world and is
widely utilized across many disciplines. The traditional workflow consists of (1) data acquisition, relying

on manual adjustments of condenser lenses, illumination intensity and camera exposure time, (2) ocular
inspection of the acquired microscopy images followed by (3) a qualitative assessment of the sample. The
lack of standardization in this workflow makes optical microscopy a qualitative, as opposed to quantitat-
ive, technique.

To resolve this limitation, we first note that quantitative microscopy requires that uncontrollable
and/or unmeasurable parameters of the optical system do not influence the measurement result. This
restricts the measurable quantities to those that are agnostic to the parameters of the optical system. The
set of such measurable quantities depends on the choice of microscopy method. The development of
microscopy techniques and data analysis techniques go hand in hand: new microscopy techniques can
extend the set of parameter-agnostic quantities, calling for new analysis techniques capable of quantifying
them. In this context, DL-powered analysis has emerged as an alternative for fast, accurate, and auto-
matized analysis and quantification of microscopy data, in alignment with broader efforts in quantitative
computational imaging, such as E2E differentiable approaches discussed in section 2. As an example,
the positions, and motion, of objects within the sample do not depend on the parameters of the illu-
mination or the optical system. Particle tracking is, as such, a prime example of a parameter-agnostic
technique for most microscopy techniques. It is therefore not surprising that large effort has been put
into developing accurate and efficient tracking techniques. Here, DL-powered analysis has been demon-
strated to surpass algorithmic techniques in terms of accuracy and speed while being fully automatized
and objective [72].

Beyond this, interferometric techniques such as holography, interferometric scattering microscopy
(iSCAT), and optical coherence tomography, have the potential to provide a quantification of the
amount, and in some cases the angular distribution and/or the optical phase shift, of scattered light
from objects. This can in turn be related to physical parameters of the objects in the sample such as
their mass [90], size and refractive index [91]. Again, DL powered techniques have demonstrated super-
ior accuracy and speed in quantifying such parameters, in particular at low signal-to-noise ratios (SNRs)
[92].

Finally, multi- or hyperspectral imaging modalities, such as Raman imaging or Brillouin imaging,
record a spectrum of optical responses in each pixel, generating enormous datasets. In this context, DL
has provided a powerful method for automatized extraction of relevant data from such datasets [93].

Current and future challenges

Arguably, the holy grail within the field of quantitative microscopy is the accurate quantification of phys-
ical properties of specific components in a sample. Generally speaking, achieving this goal requires dis-
tinguishing the signal of the components of interest from that of other components (see figure 13 for

a possible work flow). Doing this in a quantitative manner requires, in turn, that (1) sufficiently many
physical parameters can be quantified, on an individual object level, to classify objects in the sample. In
complex environments, as is often the case when considering biological samples, multiple components
are often in close proximity and as a result the signals from such components are intertwined and not
readily distinguishable. Therefore, in order to be useful, such specific imaging needs (2) to be robust to
noise and (3) to feature a high spatial resolution (preferably sub-diffraction limited). Further, since com-
ponents are often dynamic, it is also crucial (4) to have a high temporal resolution (1-10 ms).

More specifically, interferometric techniques typically display a high temporal resolution, meeting
the requirement (4) above. It has also been demonstrated that DL-powered analysis techniques have the
potential to quantify physical parameters of individual objects at high noise levels (2) and short length
scales (3) (comparable to the diffraction limit) [92], much faster than traditional methods [91]. The set
of parameters that can be quantified from individual nanoscale objects depends on the object size and
imaging modality, and is currently limited to mass (for Rayleigh scatterers) [90], and size and refractive
index (for particles larger than the diffraction limit) [92]. While these parameters arguably are key phys-
ical parameters in many cases, they may not be sufficient to do a robust classification and to perform
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Figure 13. A tentative workflow for achieving quantitative microscopy with specificity. Starting from the acquisition, this must be
sufficiently fast and display sufficient resolution to resolve the properties and dynamics of the objects of interest. Next, the data

is analyzed, to enhance contrast and to resolve and detect objects in the data. This can be aided by deep learning (DL), as indic-
ated by the arrow. Following object detection, a set of physical characteristics of the objects are quantified based on their optical
responses, again potentially aided by deep learning. Advances in these steps in terms of noise resilience provides a feedback to the
acquisition step, allowing faster acquisition (but also increasing noise in the data). Finally, specificity can be achieved by recogni-
tion of common characteristics of the objects of interest. Images are simulated using the software DeepTrack 2 [94].

quantitative imaging with high specificity. Extending this set of parameters without sacrificing spatiotem-
poral resolution is therefore a key challenge for these techniques (figure 13, ‘Interpretation’). A particular
challenge will be the quantification of objects larger than the Rayleigh limit, but smaller than the diffrac-
tion limit, as the relation between mass and light scattering is ambiguous in this regime and depends on
the collection angle of the optical system and the internal mass distribution within the object [95].

For Raman and Brillouin imaging, the information content in each pixel consists of a frequency
spectrum quantifying the local photon/phonon interaction. In this case the signal is in fact material spe-
cific, and can be used to quantify the abundance and distribution of different materials across a sample
[96], resolving requirement (1) above. The remaining challenges in this field relate to the detection and
quantification of individual objects in a complex sample (2) at high spatial (3) and temporal (4) resolu-
tion (figure 13, ‘Analysis’).

The key challenges are therefore:

1. extending the set of quantifiable parameters for interferometric imaging techniques, without
sacrificing spatiotemporal resolution, and

2. improving spatiotemporal resolution and noise resilience of multispectral quantitative imaging
techniques without sacrificing material specificity.

Advances in science and technology to meet challenges
The necessary technological and scientific steps in order to address these challenges are the following.

First, the amount of information in interferometric images can be enhanced through wavelength
and/or modality multiplexing, which will ease the quantification of auxiliary physical parameters.

Second, the full information content of interferometric scattering patterns need to be utilized in the
analysis. Specifically, the angular distribution of the optical field scattered from an object depends not
only on its size, but also on its shape and internal mass distribution. This information is encoded in
interferometric scattering patterns, but extracting it would generally require inversely solving Maxwell’s
equations. This is computationally expensive and extremely sensitive to measurement noise, in particu-
lar when approaching the Rayleigh limit. It has been demonstrated that DL-powered approaches enable
much faster determination of object properties [91], while retaining accuracy even at low SNRs at sub-
wavelength length scales [92]. Extending such quantification approaches to quantify also the morphology
and internal mass distribution of objects covering a range of sizes from <100 nm to several micrometers
will be a necessary step to achieve specific interferometric imaging.

For multispectral quantitative imaging, the key challenge is related to increasing spatiotemporal res-
olution. Recent works have demonstrated that stimulated Raman [96] and Brillouin microscopy [97] do
have the potential for fast multispectral imaging, and work along those lines is expected to push the res-
olution of those techniques in the coming years. Integrating these imaging modalities with data-driven
interpretation frameworks such as virtual staining (section 27) could further enhance specificity. DL
powered analysis techniques can assist in this development by reconstructing physical parameters from
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incomplete spectral information [96]. In this way, less data may be needed to reach the same level of
specificity, thereby increasing temporal resolution further.

Combining such developments with advances in virtual staining, which has been demonstrated to
recognize, classify and quantify structures in non-specific imaging modalities [98] is predicted to enable
specific quantitative imaging through DL assisted analysis.

Concluding remarks

In conclusion, the big challenge in quantitative microscopy for the foreseeable future relates to combin-
ing quantitative measurements with having high specificity, thereby transforming such techniques into
viable alternatives to fluorescence imaging. In this roadmap, I have discussed how DL powered data ana-
lysis may aid this development, highlighting some key steps that need to be realized in order to achieve
this goal.
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QPI enables label-free imaging of transparent biological samples such as unstained cells and tissues.
Many holographic-based phase imaging techniques have been developed to extract the phase inform-
ation based on the principle of interferometry. However, these techniques generally suffer from com-
plex instrumentation. In this perspective, we focus on computational phase microscopy techniques which
recover phase information from a non-holographic setup using intensity-only measurements (altern-
ative strategies are discussed in section 2 for learning with differentiable physical models). The main
difficulty of reconstructing phase from intensity-only measurements is that it is generally an ill-posed
inverse problem. Classical ‘phase retrieval” algorithms are developed based on the Gerchberg—Saxton—
Fienup algorithm, which uses an iterative reconstruction procedure and incorporates additional physical
constraints to find the solution. In recent years, DL has shown tremendous success in solving such com-
putational imaging problems. Here, we highlight several major advances on how DL pushes the imaging
performance of computational phase microscopy, as summarized in figure 14.

In general, DL techniques have been developed to solve both the 2D phase recovery and 3D tomo-
graphic reconstruction problems, as summarized in figure 14. For 2D computational phase imaging, the
first supervised learning-based reconstruction algorithm proposed in Rivenson et al [99] showed that
the twin-image and self-interference related diffraction artifacts can be eliminated by a DNN. To push
the performance at low-light conditions for 2D phase imaging, a DL technique has been developed to
provide high-fidelity recovery when the photon numbers are low [100]. For 3D computational phase
imaging, DL frameworks have been developed to solve the challenging 3D tomographic phase recon-
struction from intensity-only measurements [104, 105]. In addition, frameworks have been developed
to mitigate multiple-scattering effects and overcome the limitations in commonly used linear single-
scattering approximation models [104, 105].

Although these supervised DL methods have made significant progress, they require large-scale train-
ing datasets containing paired measurements and ground-truth images. While early attempts focus on
generating experimentally captured dataset [99, 100], in practice the accessibility to large-scale training
data in experimental settings can be limited. To overcome this limitation, several innovative approaches
have been developed. For example, computationally efficient and accurate simulations based on multiple-
scattering models have been developed to generate synthetic training datasets for 3D problems [104,
105]. Instead of using the supervised DL framework, the unsupervised ‘untrained neural network’
framework based on Deep Image Prior [101] and Deep Decoder [102] have been adapted for 2D phase
retrieval without needing any network pre-training nor training data. In this approach, the phase map
is parameterized by an untrained network, whose parameters are optimized by matching the predicted
measurement to the actual measurement using the known physical model via a standard iterative ‘net-
work training’ procedure.

In addition to only performing the post-hoc 2D or 3D reconstruction tasks in computational phase
imaging, DL methods have also been developed to co-optimize the physical design of measurement pro-
cess along with the reconstruction. Pioneering work demonstrates an ‘unrolled neural network’ frame-
work to optimize the coded-Illumination pattern and high-resolution 2D phase reconstruction using
much reduced measurements than model-based method [19].

Current and future challenges
Despite achieving state-of-the-art performances in many tasks, multiple challenges remain to be solved
both in terms of physical principles and computational frameworks, including:

1. Multiple scattering effects and missing-cone problems
The multiple scattering effects become significant with the increase of refractive index contrast,
structure complexity, and size of the biological samples. The measurement is often confounded by
the ‘missing-cone’ problem, which does not provide access to a large amount of axial spatial
frequency information. Together, these make the 3D reconstruction suffer from poor axial resolution
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Overview of deep learning for computational phase microscopy
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Figure 14. Overview of deep learning for computational phase microscopy. Deep learning has been used to recover both 2D [19,
99-103] and 3D [104-107] phase objects using both supervised learning [19, 99, 100, 103-106] and untrained neural networks
[101, 102, 107]. For supervised learning, the training data is obtained either in experiments [99, 100, 103] or in simulations [19,
104-106]. Deep learning has also been applied to optimize the coded illumination patterns [19, 103]. The insets at the bottom are
© [2019] IEEE. Reprinted, with permission, from [19]. Reproduced from [99]. CC BY 4.0. Reprinted with permission from [105]
© The Optical Society. Reprinted with permission from [102] © The Optical Society.

and degraded reconstruction accuracy. Although DL frameworks have been developed to reconstruct
highly scattering objects [104—106], their effectiveness is still limited. Similar challenges of data
completeness and reconstruction under physical constraints also arise in quantitative microscopy
(section 7) as well as other imaging modalities (sections 9—13).

2. Reliable DL prediction
Another major limitation is that the trained DL model is often not robust to experimental variations.
To overcome this issue, an uncertainty quantification framework based on the Bayesian learning
framework has been proposed [103], which allows evaluating the confidence of the prediction result
without knowing the ground truth. However, this type of Bayesian learning framework is still at its
nascent stage and requires significant process to provide more reliable DL predictions.

3. Large-scale computationIn DL-based reconstruction, the size of the NN generally increases as the
size of the input images. Thus, the practically achievable space-bandwidth product (SBP) of the
reconstructed image without excessive image stitching is limited by the memory of the computer. The
associated computational cost becomes a bottleneck for emerging large-SBP imaging techniques, such
as Fourier ptychographic microscopy for gigapixel 2D phase imaging [103] and diffraction
tomography on large-scale 3D objects [105].

Advances in science and technology to meet challenges
Here, we outline a few promising directions to pursue to overcome the above challenges and further
push the fundamental limit of DL for computational phase imaging.

1. Prior knowledge incorporation
An overall strategy to overcome the multiple scattering and missing-cone problems as well as the
reliability of DL prediction is to incorporate additional physical knowledge into the NN designs. In
simulation-based training [104, 105], the multiple-scattering physics is incorporated into the
simulator. In untrained NNs [101, 102], the physical model of the imaging system is incorporated
during network training. In Bayesian learning [103], the priors are learned by a NN, which is then
used to quantify the uncertainty at the test stage. A few other network designs implicitly take the
physical insights into consideration. For example, reference [100] separately processes low and high
spatial frequency information using a synthesis network. Kang et al [106] treats the sequential
measurement as a dynamical system and solves the tomographic reconstruction problem by a RNN.
We anticipate that hybrid strategies that incorporate multiple types of priors, e.g. multiple-scattering
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physics, imaging model, and experimental data distribution, are promising directions to investigate in
the future.

2. Computationally efficient framework Future development is needed to enable memory-efficient
computational frameworks for large-SBP imaging applications. A promising solution is the neural
fields (a.k.a. implicit neural representations) that parameterize the object by a coordinate-based deep
network. The object is represented by the parameters of a small-scale NN, instead of the dense
voxel/pixel grids. Promising results using this framework have been recently demonstrated for
large-scale 3D phase recovery in Liu et al [107] and dynamic imaging in Cao etal [108]. We
anticipate novel neural representations for efficient information embedding may be a promising
direction to pursue for large-SBP reconstructions.
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The technological advancement enables highly informative imaging, allowing scientists to see what pre-
viously was hard to even imagine. The vast collection of imaging techniques used in the biological and
preclinical areas indicates the breadth of possibilities [109]. Powerful and complex devices reveal a vari-
ety of properties of a specimen, such as morphological structure, chemical composition, dynamics, func-
tion; however, most often they reveal only one such property at a time. We are witnessing a growing
popularity, particularly within life sciences, of correlative multimodal imaging (CMI) approaches, which
combine complementary information from different imaging modalities to create a holistic, composite
view of the sample, maximizing the extracted information about an object of interest [110]. The most
well-established CMI technique is CLEM, combining spatial and functional information within the sub-
cellular context.

To enable joint analysis and fusion of the heterogeneous information captured by different devices,
the first requirement is to establish precise geometric correspondence between the acquired images,

i.e. to find a spatial transformation which best aligns the data in the same coordinate system. This
process, known as image registration, is traditionally performed as an iterative optimization process,
aiming to find the transformation which maximizes a similarity measure between the images to align.
Depending on the application scenario, different types of transformations (e.g. rigid, affine, deformable)
are used, making the task more or less constrained. The optimization is typically highly non-convex,
which makes the process complicated and time consuming, while still often only delivering suboptimal
solutions. This in particular holds for multimodal registration, where the images that need to be aligned,
aiming to capture complementary information, often look very different from each other.

To solve or circumvent the observed problems, researchers have turned to approaches based on DL,
mirroring the broader trend toward hybrid model- and data-driven frameworks described in section 4
for PnP computational imaging. Three main directions have been followed: (i) learning a suitable sim-
ilarity measure, (ii) speeding up the registration process by directly predicting the transformation, and
(iii) reducing multimodal alignment to a monomodal task, by applying image-to-image (I2I) translation
techniques. These approaches have been evaluated on medical data [111-113] and the most successful
ones are steadily growing in popularity. However, their use in biomedical/microscopy image registration
is still very limited. In particular, DL-based multimodal microscopy image registration has been attemp-
ted in only a few works [114, 115]. The extraordinary boost, observed for other image analysis tasks,
such as image segmentation and classification, is still lacking—the DL-revolution is yet to come to mul-
timodal microscopy image registration.

Current and future challenges
To reach, and benefit from, the full potential of DL in multimodal microscopy image registration,
researchers need to respond to several challenges (figure 15):

Challenge 1—DL methods still do not meet the expectations in image registration

Considering that different combinations of modalities may require different measures of image similar-
ity, the idea to learn such a measure from data comes naturally. Given sufficient annotated training data,
proposed learned similarity measures perform well. However, they are most often used to replace con-
ventional measures within a slow iterative registration procedure, which reduces the benefits.

Once trained, DL models are typically very fast and therefore appealing to use as regressors, to dir-
ectly predict the transformation parameters to reach image alignment. This approach is taken by cur-
rently most popular methods which use DL for registration. While considerably reducing runtime, they
still fall behind conventional iterative methods in terms of accuracy.

121 translation approaches, typically based on generative adversarial networks (GANs), perform
impressively in learning to mimic, and combine, content and styles captured by image data, e.g. enabling
‘virtual staining’ of label-free tissue. However, generated images, even if convincing in appearance, often
do not preserve well the information important for image alignment [115]. Relying on aligned pairs, the
coordinated representation learning approach [114] delivers superior performance (figure 16).
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Figure 15. Needs and challenges. Overview of needs and challenges for multimodal microscopy image registration by deep
learning.
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Figure 16. Multimodal image registration. Multimodal image registration can be addressed by converting the multimodal
problem into a, presumably less challenging, monomodal one. Here, this is illustrated on the difficult task of aligning Second
Harmonic Generation (SHG) and BrightField (BF) microscopy images. (a) One approach is to synthesize images acquired by
one modality to appear as if acquired by the other; this type of image-to-image (I12I) translation is typically done by generat-
ive adversarial networks (here, using StarGAN v2). However, a comparative performance analysis [115] indicates that the syn-
thesized images, even when convincing in appearance, seem to lack sufficiently reliable features to ensure successful subsequent
monomodal alignment. (b) Another approach is to, instead of learning the appearances, learn representations (12R) of the joint
content of multimodal images, transforming them into a common ‘virtual’ modality. This coordinated representation learning

approach, in combination with a suitable monomodal registration method, reaches excellent performance on alignment of SHG
and BF images [114].
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Challenge 2—DL methods require a lot of data, but not any data

Correlative multimodal microscopy typically results in few very large images. This is far from the mil-
lions of relatively small annotated images collected in publicly available datasets which are used for
development of state-of-the art DL models in CV. Handling such massive, high-dimensional data
volumes aligns closely with the computational bottlenecks discussed for large 3D image reconstruction in
section 3. The complexity of the acquisition process, typically requiring significant manual labor, com-
bined with exploratory aims of the performed research, implies that images acquired are often counted
in single-digit numbers. Transfer learning, aimed at reusing trained models on new datasets, often deliv-
ers diminishing returns on the diverse and heterogeneous biomedical image data. At the same time, very
high-resolution imaging provides terabyte-sized (or even larger) image volumes, necessitating advanced
algorithmic solutions for their processing.

Challenge 3—annotated multimodal microscopy data are critically lacking

To ensure reliable performance, DL approaches generally require large amounts of annotated training
data. Annotation of biomedical data requires not only extensive time, but also considerable expertise,
making it costly to collect. DL models which require aligned image pairs for training find limited use,
since the alignment is, for many modality combinations, simply too difficult to be performed manually.
Few-shot and un/self-supervised methods may reduce the need for training data, but this often comes at
a cost reduced performance.

Advances in science and technology to meet challenges

Availability of high quality training data is identified as a sine qua non condition for successful DL
approaches. Notably, similar issues about the critical need for annotated datasets also arise in high-
content screening and biomedical imaging applications (section 30), highlighting the broader ecosystem
challenges. The challenges of DL-based multimodal microscopy registration all relate to the need for, and
difficulty to provide in sufficient amounts, accurately aligned multimodal microscopy image pairs for
diverse combinations of modalities. This indicates two directions forward:

i. develop methods which reach good performance while requiring only few, or no aligned image pairs;
ii. collect large annotated multimodal microscopy datasets and make them broadly available.

Advances in methodological development

Iterative maximization of mutual information (MI) is still the most popular multimodal registration
method; it is generally applicable, performs reasonably well, and does not require any training data. A
recently proposed FFT-based algorithm [116] advances MI-driven rigid multimodal registration, both
in terms of speed and accuracy, outperforming DL-based competitors on two multimodal microscopy
datasets. Novel DL-based registration methods need to deliver more.

Requirements for extensive training data of aligned multimodal image pairs need to be reduced, or
removed. We need to turn to novel and innovative learning strategies which deliver highly performing,
yet scalable solutions. General improvement of data-efficient DL strategies, such as few-shot learning,
domain transfer, and self-supervised learning, will advance multimodal microscopy image registration as
well.

Unsupervised methods, not requiring any aligned image pairs for training, are already available.
Examples include 121 translation approaches based on unsupervised GANs [115]. However, their per-
formance needs to be further improved.

Advances in data collection, open science, and standardized benchmarks

Annotated (ground truth) data is needed not only for DL model training, but also for evaluation

of novel methods. It is therefore of critical importance to assemble and publish high quality data-

sets, enabling quality control and reproducibility. Automated approaches may reduce need for manual
annotation, e.g. by generating landmarks through segmentation of identified common structures in mul-
timodal data.

Integrated imaging, where different modalities are simultaneously acquired and therefore aligned,
may be a rewarding path for generating large amounts of high-quality ground-truth registration data,
for both training and performance evaluation. This option is, however, only available for a few com-
binations of modalities. Advances in integrated imaging will at the same time reduce the need for mul-
timodal registration methods.

Considering the specificities and large size of multimodal microscopy datasets, availability of suitable
data sharing platforms is a necessity. Standardization of acquisition processes will contribute to improved
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quality of data and increased homogeneity (e.g. within a particular modality), leading to increasingly
successful training of DL models and improved registration quality. Open platforms for standardized
method evaluation will boost the quality of novel approaches. A recent contribution is an open evalu-
ation framework for rigid multimodal registration methods, [115].

Concluding remarks

In the era of outstanding performance of DL methods, which continuously advance image data ana-
lysis, most popular methods used in practice for multimodal microscopy image registration still rely

on semi-automatic approaches. A successful example is eC-CLEM [117]—relying on user-interaction,

it has demonstrated applicability to registration tasks involving a wide range of modality combinations.
However, the increasing diversity of multimodal microscopy image registration problems and the grow-
ing scale and dimensionality of acquired data urgently call for the power and flexibility of efficient data-
driven approaches, to bring the quality of the methods and analysis results to the next level. By address-
ing the identified challenges of the field (overviewed in figure 15), DL-based techniques have the poten-
tial to deliver modality-agnostic, fast, and generally applicable image registration solutions, to advance
CM]I, and ultimately—life sciences.
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Status

FLI provides distinctive contrast mechanisms for the interrogation of biological samples. A key

strength of FLI is that it can uniquely provide absolute measurements directly related to the fluorescent
molecule(s) state and its/their interaction with the surrounding molecular micro-environment: such as
temperature, pH, viscosity, polarity and mechanical forces. The principles and various technical imple-
mentations of FLI have been established over the last three decades, but until recently, have typically
remained an expert field. With the advent of turn-key commercial FLI capable imaging platforms, FLI is
currently being increasingly embraced by end-user communities (e.g. molecular biologists, drug devel-
opment experts) with demonstrated increased utility in microscopic and macroscopic preclinical and
clinical applications. Still, a main challenge in FLI resides in the estimation of the lifetime(s) or associ-
ated parameters. This is a complex computational task, in which accuracy can be highly dependent on
the model selected, the set of parameters used, and the SNR of the acquired measurements (typically a
photon starved application, hence, low SNR). Therefore, there are still large efforts focusing on provid-
ing robust, user-friendly, and accurate methodologies, including DL models, for FLI quantification and
image formation. The use of ML approaches for FLI image formation was first using an ANN approach
with promising results [118]. This work was followed by the first DL model, FLI-NET, designed to sim-
ultaneously produce 2D images of all the lifetime-based parameters associated with a double exponential
model [119]. FLI-NET was validated both with microscopic and preclinical data sets and for two main
instrumental detection technologies, time-correlated single photon counting (TCSPC) and gated ICCDs.
Since then, an increasing number of reports have demonstrated the potential of DL models to accurately
estimate lifetime parameters without any user input, over large FOVs, with extremely fast inference times
(at, or close to real-time), and with better performances at low photon counts. There is also an increased
interest in developing E2E DL models for pixel-wise classification based on spatio-temporal inputs. An
example of an ANN based FLI image formation over a large FOV is provided in figure 17.

Current and future challenges

As the field of DL for FLI continues to mature, it is facing the same challenges currently encountered
in the development and validation of DL models for biomedical imaging at large. These can be sum-
marized as: the acquisition/availability of large representative data sets, the generalization of DL models,
and instilling explainability and/or trustworthiness of the DL model output. In numerous fields, DL suc-
cesses at large can be attributed to the confluence of increased computational power with accessibility
to large data sets. However, for biomedical applications, large data sets that have been thoroughly cur-
ated are rarely available to the community. This is particularly true for FLI. To date, most of the work
reported has implemented experimentally representative data simulation routines to generate large data
sets for efficient DL model training and validation. This approach is cost effective and has been demon-
strated to perform well for processing experimental data not used during training with high accuracy.
This mitigates the requirements of large experimental data sets for training, but still requires expertise
in developing the simulation environment that closely replicates the specificity of the application—such
as instrumental characteristics (especially the instrument response function, IRF, which characterizes the
temporal behavior of the system), lifetime-based parameters range and noise distributions.

Though, there are additional factors that can affect FLI quantification from experimental data and
that can be challenging to represent during the training phase. These include laser jitter and instru-
mental drift, changes in sample to detector distance, pixel-dependent variation of the IRF, photobleach-
ing of the fluorophore, saturation of the detector. Other factors include simulation model bias such as
imaging a sample with fluorescence lifetime outside of the range of that used during model training and
more complex signal signatures such as multi-exponential features beyond bi-exponential behaviors. All
and each of these factors can negatively affect the model output independently. This also highlights the
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Figure 17. FLI quantification with ANN. Diagram of FLI quantification using an ANN trained with simulated data (a), (b). (¢),
Example of model used for lifetime quantification of a Convallaria sample of high spatial dimensionality (1875 x 1942 pixels).
The total processing time of the ANN was approximately 36 s. Reproduced from [120]. CC BY 4.0.

difficulty to generalize the developed DL models beyond the imaging system and application at hand.
FLI-Net, the first DL model applied to different FLI applications and technologies, needed to be trained
specifically for each case. This comes with an added computational burden comparatively to classical
iterative fitting approaches. Additionally, this leads to assessing the trustworthiness of the DL model out-
put. In this regard, classical iterative fitting-based approaches can assess the fidelity of the quantification,
as well as the quality of the FLI data itself, through residual error between the data and the approxim-
ated fits. This is an important means for quality assessment that is commonly employed during FLI ana-
lysis, as FLI data can be comprised of pixels with decays that are not suitable for quantification due to

a range of factors (e.g. low SNR, motion artifacts, improper parameter settings). When using DL for
either image formation or for classification, these poor-quality decays can be either removed or artifi-
cially enhanced via rudimentary pre-processing steps prior to network inference. However, this prepro-
cessing step precludes the application of DL models towards real-time and/or can lead to large bias as it
enforces expected features in the data that could not always be valid (for instance bi-exponential beha-
vior while more complex biological distribution is present in the sample).

Advances in science and technology to meet challenges

The use of DL methodologies for FLIM is a nascent field that promises to greatly increase the wide-
spread utility of lifetime-based contrast in biology, as well as its use in translational medicine. To date,
a pioneering set of reports have laid the foundation for the development of efficient DL models that are
dedicated to specific applications and technologies. One important aspect is that, in many cases, exper-
imental validation of DL models has been primarily performed with relatively bright and long lifetime
samples that are ‘best case’ scenarios. Still, it can be argued that the biggest challenge in the field of
lifetime imaging at present is that of low photon count detection with high background noise levels.
Indeed, proper FLI data acquisition requires many photons to provide high quality decays in all pixels.
However, low counts often force the use of high exposure times or illumination powers that can lead to
fluorophore photobleaching or cell/tissue damage. Low counts also lead to increased binning resulting
in reduced resolution [121]. However, collection of suitably high counts is oftentimes unfeasible when
dealing with sensitive samples or with applications requiring even modest (i.e. sub-second) framerates.
FLI-Net was the first reported model to exhibit increased accuracy in low photon regime compared to
traditional iterative fitting techniques. Since, numerous studies have focused on establishing improved
DL models for this specific scenario across various applications [121-123]. In parallel, next-generation
time-resolved detectors, such as single-photon avalanche diode (SPAD) arrays, are poised to enable faster
and more photon-efficient FLI data acquisition with improved SNRs [124]. Furthermore, next genera-
tion microscopy systems that leverage computational imaging approaches like single-pixel detection will
allow for improved collection efficiency especially when coupled with DL models [125]. Also, the imple-
mentation of detectors that leverage additional information content (e.g. hyperspectral detection arrange-
ments) will allow for increased specificity, especially for conditions where spectral emissions from tar-
get fluorophores are hard to isolate due to spectral bleedthrough [126]. Additionally, there are still large
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Figure 18. Diagram of flimGANE (fluorescence lifetime imaging based on generative adversarial network estimation). Low
SNR fluorescence decay input is denoised, and potential laser jitter is accounted for, by the generator (a). The discriminator
(b) enforces high-quality decays by an additional loss term. The estimator (c) then uses the denoised output of the generator
to retrieve lifetime quantification. Reproduced from [128]. CC BY 4.0.

efforts focusing on developing more stable exogenous fluorophores with high quantum efficiencies and
low cytotoxicity for improved FLI signal detection.

