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with unknown genomes by LC-MS/MS and automated
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LC-MS/MS analysis on a linear ion trap LTQ mass spectrometer, combined with data processing,
stringent, and sequence-similarity database searching tools, was employed in a layered manner
to identify proteins in organisms with unsequenced genomes. Highly specific stringent searches
(MASCOT) were applied as a first layer screen to identify either known (i.e. present in a database)
proteins, or unknown proteins sharing identical peptides with related database sequences. Once
the confidently matched spectra were removed, the remainder was filtered against a non-
annotated library of background spectra that cleaned up the dataset from spectra of common
protein and chemical contaminants. The rectified spectral dataset was further subjected to rapid
batch de novo interpretation by PepNovo software, followed by the MS BLASTsequence-similarity
search that used multiple redundant and partially accurate candidate peptide sequences. Impor-
tantly, a single dataset was acquired at the uncompromised sensitivity with no need of manual
selection of MS/MS spectra for subsequent de novo interpretation. This approach enabled a
completely automated identification of novel proteins that were, otherwise, missed by conven-
tional database searches.
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1 Introduction

In bottom-up proteomics, proteins are digested in-solution
or in-gel with proteolytic enzymes and recovered peptides
fragmented in nano-ESI MS/MS, -LC-MS/MS, or -LC-
MALDI experiments (reviewed in ref. [1–5]). Uninterpreted

tandem mass spectra are subsequently searched against
protein, or translated DNA, databases using dedicated soft-
ware (reviewed in ref. [6–8]). Regardless of the employed al-
gorithm, the software identifies peptide sequences (and,
hence, corresponding database entries [9]) by comparing
peaks in MS/MS spectra with m/z (or m/z and intensities) of
peptide fragments, which have been precomputed from
database sequences, assuming some enzyme cleavage speci-
ficity and peptide fragmentation models [10–13]. While this
is an efficient approach towards the characterization of
known proteins (i.e., proteins, whose sequences are accu-
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rately represented in a database resource), the identification
of proteins unrepresented in a database (further termed as
unknown proteins) remains a challenging problem
(reviewed in ref. [14, 15]). Conventional database searches
could, in principle, recognize peptides that are identical both
in the unknown protein and known homologous protein(s)
from closely related species [16]. This, however, is not effi-
cient for identifying proteins that either originate from spe-
cies phylogenetically distant from corresponding reference
organisms, or belong to poorly conserved protein families, or
were collected from species with an undefined genetic back-
ground and manifest strong sequence polymorphism (see
ref. [17–21] for representative case studies).

Sequence-similarity search is a powerful tool for the
identification of proteins from organisms with unsequenced
genomes [22–27]. Full peptide sequences, or short sequence
stretches (also termed sequence tags) [28], could be deduced
directly from MS/MS spectra with no recourse to database
resources (reviewed in ref. [29]). Multiple peptide sequences
(or sequence tags) are then searched against a database in an
error-tolerant fashion and, in this way, even proteins having
only marginal sequence similarity to reference database
entries could be identified [23, 26, 27].

Dedicated sequence-similarity search engines, such as
CIDentify [30], an MS tailored version of gapped BLAST [25],
an MS driven BLAST (MS BLAST) [22], FASTS [24], MS-
Homology [31], OpenSea [32], among others, have been suc-
cessfully applied in various proteomics studies. They, how-
ever, most efficiently handle queries composed of a relatively
small number (typically, 5–50) of peptide sequences typically
deduced from the spectra of “hand-picked” precursors,
which is nowhere close to the total number of informative
MS/MS spectra produced by LC-MS/MS under data-depend-
ent acquisition control [33, 34]. Thus, the entire approach
usually encompasses a selection of relatively abundant pep-
tides that often originate from most conserved and well-
characterized protein families and, therefore, are readily
identifiable by conventional means.

Furthermore, usually only a small fraction of acquired
spectra matches target proteins, while the rest of the spectra
is attributed to chemical [35] or peptide [36, 37] backgrounds.
Computational methods have been developed to recognize
background spectra by comparison with a reference library
or with spectra from a blank LC-MS/MS run [38, 39]. While
due to their high specificity, conventional database searches
largely tolerate peptide background, it strongly impairs
sequence-similarity identifications [40]. Hence, rapid data-
dependent acquisition of MS/MS spectra has dramatically
increased the success rate of conventional protein identifica-
tion, since it has become possible to sequence many more
peptides in a single LC-MS/MS run. However, because of
exactly the same reason, it undermined the performance of
sequence-similarity searches.