On the account of output trustworthiness, there has been an increased number of tools available for
eXplainable AI (XAI) [127]. Though, if current methods can be leveraged efficiently in FLI classification
tasks, there is still a lack of appropriate tools in DL image formation. To date, DL model outputs must
be assessed by an expert and unexpected results, forensically investigated. From experience, these unex-
pected DL results are typically attributed to some variations in the experimental acquisition parameters.
Such variations can be mitigated by employing generative models. For instance, limGANE takes into
account the noise distribution as well as laser jitter in FLI data collected by TCSPC (figure 18 [128]). In
turn, this enables the development of DL models that are more generalizable. Still, they typically come
with an additional computational complexity that does not make them competitive for fast inference,
which is required in certain clinical scenarios. In this regard, simpler DL models have been proposed
that process data for individual pixels with potential to be implemented directly on the acquisition hard-
ware. Coupled with efficient training methodologies, they herald embedded hardware implementation,
coupling with sensors and readout circuits to achieve fast on-chip training and inference [129, 130].
Especially, by integrating computationally efficient DL workflows directly onto FPGAs, real-time edge
computing FLI can be achieved [131].

Last, to maximize reproducibility and accessibility across the FLI community, the development
of user-friendly open-sourced software will have a large and significant impact (see also sections 32—
35). Providing a workflow that allows for deconvolution of the end-users IRF (i.e. the detector-specific
response) [132] along with subsequent data simulation and model training across wide parameter
bounds could provide a cross-reference platform for benchmarking. Combined with the mandate from
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institutional funding agencies to support the release of publicly available data, it will elicit even further
developments in the field by opening it to the computer science community.

Concluding remarks

FLIM has firmly established itself as a pillar of cellular imaging from microscopic to macroscopic plat-
forms. However, FLI utility is associated with parameter(s) quantification obtained via computational
approaches, which has reduced its impact and wide-spread use due to the expertise requirements. The
implementation of DL methodologies is expected to enable real-time FLI quantification free of user-
related bias. Beyond simplifying and enhancing the data processing pipeline, DL is poised to greatly
impact FLI imaging protocols and imaging platforms. Due to its enhanced robustness at dim signals, DL
is expected to relax the need of long integration time, spatial binning, and increased illumination power.
Altogether, DL-enhanced FLI will be better-positioned to impact applications ranging from fundamental
biology to clinical practice.
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12. Multi-modal nonlinear microscopy
Tong Qiu, Li-Yu Yu and Sixian You
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Status

The development of nonlinear optical theory and microscopy has enabled unprecedented opportun-
ities to look at living cells, tissues, and animals with submicron resolution in real-time. Over the past
two decades, a variety of biological phenomena have been investigated using images based on the fluor-
escence excited by multiphoton processes, harmonic generation from specially structured molecules,
and chemical profiling based on coherent Raman scattering. Integration of these modalities has been
shown to provide metabolic, chemical, and structural profiling of cells in the context of living tissues.
Despite its strong promise, multimodal nonlinear microscopy has not yet reached its full potential.
Improvements in hardware and software are needed for further translation to biomedicine. These chal-
lenges and opportunities are similar to those of traditional microscopy modalities explored in sections 7—
10, 12, and 13. This perspective focuses on the important gaps that can be potentially addressed by DL
from two angles: (1) how DL can help overcome the technical limits of multimodal nonlinear micro-
scopy through DL-based reconstruction and augmentation, and (2) how DL can help increase the clin-
ical and biological relevance of multimodal nonlinear microscopy through DL-based image and video
understanding.

Current and future challenges

One challenge lies in the longstanding technical limitations of nonlinear microscopy, such as the pen-
etration depth, imaging speed, signal strength, and resolution associated with in vivo imaging. Various
hardware improvements have been proposed in recent decades, including adaptive optics, adaptive laser
sources, and fiber-based endoscopy for deeper tissue imaging, multi-foci and wide-field temporal focus-
ing for higher speed, and pulse shaping for stronger signals. However, optimization of one of these para-
meters based on hardware is usually associated with the degradation of performance in the other para-
meters. For example, pulse shaping boosts signal generation efficiency by compensating for dispersion at
the expense of laser power and cost. Computational reconstruction, such as optimization and learning-
based algorithms, provides a promising alternative to overcome such inherent tradeoffs by regularization
based on principle-based or learned data priors.

The other challenge is the automated image and video understanding of multimodal nonlinear
microscopy. The information captured by multimodal nonlinear microscopy is a pixel-coregistered mul-
timodal quantitative measurement of fluorophores (two-photon, three-photon absorption fluorescence),
molecular structures (second, third-harmonic generation), and chemical bonds (coherent Raman anti-
Stokes scattering, stimulated Raman scattering). Despite its rich information, the translation of the mul-
timodal information to biological and pathological analysis is not yet readily accessible to biologists
and clinicians who are experts in immunohistopathology. Algorithms that can address the challenges
of image and video understanding of multimodal nonlinear microscopy are in great demand. One dir-
ection is to directly transform multimodal nonlinear microscopy to hematoxylin and eosin (H&E)-like
images, which facilitates the biomedical relevance of the new image dataset. Cahill et al have shown a
color metric-based method that reliably translates nonlinear microscopy images to H&E images [133].
The other direction is the direct extraction of quantitative information for specific applications. For
example, Walsh et al performed classification and single-cell analysis of quiescent and activated T cells
using quantitative features of nonlinear autofluorescence microscopy, which revealed the correlation
between the autofluorescence features and the metabolism of T cells [134]. These insights establish
robust protocols and propose new mechanisms but rely on users’ mastery of both nonlinear microscopy
and the specific biomedical applications. DL methods promise to alleviate the burden of domain expert-
ise and further streamline the process via data-driven and E2E learning.

Advances in science and technology to meet challenges

As mentioned in the previous section, computational reconstruction is uniquely positioned towards
pushing the physical limits of nonlinear microscopy via proper data priors. For example, to faithfully
reconstruct wide-field multiplexed measurements in deeper layers, Zheng et al [135] leveraged tem-
poral focusing for randomly patterned wide-field illumination and physics-based inversion for com-
putational reconstruction of the multiplexed signals (figure 19(a)). To enable video-rate multiphoton
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Figure 19. Examples of how computational reconstruction improves nonlinear microscopy images. (a) Deep wide-field two-
photon microscopy of ex vivo muscle tissues with patterned illumination and computational inversion. Reproduced from [135].
CC BY 4.0. (b) Video-rate in vivo imaging of neurons in freely behaving mice using two-photon fiberscopy and two-stage learn-
ing transfer strategy. Reproduced from [136]. CC BY 4.0. (¢) High-speed high-fidelity hyperspectral stimulated Raman spec-
troscopic imaging of biomolecules with deep learning-enhanced signals. Reproduced from [96]. CC BY 4.0. (d) Isotropic three-
dimensional label-free nonlinear microscopic imaging via physics-informed deep learning axial deblurring [139].

endomicroscopy, Guan et al [136] devised a two-stage learning transfer strategy to generate augmented
training datasets that would be otherwise challenging to obtain experimentally in vivo, which effectively
recovered the loss of SNR and resolution associated with a high frame rate (figure 19(b)). Towards high-
speed high-fidelity hyperspectral nonlinear microscopy, Lin et al [96] achieved ultrafast tuning based

on a polygon scanner and enhanced the weak Raman signals via a spatial-spectral residual learning net-
work (figure 19(c)). Weigert et al [8] and McAleer et al [137] showed promising results in high-quality
image reconstruction with reduced light dosage or acquisition time via learning-based algorithms. Fan

et al demonstrated an enhanced second harmonic imaging using a DL decipher for efficient and resi-
lient phase retrieval [138]. Towards isotropic three-dimensional imaging, Han et al [139] leveraged a
sampled-informed synthetic dataset to adapt a pre-trained deblurring network to axial resolution recov-
ery in label-free nonlinear microscopy (figure 19(d)). Although these computational strategies have the
potential to bypass the physical limitations of nonlinear microscopy, a few challenges remain open to
more investigations, including how to obtain ground truth data in demanding applications, how to avoid
hallucination in data-driven reconstruction, and how to avoid data-driven bias in learning-enabled biolo-
gical discoveries and clinical diagnosis.

Towards better image and video understanding of multimodal nonlinear microscopy, DL is a prom-
ising tool due to its E2E data-driven principle, i.e. not relying on hand-crafted features, and its demon-
strated capability of generalization to unseen data. Rapid advances in CV pave the way for numerous
applications in optical microscopy, and many methods can be adapted to nonlinear microscopy analysis
such as virtual staining [140-142], cell segmentation [143, 144], and cancer classification [145, 146] (see
also sections 27 and 30). For example, to generate histology-like images, Sun et al [141] have demon-
strated virtual H&E staining based on SLAM images, segmentation NN, and color translation metrics
(figure 20(a)). To carry out single-cell analysis of the tumor microenvironment, You et al [143] per-
formed multiclass pixel-wise segmentation using a supervised U-net (figure 20(b)). To enable real-time
intraoperative assessment, Hollon et al [145] demonstrated real-time tumor detection based on stimu-
lated Raman histology images using a CNN-based architecture (figure 20(c)). Despite these encouraging
results, many real-world biomedical applications face the scarcity of adequate, curated training datasets,
which poses a significant problem for supervised learning. To tackle this challenge, Shi et al [147] have
demonstrated weakly supervised learning to extract conventional and unconventional cancer biomark-
ers from the optical signatures obtained by multimodal nonlinear microscopy. While these DL-based
approaches open a wide array of applications, several challenges need to be addressed in the future. First,
to alleviate the requirement of extensive training datasets, weakly supervised or self-supervised methods
are in great demand. Generalizability is another issue. It remains a challenge to deploy well-developed
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Figure 20. Deep learning-assisted biomedical imaging processing and analysis in multimodal nonlinear microscopy. (a) Virtual
H&E staining of living rat mammary tissue [140]. (b) Segmentation of cells and extracellular for characterization of the tumor
microenvironment [141]. (c) Diagnosis of brain tumor from stimulated Raman histology images [142]. (b) Reproduced from
[143]. CC BY 4.0. (c) Reproduced from [145], with permission from Springer Nature.

methods trained on one dataset to other different biomedical applications. You et al [148] attempted to

address the issue of quality discrepancy between lab-based data and intraoperative data through physics-
based data augmentation. More efforts are needed to develop algorithms that can easily adapt to micro-
scopy systems and user differences.

Concluding remarks

Multimodal nonlinear microscopy has become an indispensable tool for high-resolution imaging of liv-
ing biological systems. Rapid advances in DL are and will keep being leveraged to push the limits of
multimodal nonlinear microscopy. This perspective has focused on how DL helps push the technical
limits of multimodal nonlinear microscopy as well as enhancing its biomedical translation and impact.
Looking forward, we expect these efforts will accelerate the clinical translation and biological discov-
ery based on nonlinear microscopy with caution and innovation. There will also be other exciting work
showing how DL can further advance the design of nonlinear microscopy, such as learning-based ima-
ging system design, as demonstrated in the prospering community of computational photography and
MmiCroscopy.
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13. Automated scanning probe microscopy (SPM)
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Status

Thirty-five years after the development of AFM by Binnig and Rohrer [149, 150], SPM has become the
mainstay technique in areas ranging from condensed matter physics and materials science to biology and
medicine [151]. The highly robust nature of SPM has spawned multiple types of machines operating

in the ambient environment, controlled atmosphere, liquid, and ultrahigh vacuum. Combined with the
electrical, chemical, magnetic functionalization of the probes, the gamut of SPM imaging modes is truly
broad. Complementing imaging, many SPM techniques allow a broad variety of spectroscopic measure-
ments, ranging from the force—distance curves in conventional AFM, current—voltage curve in scanning
tunneling microscopy (STM), and a broad variety of time- and voltage-spectroscopies in techniques such
as piezoresponse force microscopy (PFM) [152]. The development of the SPM modes is seamlessly tied
to the priorities of the R&D community, with the continuous growth wave of magnetic force microscopy
in the late 1990s being driven by the magnetic hard drive industry, development of PFM stimulated by
the ferroelectric non-volatile memories and tunneling barriers and recently discovery 2D ferroelectri-
city, and force—distance measurements providing insight into statistical physics of biomolecules. It can
be argued that exponential growth of experimental effort in materials for energy storage and conver-
sion will guide the SPM progress over the next decade. Here, techniques such as electrochemical strain
microscopy [153] can become invaluable for probing electrochemical reactivity in nanoscale volumes of
batteries and fuel cells, whereas light-assisted electrical SPMs are likely to emerge as techniques of choice
for probing photovoltaic materials and devices. Similarly, STM and associated spectroscopies will grow as
techniques of choice to explore quantum behavior of materials on atomic level, as well as enabling tool
for single-atom manipulation and assembly of atomic scale devices.

Current and future challenges

Despite the tremendous progress in SPM instrumentation and continuously growing number of ima-
ging modalities and experimental platforms worldwide, the basic principles of SPM remained unchanged
from the early days of Binnig, Quate, and Rohrer [150]. The SPM is based on continuous raster scan

of the probe, effectively sampling the probe-surface interactions over the uniform rectangular grid of
points. The spectroscopic measurements are enabled either as point and click approach by operator, or
via hyperspectral imaging modes in which the spectroscopic data is acquired over the uniform grid. This
acquisition mode is convenient from the instrumental implementation, human perception, and math-
ematical analysis perspectives. For hyperspectral measurements, a number of physics- or data-driven
approaches have been developed to convert the high dimensional spectroscopic data sets to the set of
2D representations [154]. However, for realistic materials the information of interest is often concen-
trated in a small amount of locations. For example, in biological systems the molecules deposited on the
surface are often of a higher interest then the substrate between them. In ferroelectric materials, func-
tional responses of structural defects such as grain boundaries or topological defects such as domain
walls are often of higher interest then the responses in the uniform-domain regions. This considera-

tion is particularly important for the spectroscopic measurements. Here, the grid measurements are often
very time consuming and can be associated with the tip damage. Perhaps even more importantly, many
spectroscopic measurements can affect the state of material due to reversible or irreversible processes,
for example shift ferroelectric domain walls, induce local electrochemical reactions, or plastic deforma-
tion of material. Hence, it is of interest the development of the instrumental workflows with the vary-
ing density of imaging points, and particularly methods for active experiment in SPM. In these, the
algorithm updates the locations for image or spectroscopic measurements based on the measurements
results within the same experiment. Here, we disambiguate three types of automated experiment, namely
(a) adapting sampling for the scalar or multimodal measurements (figure 21(a)), (b) forward spectro-
scopic experiment in which the a priori known objects of interest are discovered in real time and spec-
troscopic measurements are taken (figure 21(b)), and (c) the inverse experiments in which the spatial
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Figure 21. Three types of automated experiments in SPM. (a) Adapting sampling and reconstruction, where the full data set is
reconstructed from sampling data [155]. John Wiley & Sons. © 2020 Wiley-VCH GmbH. (b) Forward experiment, in which the
objects of interest are identified in image data, then spectroscopic measurements are taken at the identified objects. Reproduced
from [156]. CC BY 4.0. (c) The inverse experiments, with known target functionality the corresponding structure or materials are
discovered. Reproduced from [157], with permission from Springer Nature.

structures that correspond to functional behaviors of interest are discovered (figure 21(c)). We note that
while (b) roughly corresponds to the operation of a human microscopist, the tasks (a) and (c) are purely
amenable to human operation.

Advances in science and technology to meet challenges

Developing the automated experiment workflows requires the synergy of three components, namely
engineering controls (i.e. the algorithm should be able to issue the control commands to the micro-
scope), ML algorithms, and definition of the reward function. While the former two components are
obvious, the third component (reward) is traditionally less recognized. However, it is clear that even

for applications such as automated driving, the chosen pathway will be very different if reward is safety
(favoring very slow driving) vs. time. For physical experiments, the reward is considerably more com-
plex and has to be defined in the context of the specific physical experiment, prior hypotheses, etc. Here,
for the reconstruction problems (a), the enabling algorithm can be variants of adaptive sparse sampling,
e.g. based on Gaussian Processes. The reward function in this case is defined by the balance between the
quality of reconstruction and minimization of samplings. However, while initially perceived to be prom-
ising, these algorithms often lead only to the insignificant (factor of 2-3) reduction of sampling points
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Figure 22. Deep kernel learning piezoresponse force microscopy (DKL-PFM). (a) Deep kernel learning structure: it contains a
neural network to encode the properties of image data into a low-dimensional latent space and a Gaussian process layer operating
over the latent space to analyze the relationship between image data and target property encoded in spectroscopic data. (b)—

(c) DKL-PFM results on a PbTiOj thin film, which show that the DKL decided measurement points are around domain walls
(indicating domain walls to be interesting) and predict that domain walls have large polarization dynamics. Reproduced from
[157], with permission from Springer Nature.

at the cost of more complex scanning protocols. This behavior can be traced to the presence of the mul-
tiple length scales of the images that preclude effective construction of GP kernels. From a more general
perspective, the classical uniform scanning of the SPM corresponds to the fully open prior, and hence

is often optimal. The experiments (b) rely on the a priori defined objects of interest that can be recog-
nized in real time using deep convolutional networks. Here, the emergence of the ensemble and iterat-
ive training methods allowed to address the inevitable out of distribution effects (i.e. capability of the
trained network to recognize objects of interest if microscope parameters have changed). Recently, a deep
residual learning framework with holistically-nested edge detection (ResHedNet) has been ensembled

to minimize the out-of-distribution drift effects in real-time SPM measurement [156]. The ensembled
ResHedNet is implemented in operating SPM, and converts the real-time PFM data stream to segmented
ferroelastic domain wall images. Then, a pre-defined workflow uses the discovered domain walls as the
coordinates for spectroscopic measurements. In doing so, the approach allows a thorough investigation
of domain walls (virtually all locations at domain walls) in an automated manner, in contrast, traditional
manual operation only allows us to investigate a limited amount of locations at domain walls. Using this
approach, alternating high- and low- polarization dynamic ferroelastic domain walls in a PbTiO5 thin
film is observed. Finally, the emergence of the deep kernel learning (DKL) methods allows to imple-
ment the inverse spectroscopic workflow. Here, the operator defines the characteristics that make the
spectrum of interesting, e.g. intensity of a specific feature, specific aspect of spectrum shape, or even
maximal variability of spectra within the image. In other words, each collected spectrum can be asso-
ciated with a single number defining how ‘interesting’ it is, in absolute sense for compared to previ-
ously acquired spectrum. The DKL algorithm learns what elements of the materials structure maximize
this reward, and guides the exploration of materials surface accordingly. This DKL algorithm is recently
implemented in SPM to investigate the relationship between ferroelectric domain structure and polariza-
tion dynamics [157]. Both the DKL exploration process and results are interesting. As show in figure 22,
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the DKL exploration process demonstrates the domain walls to be interesting and the DKL results indic-
ate the high polarization dynamic of 180° domain walls. Although these are expected by ferroelectric
experts, DKL itself does not have any physical knowledge, all information is actively learned during the
experiments.

Concluding remarks

ML methods have revolutionized many aspects of modern science including CV and image generation,
medical and biological imaging, planning and prediction. The growth of the open code and data culture
results in rapid propagation of ML algorithms between domains (see sections 32—35). Combined with
the introduction of the Python control interfaces in modern microscopes, this poses the field of SPM
for a transformative change. However, taking full advantage of this opportunity requires developing the
connection between the domain areas and ML, including defining the domain-specific rewards that will
steer the experiment, introducing the invariances and defining the biases that should be ignored, and
adoption of the required ML tools required to build them. With these, automated experiments provide
opportunities to perform experiments that are challenging in traditional methods because of experi-
mental parameters are too complex and numerous (e.g. too many locations/conditions are required to
investigate). In addition, automated experiments offer the opportunities for solving problems that are
challenging to human beings, e.g. inverse problem. The active learning approach can learn the relation-
ship between target functionality and material behavior quicker by several orders of magnitude than tra-
ditional method. As the development of ML and its connection to domain science, automated experi-
ments are expected to accelerate the material and physics discovery.
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Status

Point-scanning imaging systems are among the most commonly used microscopy imaging modalit-

ies due to their versatility and accessibility [8, 158]. While these tools have had a profound impact on
advances in the life sciences, they come with a cost. Since it is difficult to simultaneously optimize ima-
ging speed, resolution and sample preservation, one parameter is always compromised at the benefit of
the others (aptly deemed the ‘eternal triangle of compromise), figure 23) [158]. For example, imaging
speed and sample damage can be enhanced by ensuring a fast pixel dwell time, but at the expense of a
lower resolution and SNR. It is vitally important to correct for these shortcomings to facilitate future
scientific breakthroughs. To address these challenges, DL-based methods have been developed to sub-
sequently improve the negatively affected component(s) following image acquisition. Over the past sev-
eral years, DL breakthroughs have advanced the field in both denoising and super-resolution of point-
scanning microscopy modalities including fluorescence and EM. Similar advances addressing image
degradation through DL have also been critical in computational phase microscopy (section 8). While
initial approaches [8, 158, 159] centered around fully supervised learning via pairs of images of the same
samples acquired at low versus high quality, promising new semi-supervised [160] and fully unsuper-
vised methods [161-163] are beginning to demonstrate competitive results that allow investigators to
avoid the technically difficult and costly process of acquiring paired data. Optimization of image acquis-
ition is a costly process. DL-based restoration and super-resolution not only provide a solution to the
‘eternal triangle of compromise) but substantially decrease the amount of imaging time (and subsequent
costs) to conduct necessary experiments for downstream analysis. In order to further minimize these
costs, future work should aim to improve fully unsupervised approaches and, ideally, integrate these into
imaging hardware. Additionally, it is imperative to ensure that these methods are openly accessible to the
broad community via intuitive, easy-to-use software that does not depend on a resident computer scient-
ist. These advances will alleviate the burdens on researchers and allow them to focus on their scientific
questions.

Current and future challenges

While DL approaches offer a practical solution for overcoming common pitfalls with scanning micro-
scopy, there are several limitations that pose a challenge for current methods. Fully supervised methods
still require the acquisition or generation of pairs of high- and low-quality images of the same samples
to create training data [8, 158, 159]. Here we are using the term ‘quality’ to include both SNR and/or
resolution. The high-quality data typically must exceed the desired quality of the output of the trained
network. Acquiring image pairs of the same sample can be technically difficult, costly, and sometimes
impossible; often, samples can only be imaged once [158]. Generating and validating semi-synthetic data
(e.g. a ‘crappifier’ that generates low-quality data from high-quality data [158],) also requires significant
effort, and validation still depends on real-world image pairs of the same sample. These data require-
ments are also hampered by the high cost of imaging and storing high quality data, which is propor-
tional to image resolution [158]. Unsupervised approaches aim to solve this by enabling image restora-
tion from noisy or low-resolution input images alone. While leading methods [161] generate impress-
ive reconstructions, it is still challenging to match the accuracy of fully or semi-supervised results. For
example, successfully denoising pixel-wise independent noise does not necessarily remove spatially cor-
related (structured) noise [161]. The extra effort to generate target data for fully supervised approaches
is therefore sometimes unavoidable. Additionally, image restoration is an inherently ill-posed problem,
i.e. multiple different high-quality images could be used to generate a single low-quality image [160,
163]. While this is less of a concern for popular tasks such as restoring photographs, restoring scientific
imaging data can be challenging because of a greater need for accuracy. Any inconsistency in the fidel-
ity of reconstructions can have harmful effects on downstream analyzes. For example, super-resolution
can be used to quantify objects in microscopy data imaged with a lower resolution than is normally
required to resolve these structures. For this approach to be useful, the model must be validated to show
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it did not introduce errors resulting in inaccurate quantification of these objects [158]. Furthermore, for
image restoration methods to realize their full potential they must be accessible to the community via
easy-to-use graphical user interfaces (GUIs) [164, 165]. Most scientists do not have the expertise neces-
sary to re-implement DL approaches, and running established code often poses a steep learning curve.
However, it is not always trivial to implement robust solutions that satisfy all requirements. Ideally, soft-
ware should be easily packaged, distributed, and hosted on a well-maintained platform. Critically, hav-
ing turn-key methods for generating model outputs will greatly facilitate validation of model outputs
by domain experts. Validation should never rely solely on pixel-based metrics such as PSNR or SSIM.
Instead, validation workflows should integrate visual inspection by human experts, multiple pixel-based
metrics, and, most importantly, comparing the final measurement of the experiment with ground truth,
validated data. For example, the number and size of objects of interest (e.g. presynaptic vesicles) gener-
ated in the model output should match the ground truth data as closely as possible [158].

Advances in science and technology to meet challenges
Even though fully supervised methods require the acquisition of high-quality data, the standardization
of imaging techniques and advances in data storage have been transformative over recent years. Many
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microscopy imaging systems now allow for automated collection and alignment of images. It is also con-
siderably cheaper nowadays to store large amounts of data (for example, storing a terabyte of data on
AWS on average costs a relatively modest $20 per month’’). As imaging datasets become more widely
shared, it may be feasible to generate learned crappifiers that can be used to quickly train new super-
vised models. Nevertheless, in an ideal world, unsupervised approaches would be preferred. Despite the
aforementioned challenges, denoising methods can now handle structured noise in addition to pixel-
wise noise and recent results indicate that accuracy on par with fully supervised methods is achiev-

able. Self-supervised and unsupervised methods for super-resolution are also rapidly advancing [166].
Furthermore, some methods now provide a distribution of restorations instead of a single output [163].
This is of great practical relevance for solving inverse problems in which multiple solutions may be pro-
posed. Theoretically, it should allow a user to choose different solutions across regions based on addi-
tional context. For example, if one corner of an image is much noisier than the center, a single solution
might provide reasonable results in the center and poor results in the corner. In these cases, having a
range of solutions that a user can choose from is preferable. Recent work yielding significantly improved
results using more sophisticated ‘crappifiers’ for generating semi-synthetic training data and more soph-
isticated loss functions highlights the huge potential for further improvements in the future [167].

The full impact of these advances can only be achieved if they are accessible to a wide range of users
with various backgrounds. Efforts toward democratizing DL for microscopy workflows are critical to this
process, as discussed in sections 32—35. In order to cater to the broad community, platforms with intu-
itive user interfaces and continued support must exist. Over the years, FHI/Image]” (the gold standard)
has allowed scientists to implement a wide range of image analysis techniques on their data. Next gen-
eration tools such as Napari’?, Im]oy73, and ZerocostDL4mic [164] aim to extend this accessibility and
enhance it through the integration of DL approaches. These tools and many others [165, 167] will allow
users to analyze their data in ways that were previously unattainable without sufficient expertise.

Concluding remarks

Advances in biological imaging are moving at an exponentially increasing pace. As it becomes easier to
acquire large amounts of images via point-scanning microscopy systems, there is an increasing need

to accurately and efficiently analyze the resulting data. Since image acquisition poses challenges for the
optimization of the ‘eternal triangle of compromise’, DL methods are exciting solutions for image res-
toration. Since these are difficult inverse problems to solve, ideal solutions need to be robust to data
ambiguities and should limit the burden on researchers to collect and store high quality target data.
Additionally, efforts should ensure the accessibility of methods to a broad user base across scientific
domains. With the development of recent DL approaches and the growing communities dedicated to
developing open-source software and datasets, it is clear that the field is moving in the right direction.

Acknowledgments

Arlo Sheridan and Uri Manor are supported by the Waitt Foundation, Core Grant application NCI CCSG
(CA014195), NIH (R21 DC018237), NSF NeuroNex Award (2014862) and the Chan-Zuckerberg Initiative
Imaging Scientist Award.

70 https://aws.amazn.com/s3/pricing/.
71 https://imagej.net/software/fiji/.

72 https://napari.org,

73 https://imjoy.io.

51


https://aws.amazn.com/s3/pricing/
https://imagej.net/software/fiji/
https://napari.org
https://imjoy.io

10P Publishing

J. Phys. Photonics 8 (2026) 012501 G Volpe et al

15. Single molecule localization
Elias Nehme'?, Ofri Goldenberg* and Yoav Shechtman®

! Department of Electrical and Computer Engineering, Technion—IIT, Haifa, Israel
2 Department of Biomedical Engineering and Lorry 1. Lokey Interdisciplinary Center for Life Sciences &
Engineering, Technion—IIT, Haifa, Israel

Status

The spatial resolution of conventional microscopes is fundamentally bounded by the diffraction limit
at approximately half the wavelength of the light, which, in the visible range, practically corresponds

to 200-300 nm. To overcome this limitation, a variety of super-resolution microscopy techniques have
been developed including structured illumination microscopy, stimulated emission depletion, as well

as single molecule localization microscopy (SMLM) [168], which is the focus of this perspective. The
main working principle of SMLM relies on a space—time trade-off: instead of capturing a single image
of a fluorescent sample, a movie consisting of many frames (typically thousands) of temporally blink-
ing fluorophores is acquired. In each frame, only a sparse, random set of fluorophores is activated, and
their positions are determined computationally. There are multiple chemical and physical mechanisms to
obtain blinking, and a myriad of associated acronyms, most notably PALM, STORM, and PAINT [168];
however, subsequent analysis is similar between the different variations. After data acquisition, the res-
ulting localizations are combined numerically to render a single, computationally super-resolved image,
typically, with an order of magnitude improvement in resolution (figure 24).

SMLM revolutionized biological research, enabling nanoscale imaging of biological structures and
tracking of single-particles [169], thereby earning its pioneers the Nobel Prize in Chemistry in 2014.
Compared to other high-resolution imaging modalities like EM, SMLM offers the high specificity and
SNR of fluorescence microscopy, as well as the possibility to image living cells.

With the great advancement in resolution introduced by SMLM, came unique experimental and
algorithmic challenges. The main issue with trading-off space over time, manifested in the per-frame
emitter sparsity constraint, is the sacrifice of temporal resolution, which imposes strict limitations on the
ability to image dynamic processes. This problem becomes more acute as we are interested in sensing
more and more physical properties of the imaged sample, such as depth (3D), color information, and
molecular orientation.