Here, we present an approach for the seamless integra-
tion of automated de novo sequencing and LC-MS/MS into a
protein characterization pipeline. A single dataset of tandem

mass spectra was acquired at the uncompromised sensitivity,
and then a combination of database searching and spectra
processing software tools was employed for its in-depth
analysis. In a few case studies based on LC-MS/MS analyses,
each producing ca. 6000 of low resolution linear ion trap (IT)
tandem mass spectra, we demonstrated how conventional
(stringent) searches by MASCOT [41], de novo interpretation
of spectra by PepNovo [42], and sequence-similarity searches
by MS BLAST [16, 22], bundled by simple data handling
scripts, enabled the comprehensive interpretation of datasets
acquired from digests of unknown proteins.

2 Materials and methods

2.1 Chemicals

Cleland’s reagent (DTT) was obtained from Merck (Darm-
stadt, Germany) and other chemicals from Sigma-Aldrich
(Munich, Germany). Modified porcine trypsin (Trypsin Gold
grade) was purchased from Promega (Mannheim, Ger-
many). HPLC solvents (Lichrosolv grade), formic acid and
TFA were purchased from Merck.

2.2 Protein preparations

Protein samples were obtained in on-going characterization
of the proteome of Dunaliella salina, a halotolerant unicellular
green alga [20] (Katz, A., Waridel, P., Shevchenko, A., Pick, U.,
Mol. Cell. Proteomics 2007, in press). Protein spots, visualized
by CBB R250 staining, were excised from Blue Native gels [43]
and in-gel digested with trypsin as described previously [44].

2.3 Analysis by LC-MS/MS

Dried peptide extracts were redissolved in 15–25 mL of 0.05%
v/v TFA, depending on the staining abundance of the protein
spots, and 4 mL was loaded using a FAMOS autosampler on a
nano-LC-MS/MS Ultimate system (Dionex, Amstersdam,
The Netherlands) interfaced on-line to a linear IT LTQ mass
spectrometer (Thermo Fisher Scientific, San Jose, CA). The
mobile phase was composed of 95:5 H2O:ACN v/v with 0.1%
formic acid (solvent A) and 20:80 H2O:ACN v/v with 0.1%
formic acid (solvent B). Peptides were first loaded onto a
trapping microcolumn C18 PepMAP100 (1 mm6300 mm
id, 5 mm, LC Packings) in 0.05% TFA at a flow rate of 20 mL/
min. After 4 min, they were back-flush eluted and separated
on a nanocolumn C18 PepMAP100 (15 cm675 mm id,
3 mm, LC Packings) at a flow rate of 200 nL/min in the
mobile phase gradient: from 5 to 20% of solvent B in 20 min,
20–50% B in 16 min, 50–100% B in 5 min, 100% B during
10 min, and back to 5% B in 5 min; % B refers to the solvent
B content in an A 1 B mixture.

Peptides were infused into the mass spectrometer via a
dynamic nanospray probe (Thermo Fisher Scientific) and
analyzed in positive mode. Uncoated needles Silicatip,
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20 mm id, 10 mm tip id (New Objective, Woburn, MA) were
used with a spray voltage of 1.8 kV, and the capillary transfer
temperature was set to 2007C. In a typical data dependent
acquisition cycle controlled by Xcalibur 1.4 software (Thermo
Fisher Scientific), the four most abundant precursor ions
detected in the full MS survey scan (m/z range of 350–1500)
were isolated within a 4.0 amu window and fragmented. MS/
MS fragmentation was triggered by a minimum signal
threshold of 500 counts and carried out at the normalized
collision energy of 35%. Spectra were acquired under auto-
matic gain control (AGC) in one microscan for survey spectra
and in three microscans for MS/MS spectra with a maximal
ion injection time of 100 ms per each microscan. M/z of the
fragmented precursors were then dynamically excluded for
another 60 s. No precompiled exclusion lists were applied.

From raw files, MS/MS spectra were exported as dta (text
format) files using BioWorks 3.1 software (Thermo Fisher
Scientific) under the following settings: peptide mass range,
500–3500; minimal total ion intensity threshold, 1000;
minimal number of fragment ions, 15; precursor mass tol-
erance, 1.4 amu; group scan, 1; minimum group count, 1.