In recent years, DL has found tremendous success in handling some of these challenges [170]. In
particular, DL-based E2E optimization for joint design of sensors and algorithms [171-173] has led
to powerful task-driven experimental designs, significantly pushing the barriers of the spatiotemporal
trade-off in localization microscopy (figure 25). This convergence of sensor design and learning-based
reconstruction is conceptually related to trends in computational phase microscopy highlighted in
section 8. Such designs are starting to find their applications in scientific research [174, 175]; however,
work remains to be done in making these methods fully-mature and widely adoptable by the biological
research community. Specifically, efforts should be invested in robustifying SMLM algorithms for a wide
range of experimental conditions and providing accessible software packages to end users [164].

Current and future challenges

Here, we outline four main challenges that are key to address in order to improve the capabilities and
accessibility of SMLM:

1. Improving spatiotemporal resolution. For imaging fast dynamical processes at high resolution using
SMLM, its temporal resolution needs to be improved. The trick to enhance its spatio-temporal
resolution is to trade off experimental time with information-rich image data containing complex
patterns. The latter needs to be then analyzed by powerful algorithms to extract the underlying
physical information. For example, relaxing the emitter sparsity constraint to increase temporal
resolution in SMLM requires image processing algorithms that can handle nearby emitters with
overlapping point spread functions (PSFs) [9, 177].

2. Enhancing information extraction. There is often a need to look beyond the 2D positions of
emitters. For example, by tagging different targets (e.g. proteins) with distinct fluorescent emitters, we
can capture correlative information that reports on inter-specie relations. One exemplary challenge,
in this case, is to classify the color of each emitter based on the acquired PSFs, which are typically
captured on highly photon sensitive, yet spectrally insensitive (grayscale) detectors. Another physical
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Figure 24. Single molecule localization scheme. (a) Single emitter position computed by fitting to a PSF model. (b) SMLM exper-
imental pipeline. Scale bar = 0.4 um (inset scale bar = 0.1 pym).

property of interest is emitter depth; since biological structures are three-dimensional, we can gain
significant insight by looking into their 3D organization (3D SMLM).

3. Optimal information acquisition. Imaging systems in SMLM are typically optimized through
physical intuition-based heuristics or through mathematical measures quantifying information
content, e.g. Fisher Information. However, such methods are still limited in their ability to adapt to
challenging experimental conditions and are difficult to generalize to systems acquiring multiple
physical properties jointly. Hence, optimal designs of acquisition schemes are key to unlocking the
full potential of SMLM. Similarly, in FLI (section 10), optimizing acquisition in conjunction with
inference models has proven crucial for extracting weak lifetime signals under photon-starved
conditions.

4. Increasing algorithm reliability. DL algorithms are extremely powerful and have led to a
performance revolution in solving inverse problems. However, little is understood about their
inner-workings and their failure modes. Specifically, for SMLM, there is need for sample-adaptive
self-tuning algorithms, that can handle arbitrary experimental conditions without need for extensive
calibration. More importantly, in a field such as biological research where algorithms are expected to
drive scientific discovery, we need to be able to quantify uncertainty and bias in the reconstructions
[177]. At the moment, DL algorithms have a hard time ‘knowing when they do not know’, and we
anticipate extensive work to be done on this front to improve their reliability.

Advances in science and technology to meet challenges

DL has proven to be highly successful in handling some of the fundamental challenges in SRM [170].
DL is particularly suited for SMLM, because large, paired training sets, which are the main bottleneck
in supervised learning, can be generated easily using accurate simulators based on physical models. The
first application of DL to 2D SMLM was presented in [9]. The authors showed that the acquisition time
could be shortened significantly down to a few hundred frames by proposing a DL algorithm that is
able to reconstruct dense emitters with overlapping PSFs. A similar strategy was used later in Barth
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Figure 25. Deep learning applications in SMLM. (a) DeepSTORM [9], a neural network for fast and precise reconstruction of

a super-resolved image from raw STORM frames. (b) ANNA-PALM [176], a neural network for interpolating a super resolu-
tion PALM reconstruction from a small number of frames. (c) DECODE [177], a neural network for dense molecule localiza-
tions in 3D that outputs maps of detection probability, subpixel coordinates and their uncertainty, brightness, and background.
Reproduced from [177], with permission from Springer Nature. (d) Multicolor localization and classification [171], E2E learning
of a neural network and chromatically-dependent engineered PSF for localization and classification of multicolor molecules from
grayscale measurements. (e) DeepSTORMS3D [172], E2E learning of a neural network and engineered PSF for dense 3D local-
ization. (f) Multichannel [173], E2E learning of a bifurcated optical system with two engineered PSFs and a neural network for
ultra-dense 3D localization. © (2021) IEEE. Reprinted, with permission, from [173]. Adapted from Speiser et al [177].

et al [174] for tracking chromatin dynamics in living cells. Concurrent work proposed content-aware
strategies to increase the temporal resolution [176], and even decrease the number of necessary frames
to a single image [8]. Similarly, DL was also applied for sensing additional physical properties from gray-
scale 2D measurements such as color classification [171, 178], depth estimation from high-density data
with engineered PSFs [172, 177, 179], as well as 3D molecular orientation [180-182]. Additionally, DL
networks have been used for background estimation to improve localization accuracy, as pre-processing
for single molecule fitting algorithms [183] or directly in the localization pipeline [177].

A particularly promising application of DL in SMLM is the ability to tailor the acquisition scheme to
the task at hand. Specifically, E2E optimization of the physical acquisition system jointly with the data
processing algorithm, holds great promise [171-173, 184]. E2E optimization taps into the full poten-
tial of existing hardware as well as making use of new hardware in a task-driven manner. This syn-
ergy between acquisition and reconstruction enables us to design significantly more complex sensing
paradigms that make full use of the photons, as well as powerful DL-based reconstruction algorithms.
DL was originally invented to approximate functions which were hard to mathematically define, and
optical instrumentation design is no different. Recently, E2E optimization was shown to be extendible
to multiple sensor designs [173, 185], offering even greater temporal resolution at the expense of a more
complex optical setup.

Additional progress within the last few years addressed temporal resolution limitations (super spati-
otemporal resolution reconstruction [186]), field-dependent aberrations (large FOV in 3D SMLM [187,
188]), processing speed [189], performance and versatility improvement [190], and learning and correct-
ing optical aberrations in near real-time [191].

Concluding remarks

SMLM is a powerful tool in bio-imaging, with new applications emerging quickly. The combination of
SMLM with DL enables efficient analysis and system-design for obtaining information-rich imaging data.
Due to the nature of E2E designs, this interdisciplinary field requires tight collaboration between exper-
imentalists and data scientists to fully exploit existing sensors and compute power. Focus thus far has
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been mainly in improving reconstruction algorithms [192]; however, we anticipate that more and more
applications will emerge in which acquisition systems and algorithms are designed jointly. Furthermore,
the development of new sensors and hardware will drive DL-based design of new optimal acquisition
systems. In any case, there will be need for standardized metrics to assess performance, reproducibility,
and reliability of DL-based SMLM algorithms. Finally, caution needs to be taken and uncertainty quan-
tification should be addressed before existing tools can be used for scientific discoveries; this is especially
important for methods that assume strong prior information on the object to be recovered.
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Status
Recent years have witnessed the rapid development of new fields of science, such as nanobiology, single-
molecule biochemistry, and biophysics. A myriad of information has been obtained which had not been
anticipated based on conventional ensemble-averaged measurement and microscopy tools. At the same
time, single-molecule imaging methods have long relied on fluorescent labeling [193]. This labeling
involves the chemical attachment of light-emitting moieties to the biomolecules of interest, which in turn
may alter their natural state and, thus, their biological activity and function. This drawback has been the
driving force for the development of label-free optical microscopy methods. Among these techniques,
iSCAT has been successfully employed in many applications of imaging and analysis of individual bio-
molecules [194]. These studies are however limited to biomolecules attached to a surface and do not
reveal their natural diffusive motion in solution.

To this end, we have recently introduced NSM [195], whose unique underlying principle enabled
to bypass those limitations: NSM is capable of imaging individual biomolecules in free motion without
any label. This tool relies on the interference of light scattered from a nanofluidic channel and a nano-
object inside it—such as a biomolecule (figure 26). To enable quick and accurate analysis of the recor-
ded images, we employ a DL-based CV pipeline, consisting of three CNN architectures (figure 27). In
Spatkova et al [195], this pipeline is employed to identify and characterize a diverse array of biological
nanoparticles ranging from extracellular vesicles down to DNA molecules and proteins of molecular
weight down to the tens of kDa regime. Specifically, given an image containing the scattered light of
several biomolecules inside a nanochannel over time (known as a ‘kymograph’), the CV pipeline out-
puts the trajectory of each separate biomolecule along with its two key characteristics—its molecular
weight (MW) and its hydrodynamic radius (Rs). Their determination is enabled by the fact that the
MW is proportional to integrated optical contrast (iOC) of a molecule and that R correlates with the
diffusivity (D), i.e. the characteristic of its movement. It has been demonstrated that conventional ana-
lysis algorithms can, in principle, handle these aspects of NSM data processing [195]; however, DL offers
distinct advantages. Compared to traditional methods, DL enables significantly faster processing, mak-
ing it well-suited for the efficient analysis of large-scale image datasets. Moreover, it is fully automated,
eliminating the need for manual parameter tuning. This enhances robustness by allowing the model to
generalize across diverse biological nanoparticle species and experimental conditions.

With further advances in this novel technology, concurrently on the experimental and DL side, we
expect NSM to have a significant impact in the field of single-molecule science.

Current and future challenges

NSM has proven its unprecedented performance in visualizing and analyzing of individual biomolecules
diffusing in a solution inside a nanofluidic channel. However, numerous challenges have still to be
addressed to allow the widespread adoption of the technique in research and industry.

The most significant drawback is its low throughput, which makes the analysis of heterogeneous
samples very time-consuming. This is the consequence of the current limitation of the experiment to
measure one nanochannel at a time. Parallel analysis of hundreds of nanochannels filling the whole
field of view of a microscope is possible, in principle, but it is hampered by the lower performance of
cameras when operated in the full frame regime. Similar bottlenecks between acquisition hardware and
computational scalability are encountered in FLI (section 10), especially when high frame rates and low
photon counts are involved. Such an approach would also generate a vast amount of data, making con-
ventional processing inefficient. DL provides a scalable solution for rapid, high-throughput data analysis,
enabling real-time extraction of molecular properties across multiple channels and overcoming the com-
putational bottlenecks associated with conventional analysis methods.

There is also a significant limitation related to the current CV pipeline, as the performance degrades
with high-concentration samples. This limits NSM’s applicability to more complex biological systems,
where sample heterogeneity and molecular crowding are critical factors.

Finally, the reported performance of NSM allows to analyze biomolecules down to tens of kDa in
molecular weight. There is however a whole realm of biomatter below this limit that is central in many
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tion. (b) Schematic of the light scattered by a single biomolecule. (c) Schematic of the light scattered by a nanochannel and the
corresponding dark-field image. (d) Schematic of light scattered by a nanochannel with a single biomolecule inside, and the
corresponding differential dark-field image obtained by subtracting an image of the empty nanochannel from the image of the
nanochannel with the biomolecule inside. Reproduced from [195]. CC BY 4.0.
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Figure 27. Computer vision (CV) analysis workflow. (a) Recorded data—time evolution of the scattered light of a nanochannel

with a single biomolecule inside. (b) Kymograph—preprocessed data obtained by removal of the background estimated by local
mean. (c) Segmented image where the particle positions are detected using a U-net neural network architecture. (d) Single bio-

molecule trajectory identification using the YOLOvV3 algorithm. (e) Property calculation (OC and D) using a custom fully con-

nected neural network (FCNN). (f) Unit conversion from iOC to molecular weight (MW) and from D to hydrodynamic radius

(Rs) plotted in a 2D histogram for illustrational purposes. Reproduced from [195]. CC BY 4.0.

applications of biomolecular research. Pushing the detection limit will require both improved instru-
mentation for higher sensitivity and advanced data analysis to extract weaker signals more effectively.

Besides the weighting and sizing of individual biomolecules, NSM has potential in several other
applications. First, it can be applied to label-free and tether-free investigation of biomolecular interac-
tions which is central for progress in many important areas (e.g. medical and pharmaceutical research).
Second, integrating NSM with spectroscopic techniques could provide a powerful multimodal platform
for characterizing molecular composition alongside structural and dynamic properties. The successful
implementation of these future applications will require overcoming challenges in both experimental
design and data analysis methods, particularly in developing DL approaches for accurate and efficient
interpretation of complex datasets.

Advances in science and technology to meet challenges
Further development of NSM is a multidisciplinary effort, with advancements in DL techniques play-
ing a central role alongside innovations in detector technology, micro- and nanofluidic technology, and
nanofabrication.

Future DL innovations are well poised to address the challenges in analysis of high-concentration
samples by advancing segmentation and tracking algorithms. Self-supervised learning techniques [196]
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and transformer-based architectures [197], which excel at capturing long-range dependencies in kymo-
graphs, could significantly enhance molecular tracking in dense environments. These directions strongly
resonate with trends seen in modern unsupervised image restoration and enhancement strategies, such
as those applied to point-scanning microscopy in section 13. Geometric DL methods [198, 199] could
offer improved particle tracking and characterization, mitigating issues caused by overlapping molecular
signals, as described in sections 17 and 20.

Since the NSM AI models are trained entirely on simulated data, their performance is limited by
available computational power. Thus, the detection limits of the NSM analysis will improve in tandem
with the breakneck speeds at which newer generations of GPU and TPU operates. Most recent theoret-
ical analysis predicts that the access to already-available higher computational power combined with fur-
ther model optimization leads to an order of magnitude improvement in terms of detection limits. Thus,
it can be expected that the analysis of biomolecules in the single-digit kDa regime will become available
soon.

Expanding NSM to study biomolecular interactions and integrating it with spectroscopic techniques
will require further advancements in DL. For biomolecular interaction studies, DL models must be cap-
able of accurately distinguishing weak, transient binding events from random diffusion, a challenge
for conventional tracking methods. Likewise, applying NSM to spectroscopic techniques will neces-
sitate DL algorithms optimized for low-photon-count conditions, where traditional image processing
struggles with increased noise and reduced contrast. Furthermore, as NSM will integrate multi-modal
data sources, DL approaches must evolve to effectively fuse diverse datasets, extracting meaningful correl-
ations while maintaining high accuracy across different signal types and scales.

Regarding the advances in detector technology, the CMOS cameras available on the market have
quickly increasing frame rate, improved sensitivity, and larger dynamic range. The NSM method will
thus reach higher throughput via parallel analysis of multiple channels and achieve more accurate meas-
urements of even smaller molecules.

Nano- and microfluidic technology is a swiftly evolving field which keeps bringing new possibilit-
ies for further development and application of the NSM method. New tools (such as nanofluidic valves
[200] and traps [201]) are introduced to provide means for efficient confinement and release of ultra-
low volumes. This ability is crucial for development of future applications, such as investigation of bio-
molecular interactions inside a nanofluidic channel.

New materials available for nanofabrication will potentially open up new possibilities for increasing
the sensitivity of the method [202]. In addition, advances in large-scale nanofabrication will pave the
way for NSM becoming a reliable and cost-effective bioanalytical method.

Concluding remarks

In its current form, NSM already enables highly accurate label-free and tether-free characterization

of individual biomolecules and biological nanoparticles in a wide range of biofluids. The expected
advances of the instrumentation and DL tools will push the performance even further. In particular,
high-throughput, resolution in single-digit kDa regime and at high concentration will find numerous
bioanalytical applications requiring analysis of highly heterogeneous samples. Long-term monitoring of
individual biomolecules diffusing in solution represents a yet unexplored opportunity for studies of con-
formational changes, aggregation processes and interactions between individual biomolecules. In addi-
tion, due to minimized dilution of the sample by the nanofluidic platform, NSM is highly efficient for
transporting ultra-low volumes, such as intracellular content or secreted metabolites of a single cell,
thereby paving the way to real-time label-free single-cell studies. Moreover, it can be expected that NSM
will find applications outside the field of bioanalysis, such as characterization of inorganic nanoparticles,
particle counting, or single particle analysis.
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Status

Tracking the motion of single particles has become a critical tool for probing the microscopic world.
Particle tracking has come a long way from manually locating particles’ positions over a century ago to
using standard algorithmic approaches to the use of DL in microscopy. A pioneering example of particle
tracking is when Jean Perrin proved the physical existence of atoms in 1910. Perrin projected the image
of microscopic colloidal particles in a solution on a sheet of paper and manually tracked their positions,
managing to quantify their Brownian motion despite a time resolution of just 30 s [203].

Modern particle tracking has largely been dominated by a technique generally referred to as ‘digital
video microscopy), introduced over 20 years ago [204], in which a video of microscopic particles is
acquired and the particles’ positions in each frame are determined using computer algorithms. Until a
few years ago, the standard algorithms have often been based on the measures of the centroid of the
particles in a black-and-white thresholded version of the image or the radial symmetry center of the
particles [205], and can successfully achieve subpixel resolution when their underlying assumptions
for ideal experimental conditions are satisfied—generally that the particle is spherically symmetric and
imaged with a homogenous and constant illumination. Their performance decreases drastically with less-
than-ideal experimental conditions and significant user intervention is required, which in turn is time-
consuming and can introduce user bias.

In the last few years DL, a kind of ML built on ANNSs, has started to be employed for digital video
microscopy. In contrast to standard algorithms, DL algorithms autonomously learn to determine rules to
perform specific tasks using a series of input data and corresponding desired outputs—which, in the case
of particle tracking, would be images of particles and their coordinates in the image. Early success of DL
for particle tracking has already shown that DL outperforms standard algorithms in accurately localiz-
ing particles in challenging experimental conditions and in many cases is able to eliminate user bias by
simulating training data [72] (figures 28(a)—(d)). This parallels early progress seen in single-molecule
localization microscopy (section 14), where DL-based methods significantly improved localization under
challenging conditions. However, there is still a lot of room for improvement and DL for particle track-
ing has yet to reach its peak potential.

Current and future challenges
One major challenge is the availability of training data, both in quantity and quality [94]. Even though
it is possible to train DL algorithms using experimentally-acquired data, this becomes increasingly dif-
ficult for the application of particle tracking. Considerable amount of data needs to be acquired for
each experimental setting, for which it is also extremely difficult to determine the ground-truth particle
positions with sufficient accuracy as they often need to be manually annotated. This process is time-
consuming and limits the algorithms to human-level accuracy as well as introducing bias. This has been
partly solved by training the algorithms using simulated particle images for which the ground-truth
positions can be known exactly. It is especially useful to be able to physically simulate particle images
replicating each user’s experimental setup, from properties of the particle to optical properties of the
instrument used to capture the data. However, simulating training data is often not feasible and this is
in fact true for non-symmetric and biological objects acquired in most imaging modalities. Similarly,
multimodal microscopy approaches (section 11) face challenges in generalizing learning-based models
across varying biological structures and experimental settings. When it is not possible to accurately recre-
ate the experimental setups numerically, the original experimental dataset can be artificially expanded
using augmentation [206]. A special type of DL algorithm has even been developed that is able to gen-
erate additional synthetic training images as a form of data augmentation. Augmentation can aid in the
training process but cannot replace high-quality training data.

A second major challenge is, as for standard algorithms, that the trained algorithms are usually tuned
for a specific problem and are not easily generalizable, meaning that they most often cannot be used
to analyze data containing different particle types or obtained with another experimental setup. This,
in addition to the steep learning curve for developing custom DL solutions, makes DL underutilized in
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Figure 28. Particle tracking with neural networks. (a)—(d) Deep learning algorithms (orange) trained on simulated particle
images outperform standard algorithms (gray) in accurately detecting particle positions in high-noise conditions for simulated
image of symmetrical particles affected by a range of signal-to-noise ratios (a) and illumination gradients (b) (here, measured
from the mean absolute error (MAE) in pixels), and experimental tracking of optically trapped particle (c), (d). Deep learning
and standard algorithms lead to the same results under optimal illumination conditions (c) but the tracking from the standard
algorithm becomes unstable in challenging conditions (d). Adapted from (a)—(d) deep learning algorithms (orange) trained on
simulated particle images outperform standard algorithms (gray) in accurately detecting particle positions in high-noise con-
ditions for simulated image of symmetrical particles affected by a range of signal-to-noise ratios (a) and illumination gradients
(b), and experimental tracking of optically trapped particle (c)—(d). Deep learning and standard algorithms lead to the same res-
ults under optimal illumination conditions (c) but the tracking from the standard algorithm becomes unstable in challenging
conditions (d). Reproduced from [72]. CC BY 4.0.

particle tracking and digital video microscopy as a whole. Pre-trained algorithms have been made avail-
able and are in practice easily applied to new data [207]. The results are however often acceptable only
in the absence of a better alternative customized for the problem at hand.

Advances in science and technology to meet challenges

The most obvious way forward for DL for particle tracking is to focus on easier access to high-quality
training data in order to custom train algorithms for each set of experiments or even to be able to train
a generalized particle tracking algorithm. In this case, the continuous development of accurate ways to
synthetically recreate more complex experimental setups imaging non-symmetrical particles with vari-
ous imaging modalities is of upmost importance. The collaborative culture of the field provides a prime
environment for a fast growth with open-source software packages emerging with the possibility of other
researchers to contribute with additional functionalities related to their areas of expertise [206]. These
software packages also attempt on being user friendly to allow for the development of custom DL solu-
tions without the need for special coding skills, making them available for a broader audience.

A promising alternative is the new family of single-shot, self-supervised networks (section 17) that
learn directly from one, completely unlabeled particle image. Such self-supervised approaches are con-
ceptually similar to recent unsupervised restoration methods for scanning microscopy data discussed in
section 13, where training without explicit labels has become a major breakthrough. In these methods—
exemplified by the LodeSTAR architecture [208]—the network is trained to output two numbers that
must transform exactly like the particle center under any in-plane rotation or translation that is applied
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Figure 29. Self-supervised P” particle tracking with neural networks. Novel deep learning algorithms can be trained using a single
unlabeled experimental image, outperforming standard algorithms for symmetrical (e) and non-symmetrical (f) particles (here
measured in root mean square error (RMSE) in pixels) affected by a range of signal-to-noise ratios (SNRs). Reproduced from
[208]. CC BY 4.0.

to the input image. Because the only solution that satisfies this equivariance constraint is the true cen-
ter itself, the network converges to sub-pixel accuracy without ever seeing ground-truth coordinates or
simulated data (figure 29). This strategy therefore eliminates the time-consuming step of creating large,
labeled training sets and is agnostic to particle shape, making it applicable to a wide range of morpholo-
gies and imaging modalities. The training runs in a few minutes on a standard laptop and the resulting
model can be re-trained or fine-tuned easily, putting custom, high-precision tracking within reach of
non-experts.

DL approaches have so far followed the conventional way of particle tracking, providing only a data-
driven version of standard algorithms focusing on finding the coordinates of single particles in an image.
For further analysis, the coordinates are then linked into single particle trajectories using other stand-
ard approaches. New approaches are able to take more advantages of the possibilities of DL to analyze
the particles’ dynamics to directly produce linked trajectories of particle coordinates as well as inferring
local and global dynamic properties of the sample [46]. This has the potential to improve the analysis of
samples where particles are lost, new particles introduced or change shape during the experiment, which
is highly relevant in biological samples. When trained with manually annotated experimental data, the
algorithm can even learn how to override imperfect annotation of the training dataset.

Concluding remarks
Despite its success in recent years, DL for particle tracking still has huge potential. Improved physical
simulations of particle images will allow for more accurate tracking of single particles, bypassing the
time-consuming and bias-inducing manual ground-truth annotations. Thanks to increasingly available
inference speed, trained algorithms could also be implemented in the experimental setup for real-time
particle tracking and decision making. Going one step further, new, fast and easily trained algorithms
that only require a single unlabeled training image even give rise to the possibility to train and track
particles on the spot during experiments.

Tracking particles is usually only the first necessary step in order to further analyze the dynamics of
a system. DL can be used to go beyond only acquiring particle coordinates and simultaneously calculate
other particle characteristics, as well as directly returning single particle trajectories and the underlying
dynamics of the whole system.
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18. Single-shot self-supervised object detection
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Status

DL is a rapidly growing field in microscopy that aims to improve image analysis and automate the pro-
cess of identifying and extracting information from images, enabling more efficient and accurate data
analysis (see for example section 16 for particle tracking). Object detection is one such task where DL
excels over traditional methods. However, most DL methods for object detection in microscopy require
either large manually annotated datasets or highly realistic physical simulations of the experiment [94].

For many applications, this is a prohibitively expensive barrier to overcome. Recently, we intro-
duced LodeSTAR, which addresses this challenge by enabling a NN to learn to perform near statist-
ically optimal object localization, directly on experimental data, without any annotations [196]. This
approach builds on the need for minimal training data and annotation, similar to the motivations
behind advances in particle tracking discussed in section 16. This is achieved by devising a novel train-
ing scheme, where instead of providing target positions as ground truth, LodeSTAR is trained to produce
two scalar values that are equivariant to Euclidean transformations applied to the experimental image.
We show that the only solution to such a training scheme is for these two scalars to be the coordinates
of the object’s center, provided that the object has a well-defined optical center. Experimentally, we find
that LodeSTAR approaches the Cramér-Rao bound of localization error for a range of geometries. This is
particularly useful in applications where precise object localization is critical, such as in particle tracking,
single-molecule localization, or super-resolution microscopy.

Next, we show that by carefully considering the design of the NN architecture, a localization model
can be converted into a DL model without any additional training. In practice, this means that the loc-
alization model is imbued with translational equivariance through a center-of-mass pooling layer (where
the mass is also learned by the model) of a convolutional backbone. By removing this pooling step, the
model instead yields a spatially distributed coordinate field and a weight map, where clustered coordin-
ate predictions that coincide with high weights are considered as detections. We find that LodeSTAR
can be trained on a single or a small number of unannotated experimental images. In fact, LodeSTAR
is shown to match the performance of state-of-the-art cell detection methods in the Cell Tracking
Challenge [209] using 1000 times less training data (figures 30(a) and (b)). This makes it an ideal solu-
tion for researchers working in fields where annotated datasets are not available, or where the annotation
process is time-consuming and costly.

Beyond detection, LodeSTAR can also perform certain regression tasks if there is a corresponding
relationship to exploit. In many interferometric modalities, such as holographic microscopes, the focal
plane can be numerically changed after-the-fact. This creates a relationship between the z-position of
the object and a numerical repropagation transformation. Similarly, in many quantitative modalities, the
strength of the signal is directly proportional to some physical property of the object. LodeSTAR has
used these relations to position sub-wavelength polystyrene beads in 3D (figure 30(c)), and to measure
the optical mass of intracellular aggregates (figure 30(d)).

Current and future challenges

While LodeSTAR achieves high performance with minimal training data, it should be noted that it cur-
rently only provides the position of objects, and not their size or morphological information. This may
be a limitation for certain applications that require more detailed information about the objects being
detected. Nonetheless, in applications such as cell counting and particle tracking, this is not a limit-
ing factor. Indeed, low-data regimes are common across microscopy modalities, as also highlighted for
single-molecule localization microscopy (section 14), where balancing data efficiency and precision is
critical.

Another limitation of LodeSTAR is that it cannot efficiently utilize large amounts of data to gain
more specificity. While it outperforms other methods in the low-shot regime (1-10 object instances), it
may fall behind when unlimited data is available. This is a general problem with self-supervised learning,
which is often less directed due to the lack of supervision.

Another limitation of LodeSTAR is that it is optimized for small to medium-sized objects, typically
up to 60—100 pixels. While it has been shown to be effective for detecting objects of this size, it may
not perform as well on larger objects. This is because the method relies on exploiting the inherent roto-
translational symmetries of the task of object detection, which may not be as prevalent in larger objects.
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Figure 30. High quality detection with LodeSTAR. LodeSTAR achieves state of the art detection performance on a range of exper-
imental configurations using only a single image of a single object instance to train. (a) LodeSTAR detects brightfield images of
densely packed mouse stem cells. (b) LodeSTAR detects phase contrast images of pancreatic stem cells. (c) LodeSTAR detects and
positions sub-wavelength polystyrene beads in 3D-space from off-axis holographic images. (d) LodeSTAR detects and measures
the polarizability of intracellular objects (225 nm polystyrene beads in orange, biological aggregates in blue). Reproduced from
[196]. CC BY 4.0.

This limitation may be less important for applications such as single-molecule localization, where the
objects of interest are relatively small. However, it could be a limitation for other applications such as
detecting large cells or structures in tissue imaging. In these cases, the issue can be resolved by sampling
the image at a lower resolution. This improves detection at the cost of positional accuracy. However,

for large structures, the notion of a single position is less well-defined and often less relevant to the
applications.

Advances in science and technology to meet challenges

An important avenue for future research is to expand the set of transformations and symmetries that
LodeSTAR utilizes in its learning process. I expect that exploring modality-specific transformations may
be particularly fruitful. A prime example is imaging modalities capable of reconstructing the complex-
valued light field, where a rich set of symmetries and transformations in Fourier space can be exploited.
Another avenue would be to train LodeSTAR to produce morphological information. For example, by
incorporating scale transformations, LodeSTAR could be taught to predict the relative sizes of objects.
However, this alone would not be sufficient to provide absolute sizes without additional transformations.

Another approach could be to use a more interpretable network architecture, such as vision trans-
formers (ViTs) [210]. These architectures have been shown to naturally produce segmentations of objects
when solving consistency tasks. However, it is important to note that replacing the current convolu-
tional backbone with a ViT would likely lead to a loss of translational equivariance, which may negat-
ively impact LodeSTAR’s positioning performance.

Currently, LodeSTAR is trained on exclusively positive samples, which are images containing the
object to be detected. One potential area of research is to expand the training procedure to include neg-
ative samples, which are images with no instances of the object. This could help improve specificity in
samples with multiple visually similar classes, where only a subset of the classes is of interest.

Lastly, LodeSTAR is currently designed to train on images with exactly one instance of the object
per view, where detection capabilities are an emergent behavior resulting from the design of the model.
Instead, it could be extended to allow multiple instances of the object per view during training, enabling

63


https://creativecommons.org/licenses/by/4.0/

10P Publishing

J. Phys. Photonics 8 (2026) 012501 G Volpe et al

it to learn from larger datasets where the number of objects in view may vary. However, this would also
decrease the specificity of the training, as all objects in view would be detected regardless of interest.
Finding ways to mitigate this would be an important area of research.