We note that BioWorks 3.1 software named each dta file
according to the original name of the raw file, the scan
number and the assumed charge of the precursor ion. If the
low mass resolution in the normal scan mode did not allow
determination of the precursor charge state, then redundant
dta files were created that only differed by the assumed pre-
cursor charge.

2.4 Database searches

Dta files were merged into a single MASCOT generic format
(mgf) file and searched against a MSDB database (updated
May 15, 2005, containing 2 011 572 entries), or a D. salina
EST database (downloaded from NCBI, updated March 16,
2006, containing 3998 entries) by MASCOT v. 2.1 software
(Matrix Science, London, UK) installed on a local 2 CPU
server. Tolerance for precursor and fragment masses was 2.0
and 0.5 Da, respectively; instrument profile: ESI-Trap; fixed
modification: carbamidomethyl (cysteine); variable mod-
ification: oxidation (methionine).

2.5 Filtering MS/MS spectra

Prior to batch de novo sequencing of individual spectra, mgf
files were filtered to remove spectra originating from com-
mon peptide and nonpeptide backgrounds. Briefly, the
applied filtering routine comprised three main components:
a similarity measure between MS/MS spectra, a search algo-
rithm and a statistical framework to identify significant
matches between the compared spectra. The similarity
measure was a normalized Pearson correlation [45] of the
intensities corresponding to fragment ions with matching
m/z. Given the precompiled background library (see below)
and the assumed similarity measure, the statistical frame-
work was based on a well studied “extreme value problem”

[45]. Accordingly, a measure of the statistical confidence of a
match between a sample spectrum and the corresponding
spectrum from the background library, was a double expo-
nential function fit to data obtained in a simulation experi-
ment by way of considering the distribution of similarity
scores for ca 2000 nonbackground dta files obtained from
high quality spectra of Saccharomyces cerevisiae peptides. The
filtering software was implemented in the Python program-
ming language (Ubuntu 5.10 Linux Operating System,
Python 2.3) and is available from the authors upon request.

During the filtering process, all spectra from singly
charged precursors and “void” spectra (typically containing
less than ten fragment ions, whose relative intensities were
above 3% of the base peak intensity) were removed. The
remaining spectra were screened against a background
library containing, in total, 13 000 MS/MS spectra that were
pooled together from several LC-MS/MS analyses of in-gel
digests of blank gel pieces. Additionally, more than 800
spectra of common trypsin and keratin peptides, identified
by MASCOT or MS BLAST searches, were handpicked from
various LC-MS/MS runs and added to the library. To limit the
library redundancy, each new spectrum was first screened
against the current library and added only if no matching
spectrum was recognized. For each sample spectrum, the
filtering software at first identified, in the background library,
the spectra that were acquired from precursors with the
same (within 2.5 amu tolerance) mass. Then, each pair of
spectra was independently examined by comparing both m/z
(within 0.5 amu tolerance) and intensities of their fragment
ions. The quality of each match was scored and the scores
compared to the threshold expected for randomly matching
spectra. Spectra having statistically significant similarities to
corresponding library spectra were removed, along with their
redundant variants that assumed alternative charge states of
the same precursor. Note that the described procedure does
not rely on any assumed identity of spectra, preliminary
knowledge of their origin, or database sequence resources.

2.6 De novo sequencing and sequence-similarity

searches

A basic version of de novo sequencing software PepNovo [42]
was modified to produce several, maximally complete, albeit
redundant, degenerate, and partially inaccurate sequence
candidates per each interpreted spectrum. An MS BLAST
compatible version of PepNovo is available on the UCSD
Computational MS Research Group server at http://peptide.
ucsd.edu. PepNovo estimated the de novo interpretation con-
fidence by assigning a sequence quality score, which reflec-
ted the expected number of correct amino acids in the top
sequence candidate. All sequences, whose scores exceeded a
user-defined threshold (typically, the value of 5.0) [46], were
merged into a single query string and submitted to an MS
BLAST (MS driven BLAST) search against nr database
(nrdb95) at the web-accessible server (http://genetics.
bwh.harvard.edu/msblast/).
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2.7 Confidence of database searching hits

In MASCOT searches against an MSDB database, protein
hits were considered confident if database entries were
matched with at least two peptides and a total peptide ions
score of 100, while all individual peptides with scores below
20 were disregarded. Because of the small size of the D. sal-
ina EST database, we accepted as confident hits identified by
at least one peptide whose ions score was above 40. The
threshold ions scores suggested by MASCOT for confident
single peptide identifications in MSDB and EST databases,
were 53 and 31 (p,0.05), respectively. Nonetheless, all sin-
gle-peptide hits (regardless of their peptide ion scores, even if
they exceeded the threshold of 53), and hits matched by a few
lower scoring peptides were considered borderline and in-
dependently validated as described in ref. [46]. In sequence-
similarity searches, the statistical significance of hits was
evaluated according to MS BLAST scoring scheme [16].
However, only HSPs with a score of 62 or above were con-
sidered. Borderline MASCOT hits independently validated
by PepNovo/MS BLAST [46] were also accepted.