Concluding remarks

LodeSTAR is a DL method for object detection in microscopy that is particularly well-suited for low-data
regimes. LodeSTAR exploits the inherent roto-translational symmetries of object detection to achieve
high performance with minimal training data. Its unique self-supervised training process allows it to
learn from a single or a small number of unannotated experimental images, making it a cost-effective
solution for researchers working in fields where annotated datasets are not available. Furthermore,
LodeSTAR’s ability to find the sub-pixel position of objects with high accuracy is a key feature that sets
it apart from traditional methods. This level of precision is particularly useful in applications where
precise object localization is critical, such as in particle tracking, single-molecule localization, or super-
resolution microscopy. This, combined with LodeSTAR’s ability to utilize additional relationships and
symmetries to measure additional physical quantities, makes it a versatile and powerful method in the
field of microscopy.
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Status

Accurate calibration of microscopic force fields is fundamental for a wide range of experiments including
OTs, DNA stretching, and non-equilibrium physics [211]. Traditionally, these force fields can be charac-
terized by analyzing trajectories of Brownian particles that are subjected to them. This information then
can be used to infer the underlying dynamics, forecast a future state of the particles, or to calibrate the
experimental setup. This calibration sometimes needs to be done even in real-time [212].

One of the most commonly used microscopic force fields is the harmonic force field. This can be
generated by an OT, where the force has the form F, = —kx with k the stiffness of the harmonic trap
and x the distance from equilibrium. For this case, there are already many standard calibration meth-
ods, such as the variance method, the autocorrelation method, and power spectrum methods [211].

The variance method directly determines the stiffness from the variance of the particle position in the
trap (k= kpT/x*, where kT represents the thermal energy). The autocorrelation method determines

k by fitting the exponential decorrelation curve of the particle position in the trap. The power spec-
trum method is a further powerful method especially at high frequencies, which fits the power spec-
trum of the Brownian particle to a Lorentzian and infers the stiffness. All these standard algorithms
work well if the measurements contain sufficient data points and are error free [211]. However, the need
to develop calibration methods robust to noisy, incomplete data closely parallels the efforts in particle
tracking (sections 16 and 17), where DL has similarly improved robustness under experimental imperfec-
tions. More efficient standard algorithms include linear maximum likelihood methods, like the FORMA
algorithm [213], that apply a linear regression, which makes a first order approximation to the force
around the equilibrium point. This permits a more accurate and faster calibration of force fields com-
pared to standard algorithms [213] as well as the ability to calibrate non-conservative force fields, such
as a rotational force field.

Current and future challenges

Due to the need for averaging, the calibration methods require more data for higher accuracy because
the microscopic trajectories are stochastic. If there is enough statistical information in the data, averaging
of displacements provides accurate force measurements [214]. However, in biophysics, this is frequently
not achievable. Furthermore, the number of non-standard force field calibration procedures is extremely
limited. Examples of such non-standard force fields range from non-harmonic potentials to rotational
as well as dynamic non-equilibrium force fields. For complicated potential landscapes, the amount of
data necessary for a correct measurement grows exponentially as the number of parameters to be calcu-
lated from a trajectory increases. Although the maximum likelihood algorithms like FORMA can per-
form better in these potential landscapes, they can solely do so provided that the data is acquired at a
high frequency and the force field is not time-varying. Nevertheless, there are experimental systems that
need real time calibration, e.g. because they undergo changes or a degradation of the setup over time.
Examples of such systems are forces generated by electrodes inside liquid environments, by temperature
gradients, chemical forces, and bacterial forces, with some of them being the results of feedback loops
[212, 215] involving additional delays in the control process, which further complicates the calibration
process.

Data acquisition can also be challenging in the fields of soft matter physics, biophysics, and single-
molecule physics. More advanced approaches are enabling faster and more accurate localization of
particles. Recent advances have allowed high-frequency trajectory measurements, where particle trajector-
ies are also complicated by hydrodynamic memory [216]. In addition, the advancements in data-driven
image analysis methods facilitated the possibility of enhanced image analysis [94].

Advances in science and technology to meet challenges

There is currently a growing need for more advanced calibration methods for experimental purposes.
At the same time, data-driven analysis methods, such as RNNs, have proven to be a very powerful tool
for extracting information from time series data. This has led to the development of DeepCalib [73], a
free software package that uses DNNs to calibrate force fields from trajectories. Specifically, DeepCalib
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Figure 31. Calibration of force fields with deep learning. (a) The trajectory of a Brownian particle in a harmonic trap is given

as an input to the recurrent neural network (RNN) to predict the stiffness parameter of the trap (k). The bottom panel shows
comparisons of the predictions from various methods. As it can be seen, DeepCalib provides the most accurate results through
the entire range. (b) Calibration of a dynamical non-equilibrium force field, where the stiffness of a harmonic trap is oscillat-

ing between ky,,, and ky,g, at a period 7. There are no existing calibration methods for such a force field that is time-varying.
Evidently, DeepCalib successfully predicts all parameters both for simulated (top panel) and experimental (bottom panel) traject-
ories. All experimental data were generated employing the versatile feedback mode of a thermophoretic trap. Reproduced from
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uses LSTM (long short-term memory) layers to extract information from trajectories and uses simu-
lated data to train the NN. Particularly for shorter trajectories or smaller force values, when the calib-
ration is challenging, DeepCalib is proven to work better than other algorithms for harmonic poten-
tials as shown in figure 31(a). In addition, DeepCalib can accurately calibrate non-conservative rota-
tional force fields better than the existing methods. In this case, the force field has two parameters: the
central force stiffness k and the rotational parameter {). Although being accurate for lower values of k,
FORMA struggles at higher forces because of the data points becoming uncorrelated. DeepCalib is able
to estimate the parameters of the force fields better than FORMA. The difference of DeepCalib turns
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out to be even more prominent as we look at further non-standard cases, such as a double-well poten-
tial. Here, the force field is parametrized by the equilibrium distance L and the energy barrier height Eg.
DeepCalib provides more accurate results when predicting the parameters of this double-well potential.
Finally, and most importantly, DeepCalib can calibrate any force fields, such as time varying force fields
that yield a dynamical non-equilibrium system. In this case, a harmonic potential with switching stiff-
nesses from kio,, to kyjgh at a period 7 is considered. It is shown in figure 31(b) that DeepCalib can very
accurately calibrate all the parameters of a short trajectory for such a challenging case, both for numer-
ical and experimental data. It is also shown that DeepCalib is more robust against measurement noise
and diffusion gradients [73]. Current experimental developments also help to reduce the reality gap by
testing DeepCalib against complex force fields generated in the feedback mode of the thermophoretic
trap [215]. This setup generates dynamic temperature fields on circular nanostructures in response to
the current position of a Brownian particle in liquids. The response may thereby follow a user designed
protocol that permits almost arbitrary dynamic free energy landscapes [215] to test DeepCalib.

Concluding remarks

With the introduction of DeepCalib it becomes evident that a data-driven, NN approach for the calibra-
tion of microscopic force fields outperforms the standard methods in challenging conditions and limited
available data. More importantly, DeepCalib can be applied to non-conservative or time varying force
fields for which no standard calibration methods exist. With these advantages and the great robustness
to measurement noise, inhomogeneous environments, and the reality gap between experiments and the-
ory, DeepCalib is a very powerful and flexible tool for analyzing trajectories to extract the force fields.

It allows for just a minor change in the code to immediately adapt to a new force field, while standard
techniques totally change if a different force field is considered. Therefore, DeepCalib is ideal to calibrate
complex and non-standard force fields from short trajectories and it is readily available as a free Python
software package [217]. It also proves that the RNNs are a very powerful tool to analyze Brownian tra-
jectories. Similar techniques have also been successfully applied to characterize, for example, anomalous
diffusion [218].
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Status

Live imaging has revolutionized our understanding of biological processes. Resolution and signal-to-
noise ratio have steadily improved over the past decades. As a consequence, the trajectories of single
particles can be recorded, enabling detailed descriptions of microscopic dynamics while avoiding some
artefacts of bulk labeling. Single particle tracking (SPT) unveils features of the surrounding environment
and of processes that would be lost by ensemble averaging, thus opening an observational window that
provides a deeper understanding of many biological processes.

To probe the molecular properties in heterogeneous environments and to enable quantitative mod-
eling of biological processes, it is important to tell whether particles undergo normal or anomalous dif-
fusion (defined by the power-law scaling of the mean-squared displacement: MSD ~ ) and to meas-
ure their diffusion coefficients or anomalous scaling exponent a. Motion at these scales is inherently
stochastic and can involve processes characterized by significant variability in time and space. This makes
the study of diffusion from particle trajectories difficult. In figure 32, we outline a typical pipeline to
meet the challenges associated with studying diffusion leveraging DL techniques.

A first challenge consists in identifying the particles, localizing them and reconstructing their traject-
ories. Various methods have been developed for these purposes in the past decade [219], and DL tech-
niques are gaining considerable attention [170].

The second main challenge is the extraction of information from the reconstructed trajectories.

This is complicated by the fact that diffusion is a phenomenon related to particle fluctuations; in other
words, the signal is in the noise. Even for simple diffusion, the direct application of Einstein’s 1905 result
MSD ~ Dt can result in severe biases, for example, depending on the localization precision, track length,
number of available tracks, or fluctuations due to movement of the surrounding media. To tackle these
issues, methods accounting for experimental noise and optimal fitting algorithms for different use cases
were developed [220]. Anomalous diffusion dynamics, which can be modelled, for example, by continu-
ous time random walks (CTRWS), fractional Brownian motion (FBM) and Lévy walks, are even more chal-
lenging to analyze due to long-term correlations in the dynamics and possible ergodicity breaking [221].
Most of the methods to analyze such dynamics rely on asymptotic behavior, requiring many long tra-
jectories, which are typically difficult to obtain experimentally. This has motivated the development of
DL techniques to measure the diffusion coefficient, the anomalous exponent and to identify the model
underlying the anomalous behavior [221-224]. Such applications of DL to infer underlying physical
dynamics from noisy, short time-series data builds also on advances in particle tracking such as those
covered in sections 16 and 17. These techniques typically involve artificial CNNs or RNNs named LSTM.
They have remarkably improved the analysis of short individual trajectories, also including cases where
individual trajectories switch between different diffusive dynamics.

Current and future challenges

A promising feature of DL techniques is that they have the potential to generalize, i.e. correctly analyze
scenarios that differ from the training data. For applications to single-particle trajectories this suggests
that algorithms trained on synthetic data, which are cheaply generated by simulation, can be applied

to experiments. The techniques developed in references [221-224] are networks trained on simulated
data, using supervised methods, i.e. the parameters used to simulate the input data, such as diffusion
coefficient, anomalous exponent or the type of model, are known and used to label the input. The net-
works are then asked to return a prediction that is as close as possible to the label. These methods have
proven their versatility, correctly predicting experimental trajectories that they had not seen during train-
ing, and the ability to deal with measurement noise. These promising examples, however, do not gen-
erally guarantee that networks trained on simulated data can be carried over to experiments. To assess
the issue of generalization, more work is required to understand what leads to a network’s decision. This
would contribute to making the predictions more interpretable and transparent. Interpretability can sig-
nificantly extend the scientific applicability of DL models to diffusion, linking network behavior to the
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Figure 32. Typical pipeline to characterize diffusion from experimental single-particle trajectories using a deep learning method.
The pipeline starts with data acquisition, followed by data processing, which may include tracking methods and de-noising steps.
The processed data is then fed to a pre-trained deep neural network that typically returns a classification of the acquired data or a
quantification of its physical properties.

underlying physical principles and structures. Much like developing a physical theory provides a mech-
anistic understanding of a physical phenomenon and goes beyond measurement and inference, improv-
ing the interpretability of DL contributes to deeper physical understanding. Furthermore, understanding
how DL methods estimate diffusion from particle trajectories might contribute to the development of
new algorithmic and statistical techniques, which are inspired by the solution found by the DL meth-
ods. Indeed, the progress in interpretability might pave the way towards learning from the machines.
However, due to their high dimensionality and many parameters, it is notoriously difficult to unveil the
inner workings of DL models.

An additional challenge is related to supervised methods. These methods, by their very construction,
can only predict the labels they were taught during training. For instance, a method trained to only infer
the diffusion coefficient will not be able to detect anomalous diffusion or its scaling exponent. Similarly,
for the classification of the dynamics, typical networks are bound to return an answer within the classes
they have been designed for. Recent work has begun addressing this issue [225]. A related challenge
concerns the use of DL to capture the transient nature of anomalous diffusion, where different scaling
regimes are observed at different scales.

Advances in science and technology to meet challenges

The field of DL is evolving rapidly, providing insights that can be applied to various sub-domains. For
instance, several tools for the interpretability of DL techniques are currently being developed (see, e.g.
[226]). The most promising results in this direction concern DNNs, such as CNN, employed for the
classification of images. Similarly, self-supervised methods developed for object detection in microscopy
(section 17) suggest promising strategies for exploring structure in unlabeled or weakly labeled diffu-
sion data. These novel tools identify the most significant parts, or features of the images that led to their
respective classification. For SPT, one could apply these algorithms (which should also be extended to
LSTM) to determine which parts of a trajectory most heavily influence its classification.
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In parallel, autoencoder and transformer architectures have been developed [227]. Transformers are
currently among the best techniques to process natural language, for example, for translation purposes.
They feature attention layers in their architectures, whose role is to identify how much different parts of
an input are related to each other (e.g. learning that the subject in a sentence is strongly related to the
verb). Notably, autoeconders can be used to generate diffusive trajectories [228].

The combination of the development of tools to interpret existing DL architectures and of more
interpretable architectures offers the possibility of identifying the parts of a diffusive trajectory that are
the most informative ones to characterize it. One can then perform statistical analysis on these results to
extract information about what features or statistical properties of the trajectories are the most relevant
to characterize their diffusive nature. This sheds light on how the DL methods make their predictions,
contributing to their interpretability.

Additional advances in deep unsupervised learning can provide methods that are more insightful
when applied to trajectories belonging to none of the models they have been trained on (see [229] for a
first step in this direction using anomaly detection). Indeed, these models are not trained using specific
labels but focus on reconstructing the input trajectory, thereby learning its salient features. Unsupervised
methods might also successfully address the challenges posed by trajectories featuring different diffusive
scalings at different scales.

The advances discussed so far concern general improvements for the interpretability of DL methods.
Additional progress is likely to come from the development of physics-informed methods for the study
of diffusion [230]. Such methods are designed to take into account the physical knowledge about the
diffusive dynamics under consideration, for example considering key physical and statistical properties,
such as the self-similarity of certain anomalous diffusion dynamics.

Concluding remarks

DL methods have proven to be invaluable tools for the study of diffusive dynamics, displaying remark-
able robustness and showing promising potential to generalize results to unseen data and experiments.
They excellently complement traditional algorithmic and statistical techniques, providing better perform-
ance. This makes it possible to characterize short individual trajectories, thereby expanding the range

of systems for which diffusion can be quantitatively investigated, including many biological systems, for
which track lengths are typically short. At the current stage, this performance improvement comes at
the cost of a lower interpretability of the results compared to traditional algorithmic and statistical tech-
niques. However, recent and ongoing progress in DL techniques with the development of novel archi-
tectures and methods to interpret their prediction together with physics-informed approaches suggest
that more transparent DL techniques might be within close reach. These techniques have the potential
to reliably unveil the physical properties of diffusive particles and the environments in which they move.
These advances provide an important building block for future quantitative models of complex biological
processes.
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Status

The characterization of dynamic processes in living systems provides essential information for advancing
our understanding of life processes in health and diseases, as well as for developing new technologies
and treatments [231]. In the past two decades, optical microscopy has undergone significant develop-
ments, enabling us to study the motion of cells, organelles, and individual molecules with unpreceden-
ted detail at various scales in space and time. However, analyzing the dynamic processes that occur in
complex and crowded environments remains a challenge [209, 219, 221]. Similar challenges regarding
variability and complex environmental interactions are encountered in the particle tracking workflows
discussed in section 16. The diversity of biological motion is a significant contributor to the complexity
of dynamic analysis. Cells, for example, exhibit a high degree of variability in their motion depending on
factors such as cell type and environmental cues. This variability poses analytical challenges for current
methods, which are typically designed for specific experiments or motion models. Thus, the analysis of
experiments often requires manual adjustments of parameters to adapt to different dynamics, limiting
their utilization and applicability.

Recently, we have proposed MAGIK [199], a DL framework for the analysis of biological system
dynamics from time-lapse microscopy. MAGIK models the movement and interactions of particles
through a directed graph where nodes represent detections and edges connect nodes that are spatiotem-
porally close (figures 33(a) and (b)). The framework utilizes an attention-based GNN to process the
graph and modulate the strength of associations between its elements through two mechanisms. The first
mechanism is a learnable local receptive field [232] that captures the complexity of local particle inter-
actions. The second is a gated self-attention mechanism [233], enabling MAGIK to derive insights into
the dynamics of each particle from regions within the graph that are not directly connected but provide
valuable information about the overall dynamics.

MAGIK is a versatile tool capable of performing various tasks, from linking coordinates into traject-
ories to determining local and global dynamics (figure 33(c)). As shown in figure 34(a), MAGIK offers
reliable performance in tracking HeLa cells, despite the challenges posed by the heterogeneity in cell
shape and dynamics. MAGIK accurately identifies cell divisions and estimates trajectories in edge regions
where cells are partially observed and move out of the field of view. Furthermore, MAGIK delivers out-
standing results on several datasets from the 6th Cell Tracking Challenge across a range of microscopy
techniques and cell types [199].

A unique feature of MAGIK is its ability to characterize dynamic aspects without the need for detec-
tion linking. In this way, MAGIK can provide information from high-density experiments, e.g. by resolv-
ing a spatially modulated diffusion landscape solely from particle localizations (figures 34(b) and (c)).
Notably, most spatial features are accurately estimated from a 100-frame-long video. By skipping the
linking step, MAGIK inherently reduces the propagation of linking errors to the quantification of rel-
evant parameters and can thus unveils global dynamics, as shown for two relevant examples: the classi-
fication of the mode of motion of diffusing particles (figures 34(d) and (e)), and the quantification of
anomalous diffusion [221] from ensembles of Brownian particles (figure 34(f)).

Current and future challenges

The rapid progress in DL has led to the development of various techniques for characterizing motion
in biological systems [209, 219, 221]. However, several technical and interpretative challenges hinder the
widespread use of these algorithms.

The scarcity of high-quality annotated microscopy datasets hampers the effective training and valid-
ation of DL models. Available datasets are often small and unrepresentative, making it difficult to create
large and dependable models. In addition, the diversity of microscopy data and limited access pose fur-
ther challenges to their utilization and integration.

DL models typically learn complex representations of the input data in an abstract, high-dimensional
space, making interpretation of these abstractions difficult even for experts. A comparable issue of inter-
pretability and trustworthiness also arises in force characterization (section 18) and diffusion character-
ization (section 19) from particle trajectories. This lack of interpretability is a barrier to the widespread
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Figure 33. Estimation of spatiotemporal features using MAGIK. (a) Sequence of images illustrating the evolution of a group

of cells over two consecutive frames. (b) The movement and interactions of the objects are modelled geometrically using a dir-
ected graph. In this graph, nodes (v) represent detections and edges connect spatiotemporally close objects. Each node con-
tains the object’s centroid and other important descriptors, such as morphological and intensity attributes. Edges (e), in turn,
encode Euclidean distance between the centroids of the connecting objects. In this example, the node of interest (labeled with
the subindex 7 and located in frame ¢) is connected to neighboring nodes in frame ¢ + 1 (labeled with the subindex j) within a
distance-based likelihood radius. (c) The graph is processed through an adaptive attention-based GNN that estimates the asso-
ciations among the objects and provides insights into the intrinsic dynamics of the systems at different scales. Reproduced from
[199]. CC BY 4.0.
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Figure 34. MAGIK analyzes a broad range of time-lapse biological experiments at different scales. (a) MAGIK effectively links tra-
jectories across various experimental conditions. MAGIK demonstrates a 99.2% accuracy rate in tracking the movements of HeLa
cells from the DIC-C2DH-HELA dataset, despite their changing shape and repeated division. Likewise, MAGIK achieves 98.4%
accuracy in tracking HeLa cells from the Fluo-N2DL-HeLa dataset, despite the dense sample and frequent mitosis and collisions.
(b)—(c) MAGIK estimates a spatially modulated diffusion landscape. (b) Fluorescence microscopy simulation of single-object
tracking experiment, where molecules undergo Brownian motion with diffusivity D randomly varying in space. (c) Ground-
truth spatial diffusivity pattern and prediction obtained by MAGIK using a 100-frame-long video. (d)—(e) MAGIK unveils global
dynamics. (d) Simulated holographic videos, where objects follow fractional Brownian motion (FBM), annealed transient time
motion (ATTM), and continuous-time random walk (CTRW). (e) Confusion matrix showing the network classification per-
formance of the underlying diffusion model presented in 1.496 validation scenarios. (f) MAGIK predicts the anomalous diffusion
exponent governing the motion of ensembles of objects performing FBM in 1.097 holographic videos. Reproduced from [199].
CC BY 4.0.

adoption of DL in medical and biological fields, particularly in contexts outside of research where inter-
pretability is crucial [234]. Moreover, the proliferation of multiple methods for the same task without a
clear evaluation of their performance can confuse non-experts and limit their usage.
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The scalability of DL graph models is a major technical challenge. Processing large graph represent-
ations with numerous interactions is computationally demanding and requires significant memory and
computing resources. This makes it challenging to directly use GNNs for analyzing dense and lengthy
dynamic experiments.

Advances in science and technology to meet challenges

The MAGIK framework is continuously improved to address the limitations in the current DL
approaches for motion characterization in biological systems. The focus of MAGIK’s development is to
create a framework that is both general and easily convergent. It has shown the capability to train using
just one labeled video by utilizing tools that maximize information extraction from limited data, ensur-
ing proper representation and stability during NN training [199]. MAGIK also uses transfer learning for
migration experiments, enabling the trained network to be applied to other cell data without any reduc-
tion in performance, as shown in the MAGIK GitHub repository [235]. Further advancements in this
regard are desirable through the implementation of self-supervised algorithms.

MAGIK is equipped with attention mechanisms that provide users with interpretability into the
specific aspects of the data structure that the framework focuses on when making predictions. This
approach resonates with broader efforts in computational microscopy, such as integrating attention
and interpretable learning strategies in FLI (section 10). This offers a reliable and efficient method for
analyzing dynamics and provides opportunities for discovering new features in the movement of living
systems.

MAGIK is included in the DL package for microscopy, DeepTrack 2.1 [94], and is, therefore, under-
going continuous development and optimization with a focus on scalability and deployment improve-
ments. Future efforts will focus on developing self-destillation-guided graph subsampling techniques
[236] and resource-efficient GNN architectures [237].

Concluding remarks

DL frameworks for the analysis of biological system, such as MAGIK, can successfully handle the com-
plexities of dynamic analysis in complex and crowded environments utilizing an attention-based GNN.
MAGIK can perform various tasks, including tracking cells, determining local and global dynamics, and
characterizing dynamic aspects without the need for detection linking. Despite these progresses, technical
and interpretive challenges that hinder widespread use of these tools. With the continuous development
of the MAGIK framework within the DeepTrack 2.1 package, we aim to address these limitations and
offer a generalizable tool able to further provide interpretability into the data structure.
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Time-lapse microscopy images of biological processes are widely used to observe the dynamics and beha-
vior of live cells and unicellular microorganisms, with applications ranging from fundamental aspects of
molecular and cell biology to medical practice. The development of single-molecule imaging and super-
resolution microscopy has further extended the capability to resolve the dynamics of biological processes,
reaching the subcellular and molecular scales [238]. The current technology thus enables the visualiz-
ation of the motion of organelles, proteins, and lipids in their native environment. The observations
provided by these experiments are valuable to decipher the interactions between cellular components
and to disclose their role in fundamental processes such as signaling and function regulation. They are
also helpful for biomedical applications related to pathogen infection and drug design. Nowadays, micro-
scopes capable to perform live-cell single-molecule imaging are accessible in many research laboratories
and, therefore, experiments are routinely performed. However, mining quantitative information from
these experiments still poses several challenges.

Typically, the analysis pipeline is divided into two steps: SPT and trajectory analysis (figure 35).
These standard pipelines share important conceptual similarities with those described for particle track-
ing (section 16) and diffusion characterization (section 19), both of which face similar challenges of
noisy trajectories and complex dynamic behaviors. In the first step, the information contained in the
image stream is converted into trajectories, i.e. time series of features associated with imaged particles
(such as position, intensity, and size). Considerable efforts have been dedicated to developing automated
algorithms for this task [219]. Relying on the advances of the research community in CV and multi-
object tracking, the tracking-by-detection paradigm has gained increasing prevalence for SPT. Thus,
images are first processed to detect features (detection), then features obtained at different times are con-
nected using assignment algorithms to obtain trajectories (linking) (figure 35).

Once the trajectories are obtained, they are analyzed using statistical methods to extract information
about the underlying dynamics of the particle, using estimators such as the MSD (figure 35). These ana-
lyzes aim at providing details about the type of transport being observed (Brownian, directed, confined,
or anomalous), interactions with other particles and/or with the surrounding medium. Trajectories are
also used to estimate biophysical parameters (e.g. the diffusion coefficient) or to determine whether the
motion is compatible with a given theoretical model.

Life scientists dispose of a variety of algorithms to precisely track individual particles in living biolo-
gical systems as well as many methods to interrogate trajectories. Recently, approaches based on DL have
also been proposed, claiming remarkable improvements. The objective assessment of the performance of
these methods is thus required to help end-users to pick the suitable tool.

Current and future challenges

Live-cell single-molecule imaging experiments typically record the motion of a subpopulation of indi-
vidual particles (molecules, viruses, organelles) taking place in heterogeneous environments with the
objective of detailing the molecular mechanism of transport and interactions with the environment.
Technical and instrumental drawbacks impose limitations on the experimental conditions (e.g. the dens-
ity of imaged particles and the temporal resolution) and affect quantitative parameters (e.g. the local-
ization precision and the trajectory length) that eventually impact the precise characterization of the
system [219]. A current challenge entails deploying approaches that can improve the performance of the
methods that carry out the individual steps of the traditional analysis pipeline. In the last years, ML and
single-molecule localization microscopy have produced a surge of methods for single-molecule detec-
tion and localization, mainly based on CNNs [177, 239]. More recently, DL approaches have also been
proposed for the trajectory linking task [199]. These methods aim to provide an automated, unbiased,
and reliable analysis of the image stream. The improvement of their performances enables experiments
to be performed at faster image acquisition rates and higher labeling densities, increasing the temporal
resolution and the spatial sampling. Similar advances aimed at enabling dense, high-speed data acquisi-
tion are also central in the development of motion analysis frameworks like MAGIK (section 20).
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Because of the variety of phenomena taking place inside living cells, numerous approaches focus-
ing on different aspects of particles’ motion have been proposed to analyze trajectories. A challenging
aspect is the characterization of individual trajectories, in particular when experimental conditions limit
their length or localization precision. Very recently, pioneering works using ML have shown substantial
improvements with respect to classical statistics and have demonstrated the ability of several architec-
tures (random forest, convolutional, and RNNs) to provide the precise estimation of parameters (such
as the diffusion coefficient for Brownian motion and the anomalous diffusion exponent) as well as tra-
jectory classification, either with respect to the diffusion mode (described as immobile/confined/Browni-
an/directed or sub-/Brownian/super-diffusive) or to the underlying physical model [222, 223, 240, 241].
These results have led to the organization of the first anomalous diffusion (AnDi) challenge [221], a
competition to objectively assess these methods, which fostered the development of novel approaches
with outstanding performance [221]. The challenge also featured a task on trajectory segmentation for
the detection of changes in dynamic behavior associated, e.g. with interactions with the environment.

Due to its implications for the characterization of biological systems, the development of traject-
ory segmentation methods for the detection of transient and short-lived events has recently gained fur-
ther momentum, leading to the organization of the second AnDi challenge, which aims to evaluate and
benchmark computational tools that can detect dynamic state transitions within individual trajectories,
uncovering short-lived interactions that may indicate binding events or transient confinement [242].

Advances in science and technology to meet challenges

DL methods developed for both SPT and trajectory analysis outperform classical statistics counter-
parts in a wide range of conditions and promise to relax experimental constraints, providing more
information at a faster speed from live-cell single-molecule imaging. However, several of the proposed
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methods remain stuck at the stage of proof-of-principle and do not reach a widespread application in
actual experiments. Various reasons might be contributing to this process. Most of the methods intro-
duced so far involve supervised learning, but the lack of annotated data for this kind of experiment
forces the training and validation over simulated datasets. Despite the realism of the simulations, the
transfer learning to actual data might generate concerns from end-users, in addition to the black-box
model concern. As done in other fields, progresses in this sense might be obtained by creating com-
munity efforts aimed at (i) producing public datasets to evaluate novel methods; (ii) periodically bench-
marking existing methods using objective metrics to determine the state-of-the-art. It must be also con-
sidered that to work optimally, DL architectures must be trained on simulations reproducing the specific
experimental conditions. It is thus recommendable to implement user-friendly interfaces to help non-
experts to train and fine-tune the model.

The DL approaches implemented for SPT have incrementally improved on existing methodologies
but have so far been bound to follow the standard analysis pipeline, providing data-driven versions of
conventional approaches. A leap forward might be taken by developing ‘tracking-free’ methods capable
of directly extracting dynamic features from unprocessed videos. Such approaches might be based on
geometric DL or physics-informed ML architectures that include informative priors, i.e. physical con-
straints and inductive biases, on top of the observational data. This mirrors broader efforts across micro-
scopy, such as physics-informed learning in computational phase microscopy (section 8) and particle
tracking (section 17). In fact, besides producing faster training and more accurate predictions, these
architectures will also increase the interpretability of the model. The direct use of raw data would also
prevent the propagation of errors generated at the different steps of the pipeline that finally impact the
extraction of dynamic information.

The development of techniques not requiring labeled datasets might further accelerate the applica-
tion of DL to real data. Both unsupervised and self-supervised learning methods are advancing at a very
rapid pace. In combination with innovative network architectures such as transformers, self-supervised
techniques have demonstrated the ability to learn representations from unlabeled data, achieving out-
standing results for image-based analysis. As such, they represent a promising approach for the develop-
ment of the next generation of tools for SPT and analysis.

Concluding remarks

The DL revolution is yielding exciting perspectives for the quantitative analysis of live-cell single-
molecule imaging. Yet, while recently developed tools are demonstrating their gain in performance, they
still have important challenges to overcome to reach a widespread use of data-driven methods over clas-
sical tools. In this sense, it is advisable to promote community-driven actions to benchmark and validate
methods [219, 221, 242]. Stepping beyond the tracking-by-detection paradigm might lead to a boost

in performance by digging information directly from raw data. The integration of physical constraints
and inductive biases into DL models can improve performance and interpretability. It is foreseeable

that novel techniques not requiring labeled datasets will further boost this field and enable the study of
molecular dynamics in living cells beyond current capabilities.
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Life likely began in the oceans 3.8 billion years ago [243]. Early cyanobacteria spread across the oceans
and oxygenated the atmosphere [244]. Since then, the phytoplankton—the microscopic equivalents of
terrestrial plants—have played a pivotal role in the Earth’s ecosystem. Phytoplankton generate approxim-
ately half of the oxygen produced on Earth and fix 50 Peta-grams (Pg) of carbon every year, around five
times the total emissions from fossil fuels [245]. Yet, because of their smaller size, our understanding of
the lower aquatic food-web in many aspects is limited.

In order to effectively interrogate these organisms at a closer level, we depend on microscopy-based
methods. Some of the application scenarios in this direction are plankton detection and counting, plank-
ton segmentation and species classification, and long-term tracking of plankton cells. However, manual
identification of single cells is a labor-intensive process considering the extraordinary diversity among
plankton taxa that require trained taxonomists [246]. This also limits the possibilities to monitor and
follow plankton communities with adequate resolution in time and space. Over the past decade, a mul-
titude of CV-based imaging methods have been developed for object detection from microscopy images.
These techniques range from traditional approaches that follow segmentation and binary thresholding
methods, to more advanced techniques based on DL [247]. These trends parallel the shift from hand-
crafted to DL-based segmentation and classification methods observed in biomedical microscopy, partic-
ularly in SPT and cellular imaging (see, for example, sections 14 and 21).

Particularly, DL-based methods for plankton analysis have seen considerable success in recent years.
Emerging as an alternative approach to established methods, DL offers objective schemes for investigat-
ing microorganisms in different environments. For example, a family of CNNs such as Faster R-CNN,
U-Net, and YOLO are widely used for object detection, classification and segmentation problems [247].
The convolutional layers in these networks help to identify the high-level and low-level morphological
features of cells in the image in contrast to traditional approaches. A family of generative models known
as GANs are being used for generating new plankton imagery data from the existing data, to better eval-
uate the existing models and to further improve the accuracy in measurements [248]. Efforts are also
being directed towards new problems such as quantitative tracking of planktons, and biomass estimation
through DL [249].

Current and future challenges

The rapid development of Al inspires applications in plankton analysis, such as automatic identification
and high volume and throughput in-situ monitoring efforts. In parallel there is a more demand-driven
development to fine-tune and improve existing methods and identify techniques that work with the lim-
ited amount of labeled data, which is typically the bottleneck with DL based methods. Below we discuss
the most pressing challenges.

Manual annotation of data: To train a DL network, one needs labeled data. Which means if an image
contains an organism, we need experts identifying the organism to species level based on taxonomic
knowledge from the literature and experience. This is a laborious task and often prone to errors. The
problems with manual annotation of data can be tackled with unsupervised and self-supervised DL
algorithms. Unsupervised classification of organisms, for example, can be performed by investigation
the latent space distribution of variational autoencoders, followed by a subsequent evaluation of the pre-
dicted clustering by taxonomic experts.

Expanding the scope towards applications: DL applied research in plankton ecology is mostly restricted to
detection, counting, and segmentation problems. This needs to be leveraged for more practical applic-
ation scenarios to better understand the plankton dynamics. For instance, there is need to develop Al
based tracking algorithms, that can track individual plankters over extended time periods. Mechanistic
understanding of individual interactions such as predation, and resource exploitation are underexplored

77



10P Publishing J. Phys. Photonics 8 (2026) 012501 G Volpe et al

a Zooplankton b Phytoplankton

Figure 36. Plankton. Example images of zooplankton (left) and phytoplankton (right, photo credit Malin Mohlin) organisms.
Plankton, as a broad term includes morphologically diverse organisms with complex geometries and deviating life stages that
challenge Al driven classification and segmentation of images.

areas where boundaries are being pushed by DL algorithms. This ambition to move beyond static clas-
sification toward dynamic behavioral analysis is shared by efforts like MAGIK (section 20), which also
seeks to uncover spatiotemporal patterns in biological motion.

Practical constraints: In field experiments and ship-based monitoring efforts, plankton communities are
sampled at too low temporal and spatial resolution. Often, plankton communities in ocean are dynamic,
and short-lived features such as blooms can easily form and disappear between two discrete sampling
events. Apart from infrastructural difficulties, there is also a bottleneck in image analysis speeds. With
the development of marine profiling instruments with Al based real time classification without manual
annotations, the lower marine food web can be sampled at the appropriate spatial and temporal resolu-
tion. Furthermore, successful classification is a challenge given the overlapping morphologies in plankton
cells (figure 36). While some can be accurately classified, there are other where overlapping morphology
will prevent accurate classification even with large training sets.

Usability: Though DL methods are becoming increasingly accessible, most often they are not packaged in
a ready-to-use interface. Efforts in this direction would benefit technicians and users with limited pro-
gramming knowledge.

Advances in science and technology to meet challenges
Below we discuss the recent developments in DL that can be used to tackle some of the challenges in
plankton ecology and likely open the doors for new applications.

Labeled data: Obtaining the labeled ground truth data is an undisputed problem in many DL applic-
ations. Lately, unsupervised and self-supervised DL algorithms have shown some promising results in
this direction. Cycle-GANs, which belong to the family of GANs are widely used in style-transferring
the images from one domain to different domain with unpaired images and ground truth data. From
an image segmentation viewpoint of planktons (figure 37), this indicates that Cycle-GANs can be used
for segmentation tasks when there is a limited amount of manually annotated data. Since the plankton
images and the corresponding segmentation masks needed not be paired in order to train a Cycle-GAN,
synthetically generated masks with comparable morphologies can be used as the ground truth data for
real plankton images.

Additionally, microscopy imagery data of planktons can itself be synthetically generate either by
GANs [248], or by simulating plankton-like objects. By employing the state-of-the-art computational
optics and replicating the optical properties of the experimental devices that are used to record the data,
a representative set of microscopy images can be generated on a large scale [94]. The advantage of syn-
thetically generated data is that the ground truth is known beforehand and can be easily controlled. This
has the potential to overcome the challenges that arise with manual annotation of data, specifically for
the segmentation tasks where careful labeling of cell borders is crucial. As an example, the segmentations
of plankton species shown in figure 37 are obtained by a U-Net model trained on simulated plankton
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Figure 37. Plankton segmentation and counting using U-Net. (a) Simulated microscopic image containing plankton species,
Noctiluca scintillans (Larger cell) and Dunliella tertiolecta (Smaller cells), are processed through (b) a U-Net model pre-trained on
simulated data to obtain binary masks corresponding to N. scintillans cells (left) and D. tertiolecta cells (right). (d) Experimental
test image presented to the trained network. (e) Network outputs: predicted masks of the N. scintillans cells (left) and of the D.
tertiolecta population (right). (f) Post-processing for quantification: identification of N. scintillans cell (green outline on the left)
and centroids of individual D. tertiolecta cells marked with red circles for automated counting (right).

data. This methodology also offers cell classification based on morphological properties, apart from the
segmentation.

Recently, self-supervised DL algorithms have also shown some promising results in object segmenta-
tion and detection tasks. These advances are conceptually aligned with self-supervised methods explored
for microscopy object detection (section 17) and for diffusion characterization (section 19), where min-
imal manual annotation is a key advantage. Unlike supervised algorithms where learning is based on
labeled examples, self-supervised algorithms are provided with labels which are transformed versions of
input images themselves. Particularly, ViTs, which employ an attention based mechanism to emphasize
different regions of input image, have outperformed CNNs in many CV tasks [210]. Belonging to the
family of ViTs, distillation with no labels, a self-supervised ViT [250], was able to successfully segment
objects from images without any labeled data with a higher accuracy. Considering the diversity in plank-
ton morphologies, self-supervised ViTs can used for segmentation and classification of complex taxa.

Concluding remarks

Al driven microscopy is a rapid developing field of research. The automatic identification, segmentation,
and tracking of individual plankton organisms provides mechanistic insights beyond the current state
and will revolutionize our understanding of the lower aquatic food web and allow observations of high
numbers of organisms at the relevant spatial and temporal scales. Moreover, recent combinations of well-
established techniques such as digital holography with DL algorithms will facilitate individual resolution
of plankton organisms and interactions in a way that will catalyze plankton ecology in coming years.
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24. Micro-physiological systems (MPS)
Antoni Homs-Corbera
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Status

MPS lying at the interface of microfluidics and biology are a promising tool for better understanding
human biology, physiology and physiopathology. Otherwise termed organ on chip devices, these systems
exploiting physical and chemical phenomena at the microscale, are able to replicate biological cellular
and biomaterial ensembles as well as their conditions in the human body [251]. They provide functional
units, emulating organs, that can be interconnected together [252], as is done by the blood and lymph-
atic streams in the naturally occurring systems, to provide simplified versions of the human body leading
to a better understanding of complex multifactorial behaviors [253].

MPS are hybrid devices in which cells and biomaterials status during the experiments play a funda-
mental role on the accuracy and the relevance of results. Guaranteeing time-dependent spatial conditions
and the monitoring of experimental events require gathering, managing and processing complex data in
a non-invasive way while preserving the validity of the biological in vitro model (phenotype) at least in
functional terms. The capability to provide large amounts of time-dependent data is inherent of the MPS
which are potentially ready to integrate multiple sensors [254, 255] and to be imaged with sophisticated
microscopy techniques [256]. This provides the means of controlling and analyzing biological complexity
of several interconnected units, working synergistically, to gain insights into their systemic response.

The usage of ML techniques [254, 257] to control and to evaluate specific behaviors of MPS when
disturbed by stimuli, such as drug compounds, could provide a reliable tool to predict the behavior of
new potential therapies, to stir therapies discovery, to enable personalized medicine, or to spot processes
that remain hidden to the human eye due to the complexity and volume of data that should be simul-
taneously evaluated. This vision shares strong conceptual links with the autonomous microscopy and
modeling approaches seen in sections 10 and 18, which also aim to extract meaningful dynamic patterns
under experimental perturbations. This could open a paradigm shift in the pharma and biotech indus-
tries with important socioeconomic positive impacts and the substitution, at least partially, of the cur-
rent in vivo animal models [253, 258, 259]. The current parallel advancement of ML, MPS, sensing and
imaging technologies provides a fertile field to achieve autonomous MPS platforms providing the neces-
sary high-throughput and robustness to be used as true human physiology and physiopathology emulat-
ors. Despite current limitations, the combination of these technologies is already providing encouraging
scientific results [257]. An example of how such a system could work is presented in figure 38.

Current and future challenges

Human physiology has a strong dependence on local physicochemical parameters. For long-term studies
on MPS accurate control is critical to provide reliable and meaningful data. This control, when aimed
massively, particularly for potential applications related to therapeutic screenings, cannot be done by
human operators. Automated control systems able to take decisions in real time to fine-tune and main-
tain MPS parameters, such as dissolved oxygen contain, pH, temperature, fluidic profiles or induced
mechanical forces, will be critical (figure 38). Furthermore, they could assess how the system is respond-
ing to specific stimulus and also provide an indicator of validity of the MPS model after each experi-
ment based on monitored media components and metabolites as well as other events occurred.

The combination of sensing and imaging technologies with ML approaches provides a promising
tool to achieve such a degree of control and evaluation in these complex systems [255-257]. However,
sensing and imaging techniques need to be chosen wisely not to alter the MPS biology itself. Chemical
and physical conditions that introduce bias (e.g. phototoxicity, genetic alterations, molecule absorption)
have to be avoided to keep the models viable and realistic. Some of these undesirable effects can be also
eliminated by ML techniques using advances coming from microscopic image analysis such as virtual
staining [98] that could avoid the use of chemical staining and eliminate phototoxicity in some applica-
tions. These non-invasive approaches have also been explored in cell imaging pipelines (see, for example,
section 27, where virtual staining enhances label-free analysis and preserves biological viability).

Nevertheless, acquiring and labeling massive input data to train future autonomous decision-making
systems is a tedious and user-intensive task that is subject to certain bias. Also, continuous monitoring
of the development and the function of these biological models implies real-time comparison and integ-
ration of multiple data sources from heterogeneous conditions which is a challenge by itself. The ML
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Figure 38. Example of a MPS system incorporating machine learning. This MPS system is focused onto unveiling the mechan-
isms of breast cancer metastasis into the liver potentially usable to serve as a model to find new therapies or to personalize the
treatment of this pathology.

evaluation system should be able to classify time-dependent events expressing in different dimensional
scopes. This is another considerable challenge linked to evaluate simultaneously cellular level character-
istics, such as phenotypes, migration (e.g. immune and tumoral) or distant communication (e.g. extra
cellular vesicles), as well as overall larger multicellular functional units and systemic responses.

The model proposed in figure 38 illustrates the degree of complexity that can be attained in an MPS.
Recently, cell-derived vesicles secreted by breast cancer cells have shown to travel and activate liver sinus-
oidal endothelial cells (LSECs) in a liver MPS promoting the destruction of vessel barriers and unveiling
metastatic mechanics [260]. At imaging level, higher resolution microscopy could be also required on
top of conventional one to follow the morphology and density of fenestrations, nanostructured apertures
present in the liver LSEC.

Multisource automated study of multidimensional time-dependent data is still in its youth for MPS.
So far, ML for automation of single-sensor measurements, imaging systems or identification of key
candidates in a drug screening procedure have been implemented, but a long road has to be paved to
achieve reliable, usable and feasible multiplexed and complex MPS.

Advances in science and technology to meet challenges

ML techniques have already demonstrated their value and feasibility in simple MPS to generate vir-
tual staining, to study cells phenotypes or to track migration events [257] both in supervised and non-
supervised approaches. However, the usage of ML techniques to control the multiple parameters of
MPS microenvironments to guarantee their viability and phenotype has so far not been demonstrated.
Furthermore, limited data sources have been used to evaluate the MPS, such as a unique time-lapsed
imaging approach or a limited number of combined analytical sensors, reducing the true potential cap-
abilities of the approach and dismissing important physiological and physio pathological data.

MPS systems improvements in terms of usability, repeatability, high-throughput and robustness have
to go hand in hand with imaging, sensing and ML advances. The provision of completely automated
MPS systems with these characteristics for continuous, standardized, condition-controlled and reliable
data provision for researchers should be the main aim of current developments. This will allow test and
optimization of different ML strategies and mechanisms leading to exploit the full potential of these
technologies. It will also lead to facilitate high-throughput analysis which is critical to generate the envis-
aged healthcare disrupting system that are aimed to be. Eventually, other data obtained by sampling the
MPS fluids and tissues, such as genetic information, or by medical evaluation of human sources could
be added to improve the results when therapeutic evaluation outcomes are targeted.

From the pure ML algorithms point of view, data augmentation, semi-supervised learning and trans-
fer learning can be explored as means to reduce the amount of data needed for the training. Similarly,
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automatic data annotation can be used to reduce the cost of manual labeling. Furthermore, specific
requirements for DL algorithms applied to the MPS field involve the development of novel customized
architecture and layout designs. Different approaches to automate design and gain efficiency have to be
explored and catastrophic interference has to be prevented in any explored iterative upgrading. Also, the
large amount of real-time data gathered by these systems coupled to sensors and imaging devices implies
an accurate study of how to improve inference speeds by compressing the model volume while ensuring
accuracy. Equivalently, the hardware utilized for training the DL algorithm and evaluating MPS systems
needs to be chosen wisely and performance of the overall system optimized. Finally, interpretable DL
technologies, mitigating the ‘black box’ effect, should be developed to facilitate the generation of mean-
ingful physical explanations from a biological point of view.

Concluding remarks
Combination of MPS and ML techniques is an emerging field holding a great potential to impact human
biology understanding, medical therapies development and personalized medicine. Ideally, the applica-
tion of ML techniques to those multiparametric complex systems should in the future provide currently
unattainable biological insights by using unsupervised learning approaches. On the other hand, by com-
paring results obtained with well-known and characterized therapeutic compounds libraries to the ones
resulting with novel compounds and to the real in vivo outcomes these algorithms could also achieve
good levels of prediction in drug discovery and therapy personalization. Eventually, medical and bio-
logical data coming from the human subjects providing tissue or cells in the studies, and obtained by
other means, could be also included in the ML models providing extra information in therapeutic dis-
covery and personalized medicine applications.

In the years to come, efforts into automatizing and standardizing the MPS data sources, provid-
ing experimental robustness, high-throughput and scalability, should improve the ML outcomes in this
domain. The need of condition-controlled, massive and reliable data is paramount. Besides this, the spe-
cificities of MPS devices, their data heterogeneity and its multiples sources, have to be considering when
designing and exploring strategies for any machine or DL approaches.
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25. Self-learning thermofluidics
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Status

In microfluidics, liquids and suspended objects are manipulated in tiny channels to trigger chemical
reactions, assemble new materials, analyze single cells at high throughput, or to imitate organs on a chip
[261]. Its innovation potential for fields like biology, chemistry, drug design, and medicine is driven by
the superior mass and heat transport at these small length scales combined with an easy experimental
accessibility and control. Most fluid manipulation approaches are pressure-based and require external
pressure differentials applied at the inlet/outlet of complex channel systems. Such methods allow for
complex flow designs, but need to move the fluid throughout the channel to affect the local composi-
tion, though other local approaches based on electro-kinetic (electrophoretic) actuation exist. In recent
years new techniques for the manipulation of nano-objects and flows in a fluidic environment have

been developed that are remotely controlled by light and go beyond the force generation of OTs. These
approaches employ local temperature gradients to drive the migration of species suspended in liquids by
thermophoresis [262], thermo-osmosis [263], or thermo-viscous [264] or other secondary effects [263]
and may be summarized as thermofluidics (figure 39). In this way, schemes for manipulating colloids
[265] and single molecules [215] have been developed to even provide new access to the study of protein
aggregation [266]. Temperature gradients at liquid—solid boundaries in simple fluidic slit pores allow

the generation of local flow patterns to guide, manipulate, and separate objects suspended in liquids
without any external pressure [263]. Thermo-viscous effects allow dynamic flow generation by dynamic
local heating of the liquid. Due to the small dimensions of microfluidic systems, heat-transfer is fast pav-
ing the way for feedback-controlled techniques in fluid manipulation [267]. This real-time, closed-loop
strategy strongly aligns with similar efforts in automated microscopy and adaptive calibration described
in sections 13, 18 and 23. A combination of all these effects would allow to stir, mix, separate, com-
press, and even heat/cool in microfluidic systems based on the simple application of light. Yet, large scale
integration and application in microfluidics is still missing.

Current and future challenges

The increasing complexity in the phase composition of liquids, in the objects suspended, in multimodal
sensing techniques used together with the specific goal of microfluidic applications raises the need

for new ML-based analysis and control schemes that harvest the advantages of microfluidics [261]
(figure 40). One of the current challenges that, for example, is often met in various applications is the
appearance of heterogeneities in samples, which hampers the data analysis of molecular species. Such
heterogeneous samples are, for example, highly relevant in the study of protein aggregation in assays to
understand the origins of neurodegenerative diseases [266].

The experimental investigation of heterogeneous ensembles leads to ensemble averages that are dom-
inated by the most abundant species, which, however, might not be the most important ones for the
specific disease. The new local approaches of thermofluidics can be size- or even species-selective in their
action allowing the spatial dispersion of the different species. Yet, their interaction with the temperat-
ure fields is often unknown. This mirrors challenges faced in dynamic imaging settings such as MPS
(section 23) and FLI (section 10), where the measurement and control of local environments must be
managed without disrupting system behavior. ML approaches, for example, for real-time visual classi-
fication and localization of species in a sample [268] combined with reinforcement learning [269] seem
well-suited to meet this challenge of a self-learning variant of thermofluidics. Together with local spec-
troscopic information in real-time to improve the local homogeneity while increasing the spatial hetero-
geneity will readily lead to new reconfigurable self-learning tools to tackle chemical, medical, or physical
questions with high flexibility.

Advances in science and technology to meet challenges

The main advances to meet these challenges constitute on one side the large-scale integration and test-
ing of thermofluidic approaches into conventional microfluidic systems. This includes simple absorpt-
ive layers to induce laser-controlled local temperature increments to yield strong boundary flows that
can be combined with additional fields such as electric fields to deliver even stronger effects of thermo-
electrohydrodynamics. These approaches shall be studied with pressure-driven flows as they will provide
many new variants, such as temperature-driven flow field fractionation. On the other side, the key
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Figure 39. Colloidal motion through thermos-osmotic flows. Colloidal motion induced by controlled thermo-osmotic flows
(left) and a combination of thermo-viscous and thermo-osmotic flows (right). Reproduced from [263]. CC BY 4.0.
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Figure 40. Machine learning-based thermo-fluidic control. Machine learning-based thermo-fluidic control of species using an
action space that is determined by thermal-gradient-induced drifts of objects and liquids, a classification and localization of
objects in space as well as an object and event-based manipulation that is adaptive due to a learning process. Reproduced from
[263]. CC BY 4.0. Reproduced from [268]. CC BY 4.0.

approach that is suggested here is, however, the use of the freely configurable dynamic temperature fields
with newly developed ML approaches (recurrent networks, CNNs, reinforcement learning) that pick up
local signals with chemical resolution at a high sensitivity and speed. The ML techniques make use of
the local character of the temperature perturbations to yield a goal-driven microfluidics. This further
requires highly sensitive detection techniques, that deliver at best chemical resolution in real-time to
allow the adaptive improvement suggested by ML such as deep reinforcement learning. Such highly sens-
itive experimental techniques may, for example, involve new variants of photothermal infrared micro-
scopy, which recently revolutionized infrared microscopy but still have to be adopted for microfluidic
applications.

Concluding remarks

Local thermofluidic effects have the potential to drive new approaches of ML-driven microfluidics as
they provide a rich action set that can be applied to fluids of almost any type to manipulate suspended
objects, but also to induce local flows that separate or mix different constituents. While the individual
interactions of species with temperature fields might not be known in detail, ML of actions to yield spe-
cific outcomes directly during the experiment, will provide new approaches to manipulate species for
applications in physics, chemistry, biology, and medicine.
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26. Digital pathology
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Status

Microscopy-aided visual assessment of tissue samples, such as biopsies and cytological smears, has been
essential for diagnosing cancer and other disease for more than 100 years. Grading disease severity is
critical to the clinical management of patients. It is however a difficult task, and the variability between
pathologists poses clinical challenges, leading to both under- and overtreatment, which impacts patient
morbidity, mortality, and healthcare costs. The first approaches to machine-aided diagnostics in patho-
logy were made already in the 1930s, and more recently, efficient slide scanners and automated sample
handling has boosted digital pathology and the development of DL-based image analysis systems for
assisting pathologists in sample evaluation [270]. Such systems have the potential to increase both accur-
acy and cost efficiency in cancer screening, and are a prospective solution to the problem of high inter-
pathologist variability [271]. Some of the most impressive results have been reached by global challenges
such as the PANDA challenge [272], including training- and test-data from multiple hospitals and coun-
tries, leading to DL-based solutions based on ensembles of diverse models, featuring, for example, differ-
ent data preprocessing approaches and different NN architectures. Similar large-scale efforts to develop
generalized models across diverse biological samples are also highlighted in sections 21 and 27, in the
context of single-particle dynamics and label-free virtual staining.

At the same time, automated systems based on DL are often very sensitive to sample-to-sample vari-
ation and artifacts stemming from processes during sample collection, sample handling, staining, and
scanning. While a human is very efficient in adapting to such variability, very subtle variations, some-
times not even possible to notice by the human eye, can have catastrophic effects on automated detec-
tion and grading. Large multi-site efforts such as the PANDA challenge can overcome these issues simply
by ensuring that the massive amounts of data included during training cover as much as possible of the
sample variation that can be expected during model deployment in the clinic. However, such large-scale
efforts are costly, and may be difficult to organize for rare disease where sample availability is limited.
Another bottleneck is the reliability of the training data, depending heavily on the inter-pathologist vari-
ability in visual annotation of samples. With robust approaches for image normalization, augmenta-
tion, and novel learning-regimen that ignore non-essential variability, DL has the potential to become
a broadly applicable and reliable tool in the clinic.

Current and future challenges
The two largest challenges in deployment of DL for digital pathology is the availability of reliable train-
ing data, and sample-to-sample variability.

Another word for training data is ‘ground truth’ an expression that comes from remote sensing,
where data is collected from imaging devices attached to satellites or aircrafts, and automated analysis
results, such as mapping of roads or classification of tree species, are compared to ‘the truth’ collec-
ted from observations made on the ground. Such observations of ‘the truth’ are not straight forward in
digital pathology. Typically, the ‘ground truth’ is manual visual annotations by pathologist. Many times,
people ask the question “What precision does a learning-based decision system have to reach to be use-
ful?’ This number must always be answered in relation to the ‘truth’ to which it is compared, and since
pathologists often disagree in their visual assessments, both training and evaluation has to be done with
care. One approach is to compare automated result from a learning-based decision system to multiple
manual annotations, and in the same way also compare each of the manual annotators to one another
[273]. One can also use other metrics as a means of evaluating method’s performance. Patient survival
is such a metric. This is however a very noisy metric, especially since a mm-sized tissue sample may not
at all be representative of the cause of death of a patient. This challenge of defining meaningful ‘ground
truth’ echoes difficulties in subcellular dynamics analysis (section 21), where ambiguity and variability in
manual labels similarly limit model reliability.

Sample-to-sample variability and limited generalization performance is a fundamental problem when
using DL applied to digital pathology, and lack of generalization may even introduce bias. For example,
digitized tissue samples may be collected from a number of different hospitals. If one of these hospit-
als is specialized in, e.g. a severe type of breast cancer, there is a risk that the system learns to associate
irrelevant hospital-specific image effects with sever breast cancer, rather than learning the actual fea-
tures of the tissue morphology. This is typically approached by some form of unification of data from
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Figure 41. The need of deep learning in digital pathology. In digital pathology, sample-to-sample variation, as well as ambiguities
in annotations, call for methods that can handle unification of samples and generalization of deep learning models, at training,
inference, or both.

different sites to each other, for example by normalization [274], or by generalization of the model during
training by creating artificial data so that samples from different sites span the same parameter space,
see figure 41. The simplest approach to stain normalization is to separate the RGB-image into its stain
components and scale each channel to a fixed intensity interval. More advanced methods, such as sparse
non-negative matrix factorization have been successfully used to normalize individual stains [275].

Advances in science and technology to meet challenges

When training a DL model, the input data influences the model’s ability to learn relevant features of
the data and generalize to new data. A standard technique is to use color and texture augmentation of
the training data, artificially generating more variations for the network to learn. However, it is typically
difficult to produce a dataset without some bias toward any specific feature. DL models used in digital
pathology have a tendency to overfit to the stain appearance of the training data. If a model is trained
on data from one lab only, it will usually not be able to generalize to data from other labs.

Recent advances in GANs can reduce the effects of sample variation by being trained to mimic what
an observed image would have looked if it was captured in a different batch or at a different site [276].
This type of NN-based sample unification can transfer images from one ‘mode of variation’ to another
while preserving the phenotype of the tissue morphology. In this way, the training data can be extens-
ively expanded to represent a feature space spanning both the non-important variation due to sample
handling, and the disease-related variation that is to be learned. It is however important to note that
false structures that could influence grading may be added.

Another promising approach is to use so-called domain-adversarial NNs, which are designed to pre-
vent the model from being biased towards features that in reality are irrelevant, such as the origin of an
image. Ultimately, such a system would adapt in a similar fashion as a human, resulting in no need for
normalization or augmentation, as indicated by promising results on prostate cancer grading on datasets
from different hospitals [277].

New molecular methods have the potential to bring DL in digital pathology beyond mimicking
ambiguous manual annotations. Recently, new transcriptome-wide analysis technologies have enabled
the study of RNA molecules directly in tissue samples, thus maintaining spatial resolution and comple-
menting histological information with molecular information important for the understanding of many
biological processes and potentially relevant for the clinical management of cancer patients [278]. Parallel
application of standard clinical staining techniques and novel molecular methods introduces a novel type
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independent sample annotation that can be used for model training, with the potential to discover of
previously unseen but medically relevant tissue patterns.

Concluding remarks

Limited generalization across diverse multinational cohorts is one of the central barriers to implementa-
tion of DL in clinical practice. Strict protocols and quality control, all the way from sample collection to
staining and scanning has the potential to reduce variability. At the same time, DL approaches that can
adapt to shifted domains much like a human, learning to discriminate between image features relevant
or irrelevant for decision making, are starting to make their way into digital pathology. Another recent
approach to data-efficient models that can generalize and transfer to a wide range of diagnostically chal-
lenging digital pathology tasks is the use of foundation models, such as UNI [279], pretrained on more
than 100 million images from over 100 000 diagnostic H&E-stained whole slide images.

As spatially resolved novel multiplexed and target-specific molecular methods can be directly correl-
ated with prognosis and strategies for treatment, they may function as useful tools by themselves. They
may however also function as a means to molecularly ‘annotate’ parallel slices of tissue samples exposed
to standard clinical stains, thus providing input for DL systems that have the potential to go beyond
mimicking what a human observer could do. This principle of using spatially resolved, multiplexed data
to annotate microscopy inputs aligns with recent work in MPS (section 23), where multimodal fusion is
becoming crucial for biological insight.