3 Results and discussion

3.1 The workflow

A proteomics workflow, integrating spectra processing with
conventional and sequence-similarity searches in a layered
manner [15], is outlined in Fig. 1. Stringent searches with the
highest discriminating power were executed first and, apart
from producing hits, also helped in rectifying the target
spectral dataset for less specific sequence-similarity searches,
as explained below.

Tandem mass spectra, acquired in a LC-MS/MS run on a
linear IT LTQ instrument, were exported as individual files
in dta format. A partially redundant combined pool of dta’s
was converted into a single mgf file and submitted to the
MASCOT search. If confident hits were produced, a special
script removed all dta files pertinent to matched MS/MS
spectra, including redundant dta file(s) with alternative
charges of the same precursors. The remaining dta’s repre-
senting spectra that, for some reason, did not match database
sequences, were filtered against a library of background
spectra, which was precompiled from ca. 13 000 non-
annotated spectra acquired in several independent LC-MS/
MS analyses of blank in-gel digests. Filtering was set to
eliminate background spectra in a completely unbiased
fashion, regardless of whether they match any database
sequences, and to retain all spectra, other than recognized
background. Typically, more than 75% of the total number of
dta’s were removed and, at this stage, no quality assessment
of spectra was performed. Filtering stringency was controlled
by a user-selected p-value threshold, defined here as a prob-
ability of finding no similarity to any spectrum in the back-
ground library. Since matching of nonannotated sample and

Figure 1. Layered protein identification workflow. After MASCOT
search against a full MSDB database, confident hits were identi-
fied with a protein score �100 and number of peptides �2. Cross-
species hits matching one or more peptides with a minimum
score of 40 were considered borderline and were subsequently
validated by de novo sequencing and MS BLAST searches. All
spectra, excluding those acquired from singly charged pre-
cursors or already assigned to confident MASCOT hits, were fil-
tered against a library of nonannotated background spectra,
sequenced de novo and obtained candidate sequences sub-
mitted to MS BLAST searches.

background spectra is a probabilistic process, a certain frac-
tion of genuine spectra could be falsely recognized as back-
ground and, subsequently, removed. Therefore, in the pro-
tein identification workflow (Fig. 1) filtering was employed
downstream of stringent MASCOT searches, since, because
of their higher specificity, the results were less affected by
queried background spectra.

Because of a relatively small size, the pool of remaining
spectra could be either submitted to MASCOT error-tolerant
search (for example, assuming no enzyme cleavage specific-
ity restrictions), or sequenced de novo in a batch mode by
PepNovo software – this option was mainly used in this
work. PepNovo interprets a single dta file in ca. 0.15 s, and
assigns a quality score for the top sequence out of seven
produced sequence candidates. Computational simulation
experiments suggested the quality score of 5.0 as a con-
servative cut-off (Fig. 3 and ref. [46]). We note, however, that
the threshold should be used with caution since the
sequence quality score has not been normalized to the pep-
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tide length and, aiming at a priori high scores would dis-
criminate short, yet accurately sequenced peptides. Insuffi-
cient quality of MS/MS spectra is not the only reason for low
scoring interpretations. PepNovo was optimized for se-
quencing doubly charged precursor ions and is less efficient
in sequencing triply charged precursors. Therefore, PepNovo
sequence quality scores could not substitute spectra quality
estimates developed for conventional stringent searches [47,
48] since they are biased towards interpretable (rather than
abundant) patterns of fragment ions. All sequence candi-
dates selected from all interpreted MS/MS spectra were
merged into a single query string and submitted for MS
BLAST sequence-similarity search. Typically, these searches
either revealed new proteins, or detected new peptides from
proteins already identified by MASCOT.