Despite many challenges still remaining before DL will be widely used in clinical practice, the atti-
tudes are generally positive: a survey with 487 pathologists practicing in 54 countries [280] showed that
nearly 75% reported interest or excitement in Al as a diagnostic tool in pathology.
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27. Virtual staining of histological tissue sections
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Status

The histochemical analysis of tissue samples is used as the gold standard for diagnosing diseases. It is

a 100-year-old practice based on microscopic analysis of 5- to 10-micron-thin tissue sections stained

to provide contrast optimized for the human visual system. While the most commonly used stain is
H&E, a wide variety of stains are used to give different contrast to different tissue constituents. This
staining process can be time-consuming and expensive and can create a significant amount of chemical
waste, some of which is toxic. The staining process is also destructive to the specimen, so typically only a
single stain can be performed on each tissue section. Two different DL-based methods have been recently
developed to computationally generate an accurate artificial/virtual stain: (1) virtually staining label-free
tissue sections, and (2) transforming one stain into another.

Virtual staining of an unlabeled tissue section can be used to eliminate the need for chemical stain-
ing altogether. It involves using a DNN to computationally transform images of label-free tissue into
various stains (figure 42(i)). This technique has been developed using different imaging modalities as the
input to the NN, with many different stains being developed. For example, autofluorescence microscopy
[140], QPI [281], and reflectance confocal microscopy [282] have all been used to image the label-free
tissue and achieve virtual staining. Furthermore, this label-free strategy aligns closely with the goals
described in digital pathology (section 25), where reducing chemical variation and standardizing stain
appearance is essential for clinical applicability.

Stain transformations—the second class of methods that can be used as an alternative to histochem-
ical staining—use DNNs to perform transformations from one chemically labeled stain to another [283,
284] (figure 42(ii)). While these methods rely on images of chemically stained tissue as input to the
NN, they can be used to avoid the need for as many stains to be performed, without changing existing
clinical pathology workflows. Furthermore, H&E, which many of the transformations are based on, can
be performed consistently and is already used in nearly every clinical case. Therefore, the virtual stain
transformation technique can be targeted to replace more difficult and costly special stains with their
virtually stained counterparts.

Both the label-free virtual staining and stain transformation techniques have been proven to cre-
ate highly accurate computationally generated stains, which are equivalent in quality to histochemical
stains, and allow for accurate diagnoses to be performed [140, 283, 285]. In addition to avoiding the
need for chemical labeling (reducing costs and eliminating chemical waste), these techniques have sev-
eral advantages over standard histochemical staining. For example, virtual stains are standardized, as the
same transformation is performed by the NN every time. This results in stain-to-stain variations being
minimized. Another major benefit is that multiple stains can be performed on a single tissue cross-
section, allowing pathologists to view the same area (and therefore the exact same cells) with multiple
stains rather than relying upon staining of serial tissue sections. Furthermore, when performing virtual
staining of an unlabeled tissue, the tissue is also preserved for future use if more advanced (e.g. molecu-
lar) analysis is needed.

Current and future challenges
One of the challenges posed during the creation of virtual staining models is the generation of the image
data required to train the NNs. These data often need to go through an extensive pre-processing work-
flow, which can be time-consuming, particularly if manual steps such as data cleaning are necessary.
Furthermore, a significant amount of data from various sources/labs is needed to allow the models to
generalize to new patients or different sample processing procedures. This is a particular pain point for
stain transformations, as there can be significant variations between the stains performed at different
labs or even within a single lab. For these models to be useful, they must be able to generalize to any
given stain (that is correctly performed). The challenges of generalization across heterogeneous data
sources are also echoed in virtual microscopy workflows for plankton imaging (section 22) and multi-
site diagnostic grading systems (section 25).

121 translation techniques such as virtual staining are often performed by DNNs trained using super-
vised learning, taking advantage of loss functions that directly teach the network to perform a map-
ping between pixels. These structural loss functions ensure that an accurate transformation is learned.
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Figure 42. Example virtual staining workflows. Example workflows that can be used to computationally generate stained tissue
images by (i) digitally transforming histochemically stained H&E tissue images into various other stains (here, (a) Jones silver
stain, (b) Masson’s trichrome, and (c) PAS), or (ii) virtually staining the tissue, transforming autofluorescence images of the
unlabeled tissue into the various stains (here, (d) H&E, (e) Jones silver stain, (f) Masson’s trichrome, and (g) PAS).

However, supervised learning techniques rely upon images of the same tissue section captured before and
after the staining being matched at the pixel level. This image registration task can be difficult, partic-
ularly when the tissue is damaged or structurally altered during the staining process. Furthermore, for
the stain transformation technique, the input to the NN is a stained tissue image. This further complic-
ates the image registration process, as destaining and restaining of tissue is very difficult. While there has
been some success with using unsupervised learning (e.g. with distribution matching losses) to perform
transformations between stains [284], they may be limited as networks trained only using distribution
matching losses are prone to potential hallucinations [286].

Advances in science and technology to meet challenges

These limitations have left room for technological advancements to improve upon previously developed
virtual staining techniques. For example, techniques such as data augmentation through stain style trans-
fer are effective at allowing stain transformation networks to generalize across a large sample distribution
[283]. By developing and incorporating data augmentation techniques for other modalities such as fluor-
escence, virtual staining techniques may become more effective and generalizable. This push toward mul-
timodal data fusion and augmentation resonates with approaches taken in MPS (section 23), where mul-
timodal integration helps mitigate variability and expand applicability.

Significant improvements to the quality of virtual staining and ease of dataset development can be
achieved by advancing the multimodal image registration techniques used to match tissue images before
and after labeling. Synthetic data can be used to avoid the image matching process, and have effectively
been used to train stain transformation networks in a supervised manner [283]. More advanced loss
functions can also be developed to make the networks less reliant on perfect image registration. Finally,
by modifying the chemical labeling process (i.e. the ground truth generation step), the stains may be
optimized to reduce the physical damage to the tissue, making any image registration pipeline more
accurate and easier to perform.

There is also room to expand upon the unique opportunities afforded by computationally gener-
ated stains rather than using histochemical staining. For example, one transformative aspect of virtual
staining is the ability to multiplex stains by performing multiple stains all from a single scan (as shown
in figure 42, where four different stains are generated from autofluorescence images of a single tissue
section). When a single network is trained to perform multiple stains, the stains can also be blended to
digitally generate new artificial stains, giving different levels of contrast to different tissue constituents
[287]. Such multiplexing of virtual transformations is reminiscent of cross-parameter mappings explored
in the MAGIK framework (section 20), where multiple dynamic models are predicted from shared data
streams. Multiplexed staining also enables micro-structured staining, where different tissue areas in a
single image of a tissue sample appear as different stains [287]. In contrast, histochemical staining is
a destructive process, so each tissue section can only be stained a single time and by a single type of
stain. Researchers may exploit these and other unique aspects of computational stains enabled by DL
to improve the speed and accuracy of diagnoses, with further research being able to determine the best
opportunities for virtual staining to improve existing clinical workflows.
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There is also significant room for this technology to advance by taking advantage of the symbiosis
between virtual staining and image analysis algorithms. Some preliminary studies have begun to show
this potential, for example, by demonstrating that the information extracted by a stain transformation
network can be used to improve image segmentation algorithms [288]. This same technology can be
adapted to improve other downstream image analyzes, such as automated diagnostic algorithms, by
incorporating virtual staining into ML-based disease detection workflows.

Concluding remarks

The use of virtual staining of label-free tissue, and stain transformations between histochemical stains is
a rapidly developing field with significant potential to improve the field of pathology. These technologies
can improve the speed of diagnoses while reducing costs and chemical waste. While this is still an emer-
ging field of research, with continued advancements and regulatory approvals, there are many opportun-
ities for it to assist both human and computer-based diagnoses. Furthermore, as the field of pathology
continues to move away from manual inspection of glass slides and toward digitization, there will be
more and more opportunities for alternative imaging modalities and digital visualization technologies to
make their impact and improve upon standard pathology workflows.
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Status
Identifying cell types and following their dynamic behavior is crucial when delineating biological mech-
anisms. Whether in vitro or in vivo, cell-environment interactions result in stimuli-dependent cell
responses. These can constitute, e.g., stem cell differentiation during embryogenesis, cellular defense
responses due to altered extracellular environment, or malfunctioning behaviors due to pathological cir-
cumstances. Typically, intracellular gene and protein expression profiles are obtained only after cell isol-
ation, whereby the spatial cell-environment interaction is lost. Instead, phenotypic characteristics can
rely on visual traits or cell morphology captured by imaging. The classical methodology uses a probe
to target the cell, protein, or even particle of interest, which is detected and visualized by microscopy.
The probe can constitute a dye that binds to a specific protein or subcellular organelle, a fusion protein
expressed in genetically modified cells, or another type of particle or substance that provides informa-
tion about the cell’s phenotype or behavior. Any structural or behavioral cell differences are then ana-
lyzed via image processing, clustered, and commonly confirmed with additional biochemical analyses.
The temporal and spatial resolution can be modulated depending on the imaging setup and the probe
used. Some probes can be applied to and are compatible with living cells with minimal impact during a
limited period. Others are harmful and will affect the cells and possibly the response, therefore are better
used on terminated cell cultures or ‘dead’ tissue. Regardless, the specificity and sensitivity of the method-
ology rely on many different parameters, some hard to control. Further, analyzing the microscopy image
outcome of sometimes subtle changes or variations is far from straightforward that may be misleading,
especially if using rigid, more traditional image analysis tools, not to mention the risk of being biased.
With the advancement of imaging techniques and Al approaches, a new era of biological screen-
ing has emerged. DL mimics humans’ learning process and includes statistics and predictive modeling.
This growing trend toward label-free classification and analysis strongly complements the virtual stain-
ing techniques discussed in section 26, which similarly aim to reduce invasiveness while maximizing
phenotypic insight. The technology has been successfully applied in a wide range of biological contexts,
including clinical diagnostics (reviewed in [289]), and the quantification of dynamic information from
single cells and their subcellar components (reviewed in [290]). It is also central in developing probe-
free cell identification and tracking analysis tools. The raw input data can stem from various micro-
scopy modalities: bright-field [291], fluorescence [98], structured illumination [292], scattering [92], or
phase contrast [293] (see figure 43), to mention a few. The abovementioned models are trained using
supervised learning, which is suitable when the input and the corresponding output are known. The
network develops a strategy to transform an input image into the correct output from labeled training
data. Another possibility is to train models using unsupervised learning. Unsupervised learning aims to
find hidden patterns from the unlabeled dataset. It carries significant uncertainty about the features the
model considers crucial but is supposed to be less biased than supervised learning models and is fore-
seen to be the next generation of software models for complex image analysis.

Current and future challenges

Despite the usefulness and many available applications of DL in cellular phenotyping, there are still chal-
lenges to overcome to improve the efficacy of the technology in complex biological settings. One aspect
regards attaining dynamic ground truth data; the other regards choosing or developing optimal imaging
modalities for distinct purposes.

For example, when targeting specific proteins, cell cultures must be fixed prior to the addition of
immunofluorescent antibodies. This approach was used to generate ground truth data, which—when
combined with a DL-based method—enabled successful prediction of progenitor cells’ future differ-
entiation direction paths from bright-field microscopy images [294]. However, this approach makes it
impossible to monitor the same sample over time. If the goal is to study dynamic behaviors, live-cell
data is required, along with alternative ways to generate ground truth. This can include using dyes com-
patible with live cells, fusion proteins expressed by the cells themselves, or other non-invasive staining
method. Such an approach is not always applicable, e.g. when focusing on unique protein expressions or
using cells that are difficult to manipulate genetically.
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Figure 43. Virtual staining performed on phase-contrast images of endothelial cells. Virtual staining performed using a condi-
tional generative adversarial neural network (cGAN). For each phase-contrast image, there are the corresponding ground-truth
(obtained via chemical staining) and virtually-stained images. The left column shows staining for live cells with calcein AM, and
the right column, staining with caspase-3/7 to detect apoptotic cells. Virtual staining enables dynamic cell behavioral monitoring
on the same cell sample and have great potential for in vitro studies using sensitive and, or limited cell samples. The scale bar is
50 pm. Reproduced with permission from [293].

The next hurdle is to image and monitor cells in more complex and physiologically relevant settings,
e.g. 3D cell cultures. Such volumetric cultures are often very dense with complex cell—cell interaction
patterns, resulting in problematic staining and imaging processes. First, dyes targeting specific cell struc-
tures or proteins might not even reach their targets, a common scenario seen in organoid staining where
dyes have difficulties penetrating the sample. Second, the dense structure scatters the illumination light,
limiting the resolution and focus, which masks the readout. For instance, this is the case when using
fluorescent probing in a classical setup of light-sheet-based microscopy, where aberrations, and low-
intensity illumination, as a result of scattering, limit the sample thickness range. Similar imaging con-
straints and penetration challenges are also discussed in the context of MPS in section 23, where deep
tissue monitoring without perturbation is critical.

Another relevant challenge is the simultaneous monitoring of dynamic morphological changes on
both population and subcellular-scale levels. Such information is relevant for, e.g. understanding the
importance of heterogeneous versus synchronized cell responses in cell communication studies or can-
cer cell screening. In the latter scenario, discriminating cells’ behavior based on migration speed and
direction, differentiation, and replication frequency over time will be necessary.

Moreover, although new NN model architectures require only a few or even just one image for train-
ing, many currently best-working networks require high computational power for training and data ana-
lysis. Unfortunately, not all users interested in switching to Al-based software have access to such com-
putational clusters or powerful computers with GPUs.

Advances in science and technology to meet challenges
Meeting these challenges requires progress both in imaging techniques—to provide data rich in inform-
ation for input into DL models—and on the theoretical side, to develop models capable of accurately
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Figure 44. Methodological outline of probe-free cellular phenotype classification using 3D microscopy and deep learning image
analysis. An organoid is a 3D in vitro cell culture that constitutes a complex, self-assembled cluster of organ-specific stem cell-
derived cells (diameter size ranging from approximately tens of micrometers to a few mm). The culture system is a powerful

tool in biomedical studies, especially when monitored dynamically and would benefit from live 3D cell imaging and deep learn-
ing phenotype identification. Novel imaging modalities are required to provide high temporal and spatial imaging of the dense
organoid structure, and the downstream deep learning-assisted image analysis is foreseen to permit extracting quantitative cellu-
lar phenotype information.

interpreting the often non-grid structured and interconnected nature of biological information (see
figure 44).

Powerful imaging techniques across multiple modalities—such as high-speed light-sheet microscopy
for live tissue [295], 3D-structured illumination microscopy for subcellular imaging of thick samples
[296], and 3D single-molecule super-resolution microscopy using a tilted light sheet combined with
microfluidics [297]—have the potential to overcome current limitations in volumetric imaging, enabling
time-resolved monitoring of dynamic cell behavior across scales from large to small. These methodolo-
gies could benefit from combining Al with them, such as GNNs, to classify and predict the outcome.
Such use of advanced neural architectures for modeling spatially distributed biological phenomena aligns
well with recent applications in multimodal motion classification (section 20) and in single-cell dynam-
ics (section 21). Especially in the biomedical field, GNNs have recently gained much attention, due to
their ability to, by signal processing, model unstructured and structured relational data (reviewed in
[298]).

Recently, a CNN-transformer network, known as a U-net integrated transformer, was recently
applied for long-term 4D imaging of zebrafish heartbeat dynamics in vivo [299]. It enabled high-
resolution imaging across developmental stages with minimal light exposure and acquisition time. The
model successfully captured both fine details and global structures, outperforming existing DL methods.

GNNs have also been utilized in an alternative approach where photoactivatable fluorescent probes
target annotated cells, and live cell spatial transcriptomics data is attained [300]. The approach provides
spatial structure and high-throughput gene expression profiles for individual cells in parallel, successfully
clustered by implementing GNNG.
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Instead of using expensive and sophisticated microscopy setups for 3D imaging, there is also the pos-
sibility of applying different reconstruction approaches that augment, e.g. light-field microscopy images,
to circumvent this technology’s limitations of non-uniform resolution and slow reconstruction speeds. A
so-called view-channel-depth NN [301] yielded artifact-free volumetric image sequences with consistent
spatial resolution, allowing real-time reconstruction of biological dynamics.

Regarding the efficacy with which different networks run, improved network architectures will reduce
the computational time and, overall, the computational load on local computers. Further, relying on
completely unsupervised or semi-supervised ML networks, where a small number of labeled data is
mixed with unlabeled data and used for training, will be especially useful when analyzing large data sets
that, in turn, will require less computational power.

Concluding remarks

Al for cell biology and biomedicine is a rapidly developing interdisciplinary field that urges tight col-
laborations across disciplines. The field should focus on developing new tools and providing them in a
form that users can modify and retrain the networks for custom image processing with minimal effort.
Hence, there is an urgent need for user-friendly software interfaces. Without them, it is very challen-
ging to incorporate Al-aided software in biological laboratories where there are often no programming
experts. Reliable, probe-free analysis methods are here to stay and will probably alter many biological
laboratories’ standard routines. The combination of novel imaging modalities and Al is expected to allow
precise 3D single-cell classification as well as time-resolved tracking of complex, environmentally driven
multicellular organization.
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Status

Neuroimaging techniques such as MRI, CT and positron emission tomography (PET) have been widely
used to understand the structure and function of the healthy brain as well as the brains of patients with
neurodegenerative and psychiatric disorders. The recent technological advancements in these techniques
have led to the collection of larger amounts of higher quality brain imaging data, which has been chal-
lenging to analyze using traditional ML approaches due to the complexity of brain anatomy as well as
the inherent variability in the images, e.g. due to different scanners or scanning protocols. As a result,
it is imperative to create novel, efficient and generalizable methods capable of processing this increased
volume of available data [302].

DL models are a promising tool to integrate, assess and make predictions from brain imaging data
by using ANNs with multiple layers (figure 45) that extract more meaningful information compared
to conventional methods. While their application in clinical practice has not been extensive, there are
multiple examples showing their benefits [303], e.g. in the case of assisted reporting, where DL methods
are used to pinpoint or quantify pathological changes in medical images. These diagnostic classification
strategies share a conceptual foundation with digital pathology (section 25), where DL similarly learns
subtle morphological markers to support clinical decisions. In neuroimaging research, DL tools have also
been applied to image acquisition and preprocessing by improving the speed of image reconstruction
[304], creating higher-resolution images from the originally obtained low-resolution ones or detecting
artefacts in the images [302, 305]. Furthermore, one of the most important applications of DL has been
in image segmentation, i.e. dividing the image into several regions with comparable properties, allow-
ing for their subsequent quantification [306] (figure 46). Finally, DL has been used in disease diagnosis
and prediction, where subjects are classified into different disease groups based on shared behaviors or
biomarkers [303].

Given the enormous potential of DL tools and the growing availability of high-quality data, facil-
itated in part by the creation of many large-scale open-access databases, DL tools may be expected to
play a more significant role in future research. Since these tools are not based on any prior assump-
tions about the data, DL methods can identify novel and unique traits in the data that could provide
new knowledge, and therefore allow changing currently established practices, e.g. in studying diseases or
categorizing patients.

Current and future challenges

The benefits of using DL methods in data analysis are clear, nevertheless, several limitations hinder
their widespread application. Some of these limitations are technical, e.g. the higher dimensional meth-
ods needed to analyze the three- or four-dimensional medical images are computationally expensive
and computer memory intensive. Furthermore, the lack of understanding of the rigorous mathemat-
ical framework and underlying theory by end-users can lead to problems with the interpretability of the
models, which could limit their applications and lead to wrong conclusions [302].

One of the most frequently encountered obstacle for DL is obtaining the data needed to test and val-
idate the model [305]. These models need a large number of training data to achieve a good prediction
and to prevent overfitting to the training sample. However, especially in the context of supervised learn-
ing, producing labeled data is difficult and expensive [303]. Furthermore, the training data needs to be
general and representative of the population data that the model is expected to assess. Most implemen-
ted models are tested on local datasets, which could have a distribution that is different from real-world
data, leading to decreased generalizability and reproducibility of the particular model and difficulties
in the comparison of its performance against alternative models. Finally, even if the model’s applica-
tion is limited to a certain imaging modality or disease, there is a variability in the quality of the image,
e.g. due to the use of different hardware or imaging protocols, which could again lower the generalizabil-
ity of the specific model [302, 305].

However, the main issue of DL models is their lack of validation in clinical settings. Model per-
formance has traditionally been evaluated using statistical measures that are frequently obtained from
synthetic data. Several visual explanation approaches (e.g. occlusion analysis, gradient-weighted class
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Figure 45. Depiction of commonly used deep learning architectures in neuroimaging studies. Panel (A) demonstrates the struc-
ture of a typical convolutional network for accurate binary or multi-class classification using neuroimaging data. Panel (B) rep-
resents a U-Net architecture commonly applied in skull-stripping.

activation mapping) have been proposed to obtain the heatmap from DL models, and therefore, fur-
ther the understanding of the biomarker representation from neuroimaging data via DL. However, in
some cases, such metrics can be difficult to interpret by clinical experts and may not be in agreement
with experts’ predictions, leading to some doubts in the models’ predictions. Furthermore, analyzes

in research are commonly performed on more standardized, high-quality images or even on synthetic
data, which greatly differ from the real-world data acquired from patients in the clinic. This distinction
between research-grade and real-world data, and the associated generalization gap, is also emphasized in
the context of virtual staining and histopathology transformation (section 26), where sample preparation
inconsistencies can derail predictive performance. Hence, this could present an important obstacle for
the generalization and practical application of DL models in clinical settings [303, 304].

Advances in science and technology to meet challenges

To overcome the technical challenges, several methods to reduce the dimensionality of the data and,

in turn, decrease the computer load have been proposed, e.g. training on only a part of the image,

or representing 3D images as a stack of 2D images and use lower dimensionality models to analyze
them. The computational time can be further decreased by employing transfer learning [307], a widely
used method that entails pre-training the model on a large dataset, recording the obtained weights and
finally, applying them to the NN assigned to the current task. Transfer learning and data augmenta-
tion strategies are likewise employed in subcellular microscopy tasks (section 21), where labeled data-
sets are scarce and simulation-based methods are needed to train robust models. The recording of the
pre-trained weights allows researchers to train only a subset of layers for the current task, which requires
less data; also performing the pre-training on a large data set can lead to more robust results. Another
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Figure 46. Examples of deep learning applications in neuroimaging pipelines. Deep learning has been utilized in neuroimaging
studies extensively due to its ability to detect abstract and complex patterns. This figure provides several common examples of
applications, the most common of which are (A) segmentation, (B) denoising, (C) image or 3D reconstruction, and (D) detec-
tion of abnormal intensity patterns. Segmentation and detection examples are from the authors’ previous work and depict the
automatic segmentation of a subdural hematoma in a CT scan and the identification of abnormal tau deposition patterns in a
PET scan.

benefit of transfer learning is the ability to share the well-trained DL models between researchers, which
can be an important step to improve the generalizability and robustness of these models.

Another broadly used technique to increase the training set and prevent overfitting is training data
augmentation [308]. Using this technique, the size of the dataset is effectively increased by introducing
some random variations in the data, e.g. random transformation of the image by translation, rotation
or deformation, introducing intensity shifts or scaling factors. In addition to augmentation, other tech-
niques have also been developed with the aim of preventing overfitting, including dropout (i.e. randomly
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removing nodes from the network at different layers during training) as well as regularization of the net-
work that ascribes weight penalties to different nodes.

To increase the level of use of DL methods in clinical settings, it would be necessary to include the
end-user in the process of design and testing the model, enabling the user’s understanding of the model
and allowing an easier interpretation of the results. Steps have already been taken in that direction,
including attempts to integrate the different DL frameworks into the commonly used analysis pipelines
and the scanner itself [304]. If successfully integrated, such approaches would allow for multi-site testing
and validation for a given method, improving its generalizability.

Finally, there are several ongoing studies aimed at obtaining and providing large, publicly available
data sets, e.g. UK Biobank [309], Human Connectome Project [310] or OASIS-3 [311]. The availabil-
ity of these data sets is extremely important for the design of novel DL methods as they can provide a
single setting in which different methods could be compared and benchmarked against each other.

Concluding remarks

Despite the number of challenges that need to be overcome by DL algorithms so that they can be more
widely applied to neuroimaging analyzes both in research and clinical practice, there is already over-
whelming evidence showing their potential in producing very valuable results. With the current advance-
ment in image acquisition technology, increase in the knowledge of the theoretical underpinnings of the
models and understanding of the environment where they would be applied, it is feasible to expect that
the current limitations will be addressed in the near future. This will allow researchers and clinicians to
agree on the exact protocols of applying these techniques to clinical data, e.g. whether the DL algorithms
should be applied as a sole method to tackle a given analysis or if they should be combined with altern-
ative methods or human expertise. Therefore, DL applications in neuroimaging are likely to achieve even
more impressive results in the next few years.
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Status

TEM offers the only means of directly seeing and analyzing biological nanoparticles and structures at the
nano-level. The recent focus on gene therapy and revival of vaccine development has contributed to an
increased interest in TEM as an analytical tool of biological nanoparticles in drug development and for-
mulation, in addition to its established use in disease understanding and clinical diagnosis. The advent
of automation capabilities in image acquisition in combination with the expectations of DL provide pos-
sibilities and promises for making TEM more accessible. An overview of DL used in various EM applica-
tions (biology as well as material science) can be found in Treder et al [312].

As repeatedly demonstrated in CV applications and many medical and microscopy proof-of-concept
studies, DL offers the great possibility to learn relevant information from examples. Thereby, the
human’s limited capability to instruct the computer on what information to extract can be excluded.

It has the general drawback that a priori expertise and information not represented in the examples will
not be incorporated in the model unless explicitly added. It is also difficult to decipher and validate what
information is used to reach a decision. This leads to interpretability and reliability issues which practic-
ally limit DL deployment in real-world TEM bio-processing and clinical applications. These applications
often face a scenario with a limited amount of training images, lack of or unreliable ground truth, non-
representative or too narrow training sets, as well as regulatory requirements. Such limitations also arise
in neuroimaging (section 28), where high-dimensional but scarce labeled datasets and clinical validation
challenges limit widespread adoption. In addition, for image data in clinical situations, there is also a
fear of missing ‘other’ and unexpected information obvious to the experienced eye.

Commonly used Al networks are very self-confident in their predictions, also when the evidence for
a certain decision is dubious. This results in so-called silent failing i.e. misclassifications and unreliab-
ility due to too narrow training sets, as well as missing structures in the sample not directly asked for.
For certain applications, this is a showstopper. However, in other applications, a model does not need
to be extremely accurate or generalize to be useful. They can solve or contribute to a particular step in
the analysis pipeline, be interactively fine-tuned by the user for each dataset to be analyzed, or serve as a
detection or segmentation step further processed or validated by the user. Thus, in many practical scen-
arios, tools that reduce rather than remove human input are in demand.

Current and future challenges

Common to all types of microscopy is the need to adapt and modify DL methods to the prerequisites
and characteristics of the different imaging techniques. Some general issues that need TEM domain-
specific attention are:

(1) Quality and amount of annotated image data. The training dataset has to be carefully prepared to
represent all variations that can be observed in the application. It is, however, easy to miss rare
albeit important instances. In a real setting, the models will not only have to face all varieties of
data appearances but also anomalies unlike anything in the training set. Typical supervised models
fail when presented with a sample from a different class or appearance than those in the training
set. This is exemplified in figure 47. What might be obvious to a human expert requires careful
consideration when training and verifying DL models.

(2) Design of performance and evaluation criteria that are relevant for the imagery and application. A
TEM is a complex scientific instrument used to gain information about nano-scale features. In
contrast to many CV applications, looking pleasant is not interesting while being correct is crucial.

(3) Adaptation of network architectures to focus on the characteristics of TEM. For example, features at
the single-pixel level in combination with large-scale information are usually key for what is studied.
The images can in general not be down sampled as is done as a pre-processing step to many
standard DL models without severe loss of information.

(4) Development of TEM-specific augmentation techniques that incorporate variations in instrument
settings and properties, as well as modality-specific artifacts. This is especially important for
complex imaging techniques such as TEM since generating real data representing a lot of variation
(instrument makes and models, instrument settings, sample preparation, etc) is difficult due to the
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Figure 47. Illustration of the importance of representative training data. Most of the dengue images [315] with more than 2 virus
particles were randomly assigned to the test set. They were confused with astrovirus and/or West Nile Fever due to the untrained
context. Reproduced from [315]. CC BY 4.0.

low abundance of microscopes and high cost. The value of appropriate augmentation has e.g. been
shown in stain normalization in pathology [313]. Comparable efforts to overcome domain shift and
limited annotations have been extensively discussed in sections 25 and 26 on digital pathology and
virtual staining, respectively.

(5) Lower the expectations to gain real value. Shift the focus from trying to apply and ‘market’ DL as
the magic answer to all problems to seeing it as a tool in the toolbox to aid the imaging and
analysis process. For example, to automate instrument control as exemplified in [314] to simplify
imaging and increase robustness, or to assist the sample analysis and thus reducing the manual
input for corrections or verification provided by a human expert.

Advances in science and technology to meet challenges

As described above, many of the challenges are common and general for microscopy and medical ima-
ging techniques but require a specific modality or instrument focus. Therefore, theoretical DL advances,
as well as insights gained in other imaging domains and applications, are also of interest to TEM.
Incorporating physics and constraints in the DL models and/or loss function is one such technological
advancement that has proven useful in other domains [316], but is yet to be widely explored in TEM
instrument control and applications.

Another example is the Human-in-the-loop trend [317], meaning that the user or expert guides the
model training, evaluation, or use (sometimes referred to as human-in-the-loop data analytics). This is
particularly useful in applications with limited (annotated) data, or when fine-tuning or human valida-
tion is required for each new sample/dataset. One example of such a human-in-the-loop approach also
showcased on EM data is [318]. The user interactively marks the type of objects to search for in a data-
set and then validates suggested objects in iterative steps.

The lack of training data and EM benchmarking datasets is being addressed to some extent via
competitions or ‘challenges’ such as the ISBI 2021 challenge ‘large-scale Mitochondria 3D Instance
Segmentation from Electron Microscopy Images’ and the 2012 challenge ‘Segmentation of neuronal
structures in EM stacks’. This benchmarking and community-based validation echoes initiatives like the
AnDi challenge described in sections 21 and 36. In addition, the recent requirements by journals and
conferences to publicly share image data will naturally lead to increased availability of also TEM images.
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Recently authors Matuszewski and Sintorn published a virus classification data set and DL benchmark
performance [315], focusing on discussing the importance of training and test sets representativeness
and its impact on performance and reliability in real-world applications.

In recent years, following a large interest in understanding DL decisions, more attention has been put
on designing models producing confidence scores [23], anomaly detectors [319], and interpretable mod-
els, all to strengthen DL reliability and trustworthiness. A sign of technology maturation of DL in med-
ical imaging along those lines is to apply DL to smaller interpretable parts (cf as a tool in the toolbox)
contributing to the decision support with additional sources of information rather than constructing a
DL black box total solution [234].

Concluding remarks

Many of the issues with DL deployment in real situations are common to all imaging modalities,

e.g. lack of sufficient amounts and variations of realistic and annotated training data, as well as reliab-
ility and interpretability of the results. General advances in DL methodology and making more TEM
image data publicly available will of course transfer to and benefit users also in the TEM field. In addi-
tion, incorporating electron imaging physics and instrumentation properties into DL models and data
augmentation properties is a foreseeable adaptation from other imaging fields.

Perhaps somewhat more specific to TEM, we foresee that DL will play a big role in instrument con-
trol and automation and hence make this complex imaging technique more accessible and available. We
also believe that theoretical DL development focused on the prerequisites in TEM will lead to better and
more efficient architectures for handling the large-scale spanned in TEM imaging and analysis. Often the
interplay and correlation of image features at multiple scales including information at the finest pixel
level is needed to gain insight, and multiple scales need to be traversed to find objects or regions of
interest in the huge search space a sample in TEM constitutes.
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Status

With modern optical, electronic and chemical technology, imaging experiments can be run efficiently
in high throughput to address pressing research questions in drug discovery and functional genomics.
Given the massive amounts of imaging data generated by such experiments, accurate software platforms
are also necessary to transform images into high content quantitative data for downstream research.
Phenotypic high content imaging assays have been used to determine mechanisms of action of drugs,
predict toxicity, and even predict the outcomes of other, non-imaging assays (reviewed in [320]). While
DL approaches are not currently universal within high content/high throughput screening (HCS/HTS),
work in recent years has illustrated several ways in which DL can add value to these assays (figure 48).

The computational workflow to transform images into biological insights typically begins with
segmentation—that is, providing an exact boundary for each desired object within the image. This
area has progressed the furthest in recent years, thanks to foundation models that generalize to new
experiments [321], and successful tools becoming widely available to the community [322].

When the objects of interest—typically single cells—have been identified by segmentation, the next
challenge is feature extraction. This involves quantifying the unique properties of cell state, cell structure,
and phenotype observed in the images using multi-dimensional representations [323]. Recent advances
in representation learning may automate data-driven optimization of feature representations, instead of
requiring analysts to manually create feature sets.

The quality and content of images themselves can now be enhanced and expanded using image gen-
eration and modification strategies. Generative models (such as some deployed in [164]) can now improve
the resolution and SNR of images, which improves the quantitative data obtained. Similarly, networks
can predict the staining pattern of many biological stains from unstained images, allowing one to gener-
ate measurements of biological structures that were never directly stained (reviewed in [323]). Generative
models can also reduce the effects of technical variation (e.g. well or plate effects) by modeling and then
removing them; this can allow the researcher to calculate how an observed image would have looked if
it was captured in a different batch [276]. Similar batch correction strategies are also explored in virtual
staining workflows (section 26), where domain transfer and harmonization are essential for consistency
across staining protocols.

Finally, DL has the potential to change the scale at which assays must be run: training models to predict
the outcome of one assay based on already-collected data from an orthogonal assay has been shown to
enhance secondary screening hit rates up to 200X [324].

Current and future challenges

With recent advances in DL research on bioimage, the problem has shifted from assessing whether DL
could help to choosing which aspects of your workflow benefit most from deep learning. As DL can poten-
tially improve many aspects of the HTS/HCS process (see above), at each step one must assess which
options are available, how much they stand to improve the final data, and what the compute, person,
and opportunity costs are to implement them.

Compute considerations are critical in HTS/HCS: assays typically involve dozens or hundreds of
plates with thousands of fields of view per plate [320]. At this scale, speed matters: each second of ana-
lysis time equals ~1 CPU hour per plate. While DL techniques can be orders of magnitude faster than
conventional approaches [325], these increased speeds often rely on access to GPUs, which are at a
premium compared to CPUs in most on-premises and cloud environments.

Person and opportunity costs are harder to predict or measure, since one must investigate options
(and therefore partially incur these costs) in order to assess the potential benefit. For tasks where tools
already have been made for a ‘substantially similar’ task, care must be taken to assess how similar
the external training data is to one’s own data; differences invisible to the human eye can still require
retraining. If the external training data is sufficiently large and varied, publicly available models may be
appropriate without further training; this assessment is often easier if the developers have released per-
formance statistics on public benchmarks. Even when existing tools require no retraining, many require
advanced computational skills to use and/or scale; a 2022 conference poll on ‘Barriers to entering HCS’
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Figure 48. Left panel: five ways deep learning can add value to high content assays. Clockwise from top left: predicting outcomes
of other non-imaging assays; removing blur, noise, or batch-induced variation from images; segmenting objects; extracting
numerical feature data; and predicting stains not acquired. Methods are not mutually exclusive—any or several may be used

on any high content assay. Nuclear images courtesy of the Broad Bioimage Benchmark Collection BBBC022. Right panel: high
performance computing is necessary for processing imaging screens. Deep learning models usually benefit from graphical unit
processing (GPU) acceleration (top). When processing HCS/HTS data, the processing load can be distributed among multiple
machines both during training and deployment of models, resulting in linear scaling of compute requirements as the number
of images increases; this is favorable compared to other applications where compute requirements increase exponentially as data
size does. (Bottom). Note that GPU acceleration is significantly more expensive than CPU computing, both when purchasing
hardware and in the cloud.

identified ‘access to knowledge’ as the largest barrier and ‘Python’ as the thing they most wished new
employees knew (Cimini, personal communication). This concern over accessibility and tool usability
mirrors the call for user-friendly Al interfaces raised in section 27 on cell phenotype determination, par-
ticularly for non-programming biological users.

If one decides that no existing tools are appropriate, many more decisions emerge—should one
adapt an existing bioimaging tool, or seek out new computational architectures? If using an existing tool,
should one train from scratch or fine-tune an existing model? Are there existing biological data sets that
you can use for training, or must you generate your own? How should the ground truth be defined, how
can it be made efficiently, and what are appropriate metrics of success? These questions are difficult for
experts to answer and will take even longer for new users.

Advances in science and technology to meet challenges
The success of DL for natural images is partly explained by the careful curation of datasets with ground
truth annotations. Ground truth collection has been slower for microscopy analysis tasks, but the field is
making progress for problems such as cell segmentation [321, 322]; more coordinated efforts are neces-
sary to expand the availability of well annotated data for training foundation models under different
experimental conditions. Since creation of these sets is costly and time consuming, training strategies
that do not require supervision or explicit annotations for learning should be deeply explored. Such
semi-supervised and contrastive learning approaches have also gained momentum in SPT (section 21)
and neuroimaging (section 28), where labeled data is difficult or costly to obtain. For instance, a family
of self-supervised learning techniques, including contrastive learning, use image matching under different
transformations (such as cropping or color adjustment) to capture machine-useful (though not human-
interpretable) features that make an image unique. These features have shown to be highly informative
to recognize objects in natural images and could be used for phenotypic analysis in images of cells or
to accelerate training of segmentation and/or classification models by requiring significantly less ground
truth to fine-tune.

While more powerful networks are needed, these tools will not gain wide adoption if users find
them too challenging to use. Educational materials, tutorials, guides and documentation for non-experts
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on how to make decisions (about models, hyperparameters, and more) and use these tools in prac-

tice are required to reach the scientists that will ultimately use them to drive biological discovery. This
will require tools to create easy to use user interfaces [326] or PnP API libraries that can be loaded in
Jupyter Notebooks [164] or similar environments to support the development of quick and reusable pro-
cessing pipelines.

Finally, once an approach is finalized by the scientist, DL architectures require significant computing
resources; while these needs are greatest during training, they may also be significant for processing new
datasets in inference mode, which provides an especial challenge for the scale of HTS. New advances in
model compression and efficient architectures must be developed and adopted for bioimage analysis.
Energy efficient architectures can run on mobile devices and could be useful to accelerate processing
where GPUs are available or to allow deployment where they are not. To serve HTS-scale data, tools
must also be developed to allow easier parallelization of models across remote servers or cloud com-
puting services [164, 326, 327]. The community also needs guidelines to navigate these computational
choices and to make architecture and platform decisions in practice.

Concluding remarks

While it advances rapidly, DL continues to have great potential to revolutionize the entire HCS/HTS
process, from assay design to compound selection to segmentation and feature extraction. As new tools
are created and/or refined to tackle these and other as-yet-unimagined possibilities, we believe that
emphasizing reusability, interpretability, and scalability will help the entire community. Training on
diverse image sets, while more time consuming, leads to reusable tools which require minimal hand
configuration [321, 322], and comprehensive documentation increases practical ability to reuse. Tools
should maximize interpretability: for some tools, this may involve disclosure of failure modes; for oth-
ers it may involve adding attention maps so users understand what led the network to a particular con-
clusion; and for others creation of ground truth benchmarks to better align results across experiments.
Finally, reusable and easy ways to generically scale new approaches must be developed to ensure adop-
tion at HTS scale. If such tools are created and made widely available and user-friendly, it is easy to ima-
gine that in a very few years there will be no steps in HCS/HTS that do not routinely incorporate DL
models.
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Status

The success of diagnostic and interventional medical procedures is deeply rooted in the ability of mod-
ern imaging systems to deliver clear and interpretable information. One of the most widespread imaging
systems available in hospitals and clinics around the world is the ultrasound imaging system. With its
60+ year history, ultrasound imaging has four major benefits in comparison to other medical imaging
and microscopy systems: (1) safety, (2) portability, (3) cost-effectiveness, and (4) real-time delivery of
images.

While sound is transmitted and received in ultrasound imaging systems, when augmented with
lasers and other light sources to create photoacoustic imaging systems, light is transmitted and sound
is received. This alternative approach provides optical absorption information, rather than the acous-
tic reflectivity information that is provided with traditional ultrasound imaging system, while retaining
the four major benefits noted above. Ultrasound and photoacoustic images may also be interleaved to
improve the overall clinical experience.

In both ultrasound and photoacoustic imaging systems, the sound received by an array of acoustic
sensors is typically converted to an interpretable image through the beamforming process, which is often
the first line of software defense against poor quality images. However, the beamforming process has
historically suffered from recurring limitations that produce poor image quality in a subset of patients.
In particular, traditional beamforming procedures rely on assumptions about wave propagation (e.g.
sound speed, acoustic pathways) that are not true in the presence of significant inter- and intrapatient
variations. For example, a single, direct path from an ultrasound or photoacoustic source to the acous-
tic receiver is often assumed, but this assumption does not consider the presence of multi-path acoustic
scattering or reflections that occur in the presence of acoustic impedance differences.

While DL is impacting ultrasound and photoacoustic image formation through improvements to
beamformers, image quality, and diagnostic interpretability [328, 329], no historical advance prior to
this impact has combined multiple benefits in a single image formation or signal processing step [330].
As a result, potentially useful information provided by the same raw data is either absent or prolonged,
considering that advanced methods may be time consuming to implement and are typically applied in
succession, rather than in parallel. Alternatively, a DL approach has the benefit of learning from multiple
training examples, rather than relying on flawed assumptions. This benefit opens the door for the deliv-
ery of clear, interpretable images that combine multiple benefits in parallel, based on a single input of
raw sensor data [330]. An example of this approach is presented in figure 49.

Current and future challenges

Three significant challenges surround the capability of DL to create ultrasound and photoacoustic images
that combine multiple image formation and signal processing techniques in a single step. First, ultra-
sound and photoacoustic sources must be localized and detected in the presence of noise and artifacts.
Based on the Hyugens—Fresnel principle [331], this challenge can be reduced to detection of point-like
sources, which can represent single scatterers within tissue, needle or catheter tips, photoacoustic signals
from an optical fiber tip, or individual microbubbles. When the acoustic response from a point source
travels outward from the source to the transducer, the shape of the recorded wavefront is determined
by the distance from the source to the acoustic receivers. Thus, sources that are closer to an array of
acoustic receivers will have a different recorded wavefront shape than sources that are farther away. This
unique shape-to-depth relationship can be learned by DNNs [332, 333]. Advantages include the ability
to spatially locate acoustic sources with high precision and accuracy in comparison to images created
within the diffraction limits imposed by the beamforming process [333, 334].

The second challenge is accurate segmentation of an imaging target or disease feature of interest. The
underlying goal is to produce an image that emphasizes structures of interest for a particular application
and deemphasizes surrounding structures. Segmentation is typically performed after image formation,
but if the image quality is poor, then the segmentation will also suffer. This is additionally problem-
atic when ultrasound or photoacoustic imaging systems are operated by less experienced users or when
automated tasks rely on segmentations to deliver a diagnosis, treatment, or medical assessment. Similar
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Figure 49. Deep learning enhanced ultrasound or photoacoustic imaging. General concept of supplying a single input of raw
ultrasound sensor data, from which multiple outputs are simultaneously produced in parallel with the assistance of deep neural
networks (DNNs).

concerns regarding operator variability and automation reliability are echoed in the digital pathology
domain (section 25), where inter-observer disagreement can hinder model training and interpretation.

The third challenge is the time required to create images with advanced beamforming methods, such
as coherence-based images. For example, the short-lag spatial coherence (SLSC) [335] beamformer suc-
cessfully reduces acoustic clutter in cases where traditional clutter reduction methods, such as harmonic
imaging, fails. SLSC beamforming also has the ability to determine the fluid or solid content of suspi-
cious masses [336]. Despite these benefits, SLSC and similarly advanced beamformers can be computa-
tionally intensive to implement, which has hindered integration into existing clinical systems.

Additional challenges that must be overcome to enable widespread future impact include the abil-
ity to understand, interpret, and predict expected network outcomes and failure points. This ability will
enable systematic development of new DL approaches. In addition, providing the most optimal speed up
of advanced beamforming approaches will expand existing potential, and smart integration with robotic
approaches will promote future possibilities for fully automated procedures.

Advances in science and technology to meet challenges

DNNs were either applied or created to address the three significant challenges noted above. Point
source detection was demonstrated with multiple networks, including AlexNet, Resnet, and VGG-

16 [334]. Segmentation and feature detection from raw data was demonstrated with U-Nets [330].
CohereNet [337] was created to calculate coherence functions for the advanced SLSC beamformer.
CystNetl [338, 339] and CystNet2 [339] each consist of one encoder and two decoders, and these net-
works were built to simultaneously image and segment cysts from raw ultrasound data in parallel, rather
than perform the traditional sequential approach. Figure 50 shows the architecture of a selection of these
DNNE.

These advances either independently or collectively demonstrate the feasibility of creating multiple
outputs from a single input of raw channel data with DNNs. The collective demonstration exists because
it is possible to concatenate multiple DNNs in parallel, thus providing an approach to input raw data
to each concatenated network and achieve simultaneous outputs from each input. While many of the
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Figure 50. Examples of neural networks applied to photoacoustic and ultrasound imaging. DNN architectures were applied
or created to address challenges with photoacoustic source detection, spatial correlation calculations, and segmentation. Each
DNN accepts various versions of raw channel data. Reproduced from [333]. CC BY 4.0. Reproduced from [337]. CC BY 4.0.
Reproduced with permission from [339].

networks noted above were trained with simulated data that mimicked the physics of wave propagation
[334, 338, 339] or in vivo breast data which contains variability arising from highly heterogeneous breast
tissue [337], it is a critical advance that each DNN operated on sufficiently variable data sources relat-
ive to the training data. This generalizability highlights the success of the training process. This physics-
informed training paradigm aligns with modeling approaches used in neuroimaging (section 29) and
TEM (section 28).

An apparent tradeoff between providing human-interpretable images and integrating advances with
robotics has also emerged as a direct outcome of the science and technology implemented to meet exist-
ing challenges. For example, a DNN can be created to achieve a specific task for robotic integration,
such as implementation of visual servoing to find and stay centered on a target of interest. The output
of this DNN can be coordinates, rather than a human-interpretable image that is then used to extract
coordinates [340]. On the other hand, a human-interpretable image is useful for supervising the auto-
mated procedure, intervening if necessary, and providing interpretable reports if there is a runtime error.
Thus, the two seemingly competing approaches between robot and human data formatting have symbi-
otic advantages when operating in parallel [338].

The availability of resources is anticipated to further advance the field with regard to open-source
implementations that lower entry barriers into an otherwise specialized field. One such resource was
made possible through the Challenge on Ultrasound Beamforming with DL [341, 342]. Outcomes of
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this challenge include freely available datasets, code, and trained network weights, which may collectively
be employed to benchmark new approaches.

Concluding remarks

Ultrasound and photoacoustic imaging are two technologies that use the same sensing hardware to
make images. After raw sensor data is received by ultrasound and photoacoustic imaging systems, there
are multiple signal processing and beamforming steps that can be implemented to address a variety of
healthcare challenges across multiple organs, diagnoses, and procedures. DL provides a viable pathway
to implement multiple approaches in parallel, possibly in a single signal processing step. This pathway is
promising to overcome previous barriers to producing high-quality images for all patients.
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Status

The ML field has been a critical ally in advancing and improving microscopy image analysis, with sev-
eral ML algorithms automating common tasks such as image segmentation and classification. Recently
there has been an incredibly rapid development of new microscopy image analysis approaches, thanks
to the current boom in developing DL techniques. A DL algorithm will look at data, labeled in the case
of supervised learning or unlabeled in the case of unsupervised learning, and through self-optimization,
will infer data features that it can then use to perform the desired task. When correctly implemented,

it can provide its users access to expert-level performance at unprecedented speed. However, the imple-
mentation of DL approaches is highly dependent on the quality and quantity of data used for training
and, typically, on the availability of high-performance computers. When used appropriately, DL tech-
niques have shown incredible performance in several image analysis problems such as segmentation
(U-Net [343]; StarDist [344]), classification (YOLOv2 [345]), denoising (Noise2Void [161]), restoration
(CARE [8]), and super-resolution, either via super pixelation or improving reconstruction algorithms
(DeepSTORM [9]).

Although there is no question about the high impact potential that DL has in image analysis, users
are often required to either pay for closed-source tools or have programming knowledge to take advant-
age of these approaches poses a barrier to the widespread adoption of DL techniques in most research
fields. In recent years, several efforts have been made to bring these techniques to the non-expert sci-
entific community to tackle these issues. Notorious examples include DeepImage] [346], which focuses
on implementing pre-trained DL models as plugins for ImageJ/FIJI [347, 348], the most widely used tool
for image analysis (figure 51). Another example is ZeroCostDL4Mic [164], which provides easy-to-use
Google Colab notebooks that allow users to train and use DL models for their microscopy image ana-
lysis without programming knowledge (figure 51). Considering ZeroCostDL4Mic runs on Google Colab,
it provides users with a cloud-based solution that eliminates the need for dedicated hardware to use DL
approaches for their image analysis tasks. Similar strategies aimed at lowering the technical threshold for
adoption are emphasized in sections 30 and 27, which highlight PnP interfaces and user-centered design
to broaden access to DL in high-throughput screening and cellular phenotyping. DL4MicEverywhere
[349] uses the same philosophy of ZeroCostDL4Mic allowing users to train and test DL models without
having to interact with code but using their local resources instead of Google Colab. Besides these three,
many other projects make available tools using DL microscopy image analysis tools, such as Cellpose
[350], CSBDeep [8], DeepMIB [351], and many others.

Current and future challenges

While DL has been providing researchers with new approaches to enhance their image analysis capabil-
ities, it is still a technology with its shortcomings that makes it not easily accessible to every researcher
around the globe. As of February 2025, the number of publications containing ‘deep learning micro-
scopy’ as search keywords compared to publications with only ‘microscopy’ as keyword shows that even
with access to image acquisition equipment, access and adoption of DL approaches is still not wide-
spread, with US and China leading the way (figure 52).

DL algorithms require high computational power, which is expensive and poses a barrier for
researchers with limited access to research funds. ZeroCostDL4Mic, which can be run entirely on Google
Colab which currently has a free usage plan. However, this plan limits the amount of computational
power and storage space that can be used, and there are no guarantees that this might not change or
that DL approaches will not evolve to a point where they require more than what is currently provided
for free. DL4MicEverywhere features a no-code interface that allows users to train and test DL models in
their own hardware, however this means users are required to have access to hardware powerful enough
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Figure 52. Number of publications including either ‘microscopy’ or ‘deep learning microscopy’ as keywords. Source: Web of
Science for publication records (February 2025) and Geopandas for plotting. White coloring corresponds to no publication
records found.

to run these models. In addition to this, there is also the question of environmental impact of imple-
menting and using DL approaches, as not only the energy consumption is considerably high, but there is
also the issue of carbon emissions along with hardware production and distribution.

One of the major frameworks for developing DL approaches, TensorFlow, is mainly funded and
developed by a private company. While currently it might operate with an open-source model, this
might change in the future. This could create a first access problem and further increase the economic
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burden of implementing DL solutions. However, it should be noted that this might not be very likely

as the company also benefits from keeping TensorFlow open source. Furthermore, as the efforts of DL
developments are spread across multiple DL libraries, a major breakthrough in one of them might force
users and developers of the alternatives to migrate, leading to additional costs. In addition, to use DL as
a tool in their research, researchers must have technical knowledge of programming and image analysis.
Although ZeroCostDL4MIC, DL4MicEverywhere and Deeplmage] remove the need for users to know
programming, users are still limited to using the included DL models. Recently, the Biolmage Model
Zoo [352] project, together with its community partners [164, 344, 346, 347, 349, 353-359], have cre-
ated a standard for deploying DL models for image analysis and a community-driven database of pre-
trained models. Nonetheless, even with access to pretrained models and frameworks that require little
to no programming knowledge, users still need to know when to use specific DL models, how to gen-
erate/access and pre-process the necessary data, how to analyze the output of these models, and how to
validate the results [360]. This echoes challenges seen in digital pathology (section 25), where clinical
users must also grapple with understanding model limitations and interpretation in high-stakes settings.
Considering how DL approaches rely on proper datasets for training the models, generating, accessing,
and storing data can also be an issue due to the associated costs. All of this can be especially challenging
for researchers who are not yet versed in the DL field.

Advances in science and technology to meet challenges

DL is a technology that, although very powerful, carries with it a considerable economic burden to its
potential users. Due to this, it is not yet accessible to researchers worldwide, especially those where funds
for scientific research are not easily obtained. Projects like DeepImage] [346] help alleviate this burden
by providing users with the means to use already established pretrained models. However, researchers
must have their own solutions if they want to work or use new DL models. Google Colab, as used by
ZeroCostDL4Mic [164], is an option. However, its free usage plan has limitations and is still entirely reli-
ant on a service provided by a private company with its own financial interests. As such, creating pub-
licly funded cloud-based solutions that can be commonly used by researchers worldwide will be key to
making DL accessible to every researcher. The European project Al4Life is focused on bringing sustain-
able quality research infrastructure and services to enable life sciences researchers to access DL image
analysis tools by creating a bridge between life and computer sciences. The Chan Zuckerberg Initiative is
also contributing to bring DL to life sciences researchers by funding several projects that focus on imple-
menting DL approaches in Napari [361], a Python based open-source image processing tool. As a key
factor in DL, data access can also be a constraint in using DL in microscopy. Ensuring that the acquired
data follow the FAIR principles (findable, accessible, interoperable, reusable) can promote data sharing
to the whole scientific community and enable DL solutions to research groups that might not have the
means to generate the required data. An example of how sharing data can have a real impact is the work
developed by Abdurahman et al [362], in which by using a publicly available dataset they were able to
implement a DL strategy to detect malaria parasites in thick blood smear microscopic images. Sharing
data and pre-trained models will also be key in reducing the carbon footprint inherent to the need for
high-computational power required for DL. This emphasis on FAIR data principles and sustainability
also aligns with community-driven model hubs like DeepImage] and Biolmage Model Zoo (sections 33
and 35).

In addition to the economic burden that implementing DL approaches entails, the knowledge
required to take advantage of this technology hinders the adoption of DL for image analysis. The
image.sc forum is an example of a community-driven knowledge network that can help and guide
new users who want to deepen their knowledge in image analysis, including with DL implementations.
Online courses and training sessions will also be fundamental to bringing DL to every researcher, as they
inherently have fewer associated costs, making them more inclusive than courses requiring in-person
attendance, and reducing the carbon footprint associated with travelling to in-person events.

Concluding remarks

There is no question that DL revolutionized the field of microscopy image analysis. DL approaches have
outperformed many classical image analysis tasks, providing researchers with state-of-the-art perform-
ance at unprecedented speeds. However, due to the need for specific knowledge and equipment to imple-
ment a DL approach, it is still a tool that is not easily accessible to all researchers. Several recent projects
have contributed to make DL approaches more accessible by removing the need for programming know-
ledge to use DL for microscopy image analysis. Nevertheless, there are more challenges to be solved.
Having access to quality data is a fundamental prerequisite for DL model training. However, accessing
the data required for a DL approach is not always possible for all research groups. Understanding when
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and how to use DL and what pre-processing is needed can also be a limiting factor that could be solved
by creating a community-driven knowledge network and training in using these approaches. As a sci-
entific community, we need to join efforts to develop and implement strategies that can make DL equit-
able and available to the global scientific community.

Acknowledgments

R.H. and B.S. are supported by Gulbenkian Foundation and received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant
Agreement No. 101001332), and the European Union through the Horizon Europe program (AI4LIFE project,
grant agreement 101057970-AI4LIFE), the European Molecular Biology Organization (EMBO) Installation
Grant (EMBO-2020-1G4734), and the Chan Zuckerberg Initiative Visual Proteomics Grant (vpi-0000000044).
G. ]. is supported by the Academy of Finland (G.]. 338537), the Cancer Society of Finland (G.].), Abo Akademi
University Research Foundation (G.]., CoE CellMech), the Solution for Health strategic funding to Abo Akademi
University (G.].) and the InFLAMES Flagship Programme of the Academy of Finland (G.]., 337531).

112



10P Publishing

J. Phys. Photonics 8 (2026) 012501 G Volpe et al
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Status

Due to their extraordinary performance, DL models have gained rapid popularity in microscopy image
analysis. While DNNs are performant in a wide range of tasks, they pose unprecedented challenges in
software design and deployment due to the amount of data and computation required for running them,
especially in the training phase. Under the hood, most of the DL methods are implemented using one of
the few popular DL frameworks including PyTorch [363] and Tensorflow [364], which are implemented
in Python. Source code for these methods is wrapped into repositories and shared via online platforms
such as GitHub under permissive licenses. The openness of the DL field greatly contributes to the wide
spread of popular models and further development, it has become a common practice.

In addition to the raw python code, Jupyter notebooks [365], which split the source code into
sections and are surrounded with explanatory text in an executable document, are often provided for
demonstrating the usage of the interface functions in the companion code repository. Notebooks are
widely used for educational purposes and provided in hands-on workshops and tutorials in microscopy
image analysis. To improve the reproducibility, container-based cloud execution services such as Binder
[366] and Google Colaboratory are provided for free and become valuable resources in the deployment
of DL applications. Colaboratory in particular, provides free GPU which is ideally suited for distributing
DL tools and it is in fact used by ZeroCost4Mic [164], which provides a collection of curated notebooks
for running DL based microscopy image analysis configured via interactive user interface elements in the
Colaboratory notebooks. This aligns with accessibility-focused platforms discussed in section 32, where
deployment strategies aim to overcome hardware limitations for global adoption.

While it is flexible to use Python source code or Jupyter notebooks, users with little programming
experience can easily adapt the tool according to instructions provided by the developers. For users
without programming skills, it is still challenging to adapt the code or notebook to work with conven-
tional software, e.g. Image] [367], in a more complete analysis workflow. Despite it being challenging
to run DL in programming languages other than Python, Java solutions such as Deeplmage] [346] have
been proposed. To address the need, napari8, which is a trending Python-based image analysis software
supported by Chan Zuckerberg Initiative, is being developed and gaining traction in the community. The
aim of the project is to provide a fast, interactive, multi-dimensional image viewer for browsing, annot-
ating, and analyzing large multi-dimensional images.

Furthermore, due to the data- and computation-hungry nature of DL methods, web and cloud com-
puting has become increasingly important for the further scaling of the applications to handle massive
datasets with almost unlimited access to data storage and compute power. On that front, web based
platforms such as ImJoy [353], CDeep3M [368], and DeepCell Kiosk [369] are developed for support-
ing DL applications running on the server side. Since the computations are carried out on remote serv-
ers that are maintained by IT experts or developers, users can use these tools with little or no setup, in
most cases, using a web browser to access the user interface. This type of deployment approach is more
scalable compared to the conventional desktop software, however, it requires transmission of potentially
large amounts of data to remote servers which can be limited by the bandwidth of the internet connec-
tion, it poses challenges on server-side data confidentiality and privacy concerns. In practice, the user
will also require more feature-rich software running fully in the web browser or in the cloud to avoid
moving data between local vs remote in a more complete analysis workflow.