In parallel, PepNovo and MS BLAST were also used for
validating borderline hits produced by MASCOT searches as
described previously [46, 49]. Briefly, if de novo sequencing by
the MS BLASTsearch independently hit the same peptide, as
was previously found by the MASCOT search, it was con-
sidered as positively identified.

3.2 Seamless integration of de novo sequencing with

MS BLAST searches

An efficient and fast de novo sequencing program tailored for
interpreting low-resolution MS/MS spectra is a key element of
the proposed workflow. PepNovo software was particularly
successful in interpreting ITspectra and scored favorably when
compared to other de novo sequencing programs [42, 50].
Importantly, PepNovo interprets a single MS/MS spectrum in
ca. 0.15 s and, in batch mode, operates with spectra in mgf for-
mat, which simplifies the processing of LC-MS/MS data. In
this work, we used a new version of PepNovo, which was tai-
lored for interpreting MS/MS spectra obtained on linear IT
instruments and whose output format conforms to MS BLAST
conventions [16, 40] (Fig. 2).

Next, we asked if the parallel consideration of multiple,
partially redundant candidate sequences produced by Pep
Novo interpretation of the same MS/MS spectrum increased
the success rate of MS BLAST identifications, compared to
nonerror-tolerant searches with only the top candidate
sequence – a frequently used method of cross-species protein
identification. To this end, a simulation dataset was compiled
from 71 high quality MS/MS spectra. Each of them unequi-
vocally hit a single peptide sequence of, on average, 14 amino
acid residues upon a MASCOT database search with the ions
score above the value of 63. In each spectrum, peaks with
relative intensities below 1% of the base peak intensity were
declared noise and their absolute intensity left unchanged,
whereas the absolute intensity of other fragment peaks was
gradually reduced [46]. All unmodified and computationally
manipulated spectra were sequenced de novo. Up to seven
candidate sequences, along with the corresponding PepNovo
quality score, were registered for each interpreted spectrum.
The entire range of quality scores was divided into five bins

(Fig. 3) and spectra, interpreted with the corresponding
scores, were picked for each score bin. The full dataset used
for the simulation comprised 71 unmodified spectra and
their 131 computationally altered “clones”. Note that we used
“spoiled clones” of initially high quality spectra, rather than
some native low scoring spectra since, for each sequenced
spectrum, we should precisely know the “source” peptide
sequence to judge if its de novo interpretation was correct.
Within each score bin, we determined fractions of inter-
preted spectra, in which (i) the top candidate sequence was
complete and correct; (ii) one of the listed candidate sequen-
ces was complete and correct; and (iii) candidate sequence(s)
contained a noninterrupted stretch of at least eight accurate
amino acid residues (here termed as a tag). Finally, we com-
bined all candidate sequences produced from a given spec-
trum into MS BLAST query string, searched it against a
comprehensive database and checked if the correct “source”
peptide sequence was confidently hit. The distribution of
fractions of de novo interpreted spectra were plotted sepa-
rately for each quality score bin (Fig. 3).

Figure 3 suggests that considering more candidate
sequences and their error-tolerant matching to database
entries improved the success rate of protein identification,
although, regardless of the used method of sequence match-
ing, it was below 20% for low scoring candidate sequences.
Interestingly, even highly scored top sequences were seldom
fully accurate. Since quality scores were not normalized to
the full peptide length (see the discussion above), higher
scores were expected for larger peptides, although their
spectra are usually complex and (in case of IT) are affected by
low m/z cut-off. Therefore, their full interpretation is seldom
completely accurate and it is not surprising that a smaller
fraction of these spectra also produced fully accurate tags. At
the same time, a few miscalled amino acid residues within a
largely accurate long peptide sequence did not affect the
identification performance of MS BLAST.

We note that sequences with high quality scores might also
be obtained from low abundant peptide precursors or from
spectra with abundant chemical noise. The TIC and TIC frac-
tion reported by PepNovo for each interpreted spectrum could
be used, with some caution, either for preselecting the most
representative precursors or for postsearch validation of
assignments based on sequence alignments of the borderline
confidence. Note that reported TIC does not directly reflect the
precursor abundance, since the spectrum might not be taken at
the apex of the chromatographic peak. There is, nevertheless,
some correlation between spectrum TIC and precursor inten-
sity, since, because of statistical sampling, a more abundant
precursors would more likely produce spectra with higher TIC.