Current and future challenges

Currently, it is a pressing need for the community to work together to solve the challenges in the
deployment of DL tools. For desktop software, the challenges include figuring out how to ship the
software packages, complex dependencies, making it easier to install, and reliably work under the sev-
eral types of mainstream operating systems. Web and server-based deployment options are becoming
more common. It alleviates the deployment issues by delegating the task to IT experts for setting up the
complex software environment and accessing cloud storage and computational resources. At the same
time, sustainable funding models and long-term political commitment are needed to keep these cloud
resources openly available to the research community.
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Figure 53. Scalable web-powered computational systems for deploying deep learning tools for microscopy. To build and deploy
deep learning tools for handling massive data with computational heavy models, we need to design distributed systems in a pub-
lic or private cloud environment. Local workstations are used to control the microscope and acquire data, potentially in an aug-
mented microscopy setting where deep learning tools (built with, e.g. Pycro-Manager or napari) are used in real-time to perform
real-time image analysis and generate feedback signals for controlling the microscope. Within the same institutional network,
data will be synchronized into central data management systems and further analyzed using deep learning tools deployed as con-
tainers in the private computing cluster managed by Kubernetes. Data accompanied with publications can be further published
to the public cloud (the internet) in data repositories such as Biolmage Archive or Zenodo, and the corresponding deep learn-
ing models can be published to the Biolmage Model Zoo (at Biolmage.IO). Tools are deployed to public cloud servers to provide
services for data management and annotation, deep learning model training and inference etc. Users with a thin client com-
puter including portable laptops and mobile devices use web or desktop applications to access the web services running in public
or private cloud servers. Due to the fact that heavy computation and massive data are handled by servers, users can use a web
browser to do data management, annotation and analysis tasks, e.g. in ImJoy.

Future-proof Al systems for microscopy require a scalable human-compatible framework. To work
with the ever-increasing amount of data, it is inevitable to utilize a centralized computing cluster hos-
ted by an institutional IT department or in the cloud. In the meantime, users tend to use a ‘thin’ cli-
ent such as a laptop, tablet, or mobile devices for accessing the services. Different from conventional
desktop software with user interface and the computational code coupled to the same software module,
cloud-facing software requires a major change in the design pattern that separates the user interface and
the compute parts. As shown in figure 53, while the user interface parts run in the user’s web browser
or a desktop client, the main parts contain DL models and other heavy computation runs in one or
multiple remote servers in a public or private computing cluster. The two parts need to be synchron-
ized via communication over the internet, and often implemented in different programming languages,
e.g. HTML/CSS/JavaScript for the interface and Python for the compute part. To make the transition
smoother for the next generation of tool developers for microscopy image analysis, we will likely need
coordinated efforts in the community to create tools and platforms, and produce educational materials
to simplify the process.

In addition, reducing the computational costs and making ML training more environmentally
friendly is an important aspect to consider when distributing DL tools. Meanwhile, for patient related
microscopy images, data confidentiality and privacy represent another dimension of challenges in the
deployment of DL tools.
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Advances in science and technology to meet challenges

To address the challenges in shipping desktop software with complex dependencies, conda-like virtual
environments or container-based solutions are used as an alternative with the price of an increased pack-
age size. For example, to take advantage of the existing Java-based developers in the Image] community,
there is an ongoing effort of building bridges between Python and Java in the pyimagej project to allow
easy integration of DL models in Image]. Pycro-Manager is another software which connects python
with micro-manager and further enables real-time DL powered image analysis and feedback control dur-
ing image acquisition (figure 53). In the meantime, since it contains binary compiled for a specific oper-
ation system, it does not guarantee that it works for all the cases. For cloud based solutions, Container
orchestration platforms represented with Kubernetes are becoming the de-facto standard for institu-
tional IT and academic cloud providers to provide a managed environment for developers to deploy
their DL tools. AI model training and serving software such as KubeFlow and Nvidia Triton inference
server makes it easier to serve AI models for production and executed remotely via HTTP-based inter-
face. For data confidentiality, while private computing clusters (as shown in figure 53) may address some
of the challenges, federated learning [370] enables the training of powerful models while keeping data
private in their own data lakes.

To facilitate the sharing of Al models, repositories such as the Biolmage Model Zoo [352] (https://
bioimage.io) are developed to facilitate the sharing of pre-trained models, and softwares is joined by a
consortium to define common model formats to enable cross-compatibility. These efforts make it easier
to distribute DL models and can be used in multiple software. Meanwhile, re-using existing models
either as is or a warm start for training can greatly reduce efforts in producing models and further con-
tribute to climate change. These model-sharing initiatives are central to the sustainability and democrat-
ization goals also emphasized in sections 32 and 36. In addition, model compression techniques such as
knowledge distillation are used to reduce the model size and accelerate the model execution in e.g. aug-
mented microscopy to provide real-time feedback.

In the browser, building a rich and powerful user interface is becoming easier and more reliable.
WebAssembly, which enables compiling and running foundational scientific software packages writ-
ten in C/C++, Rust, etc in the browser. It makes it possible to reuse Python libraries such as numpy,
scipy, pandas and scikit-image for loading and processing images directly in the web browser and paves
the way for creating powerful in-browser image analysis tools with easy-to-use user interface. ImJoy is a
framework built for taking advantage of the web ecosystem and providing a remote procedure call layer
to connect plugins running in the browser or in a remote server. On top of ImJoy, Image].JS (https://
ij.imjoy.io) is a tool we developed by comping Image]J in Java to JavaScript which is now being used by
~1000 users per day.

Concluding remarks
With massive natural language models such as OpenAl GPT-3, Codex [371] or ChatGPT, it allows gen-
erating executable source code in various programming languages such as Python and JavaScript from
plain English. This opens a new door for future DL tool developers to create simplified voice or chat-bot
like interfaces for reducing the complexity of user interface design and making the tools more flexible
and human-compatible. However, the sheer size and computation required to run massive models vir-
tually rejects the access for low-budgeted research entities, and it makes tech giants become the ‘natural
monopoly’. The wider AI community will need to join efforts and explore the way forward.

Opverall, the wide adoption of Al solutions in microscopy imaging is leading to the paradigm shift to
a future of augmented microscopy powered by human-in-the-loop Al, and generating profound changes
in the way we understand biology and contribute to precision medicine and healthcare. Ultimately, the
‘democratization’ of DL microscopy will hinge as much on political will as on code quality. A concer-
ted global effort—uniting researchers, national facilities, and funding agencies—can create a federated,
publicly accountable cloud that rivals commercial offerings and guarantees that scientific data remain a
public good.
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Status

The ability to quantitatively analyze the microscopic world was enabled by two relatively recent advances
[94, 372]. First, digital video microscopy has allowed researchers to numerically represent visual data and
record it for later analysis. Second, the explosive growth of computing power has made the expensive,
high-dimensional analysis of video recordings possible.

Recently, we have seen a new wave of developments in the analysis of microscopy video data, thanks
to the power of DL. Indeed, DL has shown remarkable performance on many common tasks in micro-
scopy, such as cell counting, object detection, cell morphometry, trajectory reconstruction, super-
resolution microscopy, diagnostics, object classification, and cross-modality transformations [373, 374].
However, DL has not yet been broadly adopted as an analysis tool in digital microscopy, mainly because
of the significant barrier-to-entry to the development of custom DL solutions for microscopy data.

Here, we present DeepTrack 2, an open-source Python library equipped with all the necessary
tools to produce a full, E2E microscopy-analysis pipeline [94]. A common example of such a pipeline
designed to extract mechanistic and spatio-temporal information from biological data entails the follow-
ing steps:

The image is prepared for analysis.

Objects of interest are detected and measured to extract morphological and intensity information.
Detections in different video frames are connected into trajectories.

Time-resolved information is combined to gain both measures of both local and global properties.

L e

DeepTrack 2 provides DL solutions for each step of this processing pipeline, allowing users with
varying programming experience to use and optimize the available solutions to their data, goals, and
challenges. For step 1., DeepTrack 2 integrates tools for data normalization, noise suppression, augment-
ations, and even more advanced methods such as virtual staining to produce high-contrast and high-
specificity images (figure 54(a)). For step 2., DeepTrack 2 ships with state-of-the-art models ready for
training, such as LodeSTAR [208] for label-free particle detection, U-Net for semantic segmentation, and
YOLO for simultaneous detection and classification (figure 54(b)). These capabilities directly support
workflows described in section 21 (cell dynamics) and section 14 (single-molecule localization), where
tracking and segmentation across time are essential for capturing cellular behavior. For step 3. and 4.,
DeepTrack 2 uses MAGIK [46], a state-of-the-art graph-based network which both connects observations
into trajectories and extracts information about the dynamics of the system from spatio-temporal data
(figure 54(c)).

Recent research has demonstrated the benefit of DeepTrack 2 to analyze microscopy data. For
example, figure 55(a) shows how virtual staining can unveil high-quality visualizations of complex bio-
logical systems from cheap-to-capture brightfield images using conditional generative adversarial neural
networks (cGANs) [98]; figure 55(b) demonstrates that close-to-perfect object detection can be achieved
from just a single unannotated image using LodeSTAR [208]; and figure 55(c) shows how GNNs such
as MAGIK can be used to connect detections into traces even if the cells divide [46]. Furthermore,
DeepTrack 2 has been used for the characterization of microplanktons from Holographic microscopy
images [375] and the monitoring of active droploids, a new class of active matter systems [376].

Importantly, DeepTrack 2 provides a hardware-agnostic API so any analysis pipeline is instantly
reusable, reproducible and future-proof across microscopes and laboratories. These are critical advant-
ages necessary for any microscopy-oriented DL frameworks.

Current and future challenges

The transition to DL-enhanced analysis has not been without challenges. Firstly, the high variability
between imaging modalities and object samples has made publicly available datasets an unreliable source
of training data. The dataset would need to contain the same object of interest, imaged through a near-
identical optical device, and annotated with the desired ground truth. The likelihood of these coincid-
ing is slim-to-none. Comparable difficulties in sourcing compatible training data are encountered in
sections 29 and 31 (TEM and ultrasound/photoacoustic imaging), where instrumentation-specific con-
straints create barriers to generalized model reuse.
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Figure 54. DeepTrack 2 integrates a deep learning ecosystem for end-to-end microscopy data analysis. (a) An input image is
optionally processed by an image-to-image neural network to, for example, highlight regions of interest. (b) Structures of interest
(here, the nuclei of the cell) within each frame of a video are detected and marked (orange markers). (c) The detections in each
frame are linked to form trajectories over time using graph neural networks.

Secondly, for many applications, the expected quality of analysis exceeds human precision. Examples
include sub-pixel localization of objects for super-resolution microscopy and force calibrations, object
detection in noisy images, 3D-microscopy and more. Consequently, even high-quality human annota-
tions are insufficient for training these NNs.

Thirdly, NNs have deservedly gained a reputation as black-box functions, calling into question
their reliability for clinical and industrial use. Consequently, DL has struggled to gain traction bey-
ond a research tool. A similar concern about black-box models hindering clinical adoption is expressed
in section 28 (neuroimaging), where interpretability is a key requirement for clinical deployment.
Fundamentally, this is because NNs only yield answers with little explanation of how that answer was
acquired.

Finally, the rapid development of methods and model architectures has resulted in a scattered field
without a unified interface. Consequently, comparing methods is prohibitively difficult. Moreover,
reusing DL methods for new data often requires re-implementing them from scratch, which is a daunt-
ing task for non-experts.

These four challenges combined have resulted in a slow adoption of new DL methods, despite their
significant advantage in performance. DeepTrack 2 attempts to address these issues through a three-
pronged approach:

1. The use of synthetic data for training NNs to help reduce the reliance on annotated data while
generating perfect ground truths [94, 375].

2. The development of label-free, low-shot, and interpretable models to promote low-cost methods with
less opaque NNs [46, 208].
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Figure 55. DeepTrack 2 analyzes experimental data. (a) Brightfield images of adipocytes are virtually stained to highlight the
lipid droplets, cytoplasm and nuclei. Reproduced from [98]. CC BY 4.0. (b) LodeSTAR learns unsupervised to detect mouse

stem cells (despite the high variability between cells), pancreatic stem cells (despite the densely packed sample), and intracel-
lular polystyrene particles (orange markers), and biological structures (blue markers), despite the low signal-to-noise ratio.
Reproduced from [208]. CC BY 4.0. In all cases, LodeSTAR was trained on the single crop shown in the respective inset and then
applied to the whole image. (c) MAGIK learns to track Hela cells (despite being shape-varying cells), even when cells are dividing.
Reproduced from [46]. CC BY 4.0.

3.

The unification of methods into a consistent interface, by continuously implementing state-of-the-art
methods and encouraging authors to contribute their methods [377].

Advances in science and technology to meet challenges
We identify three avenues of research essential to bring out the full potential of DL for quantitative
microscopy:

1.

Further development of unsupervised or self-supervised methods, particularly for tasks such as
segmentation, trajectory reconstruction, and classification. While the scaffolding exists for these
developments through methods such as self-distillation and contrastive learning, they have yet to be
optimized for the specific challenges of microscopy.

Development of interpretable NNs. The recently popularized attention-based NNs have allowed much
more transparent NNs than previously possible. Attentive NNs can highlight the parts of the data
that lead to a particular conclusion, providing insight into the reason behind an answer. This echoes
interpretability efforts in human-in-the-loop imaging systems, as discussed in section 27, where Al is
expected to augment user trust through transparent decision-making. Currently, this is mainly used
for classification tasks. However, we see no reason why attention-like mechanisms cannot be
incorporated into NNs designed for other tasks in microscopy, significantly increasing the
interpretability and thereby the trustworthiness of the NNs.

Design of advanced simulation methods for various optical devices. Unlike the impossibly complex
macroscopic world, the physics of the microscopic world can feasibly be fully simulated. As such, the
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need for annotated data can be done away with entirely by developing faster and more accurate
simulation techniques.

Concluding remarks

DL is undeniably a powerful tool for quantitative microscopy. Nonetheless, it has remained a research
tool instead of reaching the hands of clinicians. We identify four key challenges that need to be over-
come to reach the full potential of DL for quantitative microscopy. These are: a reliable source of train-
ing data that is general enough to match the specific problem and experimental device of the end user,
a method of training NNs beyond the limit of human accuracy for annotation, the development of less
opaque models, and a unified interface for using these models.

We also consider the field in a good state to tackle these problems. Self-supervised methods are on
the rise, and interpretable layers such as attention layers are taking over the field. Targeted development
of these two approaches for microscopy may lead to the widespread adoption of reliable DL methods,
revealing physical and biological insights encoded in the data in an unsupervised manner.
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Status

As in other scientific fields, DL has demonstrated outstanding performance for many microscopy image
processing tasks [378, 379]. Its potential to reveal visual features in complex images has changed the
game in microscopy image analysis; especially the case when the visual features are unexplainable by
humans, like for image restoration (e.g. CARE [8]), for dense nuclei detection (e.g. StarDist [380]), for
super-resolution localization microscopy (e.g. DECODE [177]), or for correlative microscopy imaging.
Although recent contributions translating DL to microscopy imaging have empowered researchers with
the capacity to build powerful pipelines, the IT barrier is still too high for most end-users. It requires
technical competencies and programming expertise to fully exploit this new technology. Similar concerns
about accessibility and user interface limitations were highlighted in sections 32 and 33, where the need
for GUI-based and cloud-integrated frameworks like DeepImage] and ImJoy is seen as key to equitable
deployment. Life scientists are usually uncomfortable with Python, the preferred language for DL frame-
works (TensorFlow, PyTorch). Instead, they significantly prefer the friendly user interface of Java-based
software like ImageJ [367], Icy [357], or QuPath [358]. Image] is currently the most used software in
cell imaging, as it provides a rich palette of bioimage analysis tools. Moreover, it can interoperate with
many other platforms in a unique ecosystem, including drivers for microscopy or data analysis packages.
Nevertheless, the hardware restrictions of Java have prevented its use as a reference tool for bioimage
analysis with ML. Hence, the users of Image] have been restricted from deploying DL technology in their
image analysis pipelines.

In the last few years, several initiatives have already been taken to integrate DL features in Image].
Several teams (DeepClass4Bio [381], CSBDeep [8], deeplmage] [346], JDLL [382]) are working to
provide access to pre-trained DL models through ImageJ plugins or Image] macros. In the context
of Image], deepImage] is the generic consumer of pre-trained DL models. On the other hand, well-
established Image] plugins have also integrated DL in their pipelines. For instance, TrackMate [383] has
included cell segmentation with CellPose or StarDist to extend the versatility of the tracking pipeline.
Finally, the Biolmage Model Zoo [352] is a community-based initiative that gives effective access to
DL technology. It proposes a standardized format tailored for life scientists to share and deploy trained
DL models across open bioimage analysis software in a reproducible manner (e.g. Image], Ilastik [354],
ImJoy [353], ZeroCostDL4Mic [164], QuPath [358], biaPy [326], DL4MicEverywhere [349]).

Current and future challenges

We identify challenges at two levels for the full integration of DL in microscopy image analysis. Current
DL approaches have the capacity to boost the limits of microscopy image acquisition [8, 177]. Still,
their performance relies on the quality and the quantity of data, both acquired raw images and annot-
ated or reference images (figure 56(c)). Usually, scientific images are acquired to answer specific biolo-
gical questions. Unfortunately, researchers look for a suitable method to analyze once all the images are
acquired. We envision that integrating the data analysis at the initial steps of the project could signific-
antly improve the imaging workflow’s robustness (figure 56(a)). This is particularly demanding for data-
centric approaches where the images are the heart of the image-analysis task. The acquisition protocol
should be appropriately designed for this purpose, including a large variability of examples to reduce the
time and effort needed to obtain scientific results.

The deployment of DL methods routinely is not straightforward. Important technical niches in the
Image] ecosystem (figure 56(b)) are (1) the lack of user-guided training, (2) the easy use of DL mod-
els on large images, for which approaches such as BigDataViewer [384] could potentially be a power-
ful solution, (3) the connection to high-performance computing resources (GPU) in line with Fiji HPC
Workflow Manager and HPC-Parallel Tools, and (4) the interactive insertion of DL models in complex
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Figure 56. Image analysis workflows and missing niches. (a) General workflow to get a functional DL model and the corres-
ponding steps of development. (b) Identified niches missing and areas to push for DL-empowered bioimage analysis in Image]:
Computer resources to exploit steps II to IV; big data management to enable additional functionalities in step IV; user-friendly
deep learning frameworks to enable steps II-IV. (c) Strategies to obtain the data needed for DL model training: realistic simu-
lations by using a physical mo content-aware approaches to design the microscopy acquisition; tedious expert annotations or
crowdsourcing annotation; publicly available datasets through image-analysis challenges and open publications.

bioimage analysis pipelines. Likewise, more optimal integration of DL into bioimage analysis pipelines
relies mainly on the education of the practitioners in ML and image analysis. In practice, it is essen-

tial to train the researchers on the appropriate use cases and warn them about the limitations and risks
of the DL technology. The pandemic significantly increased participation in recorded online courses
(NEUBIAS Academy, EMBO, and EMBL) and the edition of user guides of good practices. The com-
munity needs to keep the momentum for transferring this knowledge. Therefore, this is a crucial chal-
lenge to tailor the current DL knowledge and technology to users in terms of data acquisition and usable
computational tools for analysis.

As part of Al technology, DL is a very active field. Preparedness for the integration of upcoming
new methods in Image] is still a bottleneck. Some still missing techniques are (1) human-in-the-loop,
(2) auto ML, (3) self-supervised or weakly supervised training, and (4) tracking of biological particles.
Ultimately, the next generation of DL approaches seeks smart workflows capable of embedding the prior
knowledge (e.g. with prompt engineering) to a guided analysis through largely generalizable founda-
tion models [321], as well as sparse information to run weakly supervised and few-shot training. All
these developments require a deep understanding of both DL and bioimaging and, therefore, the close
collaboration between developers and end-users. This mirrors the collaborative development challenges
described in DeepTrack 2 (section 34), which emphasizes standardization, interpretability, and the integ-
ration of community-driven contributions. Thus, it is a great challenge to push DL to its full potential
for smart imaging in biomedical research.

Advances in science and technology to meet challenges
DL is data-hungry, and its reusability can only be accomplished through model training or fine-tuning.
Aware of this, the focus on acquiring FAIR data is notoriously growing in academia. The number of
publicly available databases tailored for DL model training is increasing more quickly in CV than in
microscopy (Data Science Bowl [379], MONALI (https://monai.io)). Data generators and simulators are
another source of microscopy images for training; they are specifically suitable when the physical laws of
the image formation model are well identified.

The performance of the NNs depends on the amount of data available or on the accessibility to val-
idated trained models. For example, the resolution and SNR needed for a specific measurement will vary
according to the structures to analyze. Some works provide guidelines about these features so researchers
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can optimize their image acquisition [8, 177, 380]. Furthermore, recent approaches focus on adjust-

ing the content in the image—content aware approaches [8]. The aim is to push the limits of data
acquisition and virtually recover biologically relevant information from simpler or more sample-friendly
acquisitions [8, 177, 385]. Ultimately, the ability of DL algorithms to encode a large amount of informa-
tion from the images in latent spaces enables the discovery of different biological behaviors.

Existing user-friendly software for DL typically targets a specific step of a general DL-based image
analysis workflow. For example, ZeroCostDL4Mic has democratized the training procedure and the
assessment of several NN architectures. It allows most of the steps in figure 56(a) using the free cloud
computing Google Collaboratory. ImJoy [349] proposes a framework to interact with virtual content
beyond DL directly in the browser without the need for any technical installation steps. This is a big
step towards connecting with cloud computing. Ilastik is the reference tool for image segmentation using
ML, and now, it can also run DL-trained models. For Image], we found third-party plugins, mainly for
prediction, DeepClass4Bio [381], CSBDeep [8], StarDist [380] and deepImage] [346]. The harmoniz-
ation of pre-trained models across these tools strongly connects to efforts in the Biolmage Model Zoo
(sections 26 and 30), where reproducibility and accessibility are central design goals. The latter has
enabled the generic use of trained models of the Bioimage Model Zoo and their combination to deploy
advanced bioimage analysis pipelines [386].

As the need for more powerful computational hardware increases with new Al-based approaches,
cloud computing or network-embedded infrastructures are becoming essential to ensure translational
technology in microscopy imaging [349]. This direction is aligned with cloud-enabled deployment
strategies described in section 33, where browser-based and containerized models are the foundation
of modern DL scalability. Shared infrastructures may be the key to reducing the carbon footprint of
energy-intensive training. The new European infrastructure Al4Life (www.eu-openscreen.eu/projects/
aidlife.html) aims to provide sustainable, intuitive, and highest-quality research services and infrastruc-
tures that will enable all life scientists to exploit ML to improve the utility and interpretability of image
data.

Concluding remarks

Integrating DL in Image]J as the initial steps provided by DeepImage] is crucial for the computational
microscopy imaging area. Friendly access (up to zero code) and accessibility to DL tools are required for
democratized access to powerful DL solutions. By open access to pre-trained models and related data,
the users can test them and understand their potential and the limitations of this new technology. Such
testing and reusability workflows are also exemplified in section 30 (high-content screening), where pre-
trained architectures are adapted with minimal training for broad biological utility.

Community-driven initiatives, such as the Bioimage Model Zoo, are significantly expanding the reach
of DL in open-source bioimage analysis software. Among these efforts, deepImage] plays a pivotal role,
bridging the gap between pre-trained DL models and Image] users and facilitating a more seamless
integration of DL capabilities into the ImageJ ecosystem.

The Biolmage Model Zoo [352] initiative is actively addressing key challenges outlined in the pre-
vious section. In particular, standardizing model formats enhances cross-compatibility across different
platforms, contributing to the broader dissemination of robust DL models. The growing availability of
advanced DL tools supports the adoption of holistic approaches in life-sciences research. As technological
advances continue to drive innovation in this field, we are approaching the next major breakthrough-one
that could be as transformative for microscopy imaging as AlphaFold has been for structural biology.
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37. Hackathons to spur innovation
Ebba Josefson Lindqvist and Johanna Bergman

Al Sweden, Gothenburg, Sweden

Status

Research and innovation do not happen in isolation. Existing and acting within an ecosystem, as illus-
trated in figure 57, is becoming increasingly important for organizations as Al is becoming a key techno-
logy in almost all industries [387]. Few organizations have all the competence, data, and infrastructure
needed to fully apply ML at scale. To address real world research and innovation challenges, both extens-
ive domain knowledge and ML expertise is needed. Hackathons are one way of addressing this issue and
facilitate collaborations.

The ML community has a long tradition of hackathons and competitions [388]. There are several
platforms, the most famous being Kaggle and Codalab [389, 390]. Hackathons are traditionally focused
on either a specific problem within ML or a problem formulation around a dataset. Al Sweden, the
Swedish national center for applied Al has hosted several hackathons focusing on industry data and
problem formulations from industry partners [391]. The key success factors have been, top manage-
ment commitment from industry, a clear problem formulation, close collaboration with domain experts,
accessible data, well defined evaluation metrics, and access to the computational resources needed.

One example within microscopy was the Adipocyte Cell Imaging Challenge, hosted together with
AstraZeneca. The problem formulation and data was provided by domain experts at AstraZeneca. Al
Sweden invited researchers and Al experts, provided a collaborative platform, access to data and com-
putational infrastructure. The task was to utilize ML to predict the content of fluorescence images from
the corresponding bright field images [392] (see figure 58 for example images). This task closely paral-
lels the goals of virtual staining discussed in section 26, where DL models are trained to predict high-
information content from label-free microscopy data. Results from this specific hackathon resulted in
new industry-academia collaborations, publications [393], and most importantly solutions that could be
directly applied by AstraZeneca benefitting their research.

Current and future challenges
There are several challenges that need to be addressed in order to make open hackathons more beneficial
for the application of ML to microscopy. Namely:

Data access

Access to data is key for developing ML applications for microscopy. In many cases the data needed is
collected within industry. Such data is rarely accessible for academic researchers, startups or other com-
panies. At the same time, these organizations typically hold a lot of the ML competence needed but still
may not be able to use all the resources needed to make the full potential use of the data collected.

The main reasons for industry data to not be shared are e.g. the traditional way of thinking of the
data as proprietary and too valuable to share openly as, most of the time, considerable investments
have been made in collecting the data. Sharing data also opens up for questions concerning legal issues,
uncertainty regarding business models for data, and how to know the value of your data. Legal con-
siderations may include questions regarding Intellectual Property, General Data Protection Regulation,
and what is the appropriate copyright license to be used. In general the more openly a dataset may be
used the more it opens up for new advances in research. To open up for access to a dataset may also be
crucial to enable publications in ML and microscopy to enable peer-reviews. This tension between pro-
prietary datasets and the need for open access to enable reproducibility and reuse has been discussed
in section 32 on equitable access to DL solutions. This requires an open and new mindset for many
industry actors.

Domain knowledge and cross-disciplinary research

To understand the data, problem formulation, and interpret the results, extensive domain knowledge is
needed. During a hackathon, access to domain knowledge and possibility to work in cross-functional
teams is of critical importance. From the Adipocyte Cell Imaging Challenge, we could see that teams
with cross-disciplinary expertise performed better than teams coming solely from the ML field. This
despite the fact that all teams had the opportunity to have daily contact with the domain experts from
AstraZeneca.
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Figure 57. Innovation ecosystem. Illustration of the components needed for successfully applying machine learning to research
fields such as microscopy.

Figure 58. Adipocyte cell imaging challenge. Example images from the Adipocyte Cell Imaging Challenge hosted by AI Sweden
and AstraZeneca in 2021.

Traditionally pharmaceutical companies have a relatively long-time perspective for research and focus
a lot on their internal resources and established academic research collaborations.

The trends in applied ML research are diverging in two directions. One direction towards being as
open as possible with strong community efforts, collaborations, and grass-root research initiatives where
data, code, and models are typically shared openly and where open source is the default option. On the
other hand many advancements in the field are seen within big companies with a lot of resources, in this
case models and data are typically not shared. Common for both directions is the speed and amount of
resources needed (both in terms of researchers, data, and computational resources).

Naturally, research that also has a large component of data collection or even physical experiments
(for example microscopy) have a longer time frame. As ML is becoming an important part of other
research fields with the potential to lead to disruptive advances, the different traditions, trends, and time
perspectives need to be addressed. This cultural gap between fast-paced ML development and domain-
specific biomedical research was also highlighted in sections 28 and 34, where clinical interpretability
and reproducible pipelines remain ongoing challenges.

124



10P Publishing

J. Phys. Photonics 8 (2026) 012501 G Volpe et al

Advances in science and technology to meet challenges

We see two main topics for advancements to further benefit from hackathons and competitions in
the intersection of ML and microscopy research, especially around facilitating collaboration between
industry, startups, and academia, and the broader ML community.

Data sharing & data business models

Industry data sharing is challenging for several reasons. Our experience is that the organization of the
hackathon itself forces the participating parties to come up with pragmatic solutions for data access,
from both a technical and a legal perspective, a process that is often lengthy in other projects. Taking a
different and more open approach in such a process potentially accelerates the development of new best
practices for data sharing. Similar community-driven strategies have been key to the success of platforms
like the Biolmage Model Zoo and DeepImage] (sections 30 and 35), which also promote reproducibility
through standardized models and shared benchmarks.

In addition to data access we see a strong need for developing business models and legal frameworks
to share data and code to create lasting effects of hackathons and competitions. It is equally important
to change the mindset of the data being proprietary and create an understanding of the value of sharing
data more openly.

Community building and cross-disciplinary research

To succeed with hackathons, building a strong community and platform for collaboration is key.
Building a strong community of researchers from different disciplines and organizations will benefit the
research field and development of ML applications for microscopy. Organizing hackathons could be one
way of building such a community.

Concluding remarks

To conclude, we see that hackathons have potential to further integrate the microscopy research field
with ML as one way of exploring new collaborations, methods, and ways of working. In addition, we
see an opportunity to build a strong research community around microscopy and ML. To enable such
a community, collaborative platforms, data access, legal frameworks and business models around data
are needed. Furthermore, cross-disciplinary collaboration and strong domain expertise is key to success
when ML is applied to research questions in other fields.

Shorter challenge driven competitions or hackathons should be seen as a way of exploring and ini-
tiating new (sometimes unexpected) research collaborations that have the potential to lead to contin-
ued long term collaborations. This could also be one way of addressing and challenging the different
time perspectives and research traditions of industry and academia, accelerate data sharing, and invite a
broader community to take part in applied research.

Collaborative research will be increasingly important as ML becomes an important tool for micro-
scopy research. Based on the experience from the Adipocyte Cell Imaging Challenge, hackathons could
be one enabler for accelerating access to industry data developing the collaborations needed within ML
research for microscopy. They also serve as testbeds for prototype deployment strategies described in
section 33, where cloud-based solutions and containerized workflows are central to real-world scalability.
Neutral organizations, such as Al Sweden, or dedicated challenge platforms (e.g. Kaggle, Codalab), can
play a facilitating role and reach a broader community.
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