3.3 Unbiased filtering of background MS/MS spectra

is essential for sequence-similarity identifications

Removing background spectra prior to batch de novo se-
quencing is important for the successful identification of
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Figure 2. An example of the output of batch de novo interpretation of MS/MS spectra by PepNovo. For each interpreted spectrum, Pep-
Novo reported: intact mass of the fragmented peptide (column 1); name of the dta file, including the scan number and assumed charge
(column 2); TIC of the MS/MS spectrum (sum of fragment absolute intensities) (column 3); TIC fraction covered by expected fragments of
the top candidate sequence (column 4); sequence quality score, representing the expected number of correct amino acids in the top (first)
candidate sequence (column 5); candidate sequences (typically, limited to seven) (column 6). Note that F and M (oxidized) residues, as well
as Q and K, are isobaric and are not distinguishable in low-resolution MS/MS spectra. In these instances, optional sequences were included
into the query. All candidate sequences obtained by interpreting all submitted MS/MS spectra (column 6) with the quality score (column 5)
that typically exceeded the value of 5.0 were merged into a single MS BLAST query string and searched against the nr database. MS BLAST
web interface disregards all numbers and nonconventional symbols and, therefore, the entire output (or only the selected sequences) can
be directly pasted into the query window.

proteins by sequence-similarity searches at the high sensi-
tivity. The characterization of a Coomassie stained spot with
an apparent molecular weight of 55 kDa, which contained
membrane proteins from D. salina, is presented here as a
representative example. The spot was excised from a 2-D
Blue Native gel, in-gel digested with trypsin and the recov-
ered peptides sequenced by LC-MS/MS. First, all MS/MS
spectra were interpreted de novo and the entire pool of can-
didate sequences was submitted to an MS BLAST search
(Fig. 4A). The search produced a multitude of formally con-
fident alignments with typical background proteins, mainly
keratins, trypsins, and serine proteases from a variety of
species. In the output, the three top nonbackground proteins
were only listed at 137th, 190th, and 233rd positions.

Enlarging the query with sequences, apparently unre-
lated to target proteins, does not directly affect the scores of
reported HSPs. This, however, increases the significance
threshold scores [16] and, hence, indirectly impairs the con-
fidence of hits with only a few aligned HSPs. Note, that ker-
atin sequences are rich in low complexity regions that are
also common in many proteins in a database. Therefore,
sequence-similarity searches with keratin sequences pro-
duce a large number of formally confident hits that are, at
first glance, apparently unrelated to keratins.

The same pool of spectra was then processed according
to the workflow shown in Fig. 1. Upon the MASCOT search,
spectra from matching peptides (including peptides from
keratins and trypsin) were removed and the remainder was
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Figure 3. Computational simulation of the identification success
rate of de novo sequencing combined with MS BLAST searches.
Bars represent fractions of spectra, in which PepNovo produced,
with the sequence quality score within the specified range, a com-
plete and accurate peptide sequence as a top candidate (top can-
didate); or it was found among all produced candidates (all candi-
dates); or a stretch of at least eight correctly called amino acid
residues was found (Tags); or thecorresponding peptide washit by
MS BLAST upon error-tolerant database searching (MS BLAST).
The total number of spectra within each score bin is specified in
parenthesis and was assumed to be 100%. Note that the sum of
corresponding fractions can exceed 100%, since, for example, all
spectra with accurately predicted sequences (“top candidates”
and/or “all candidates”) were also identified by MS BLAST.

filtered against a background library. A preprocessed dataset,
comprising only 16% of the total number of dta files, was
sequenced de novo and the obtained peptide sequence candi-
dates were submitted to the MS BLAST search (Fig. 4B). Fil-
tering largely eliminated background proteins and, therefore,
nonbackground protein hits were observed at the 1st, 2nd,
7th, and 9th positions in MS BLASToutput. Only 12 hits were
reported as confident and only five of them were, apparently,
related to nonremoved trypsin precursors. The top hit was a
48 kDa membrane protein from a closely related alga Chla-
mydomonas reinhardtii, which was not identified by MASCOT
since not a single sequenced peptide was identical between
the two, apparently homologous, proteins (Fig. 4C). Another
two top listed hits were chloroplast proteins from Chlamydo-
monas sp., which were found by MASCOT, yet also identified
by MS BLAST with other peptide sequences, not present in a
protein database. Interestingly, a few spectra originating from
trypsin autolysis products still survived the filtering appar-
ently because, at that moment, no matching spectra were
present in the background library.

Why are low abundant trypsin/keratin contaminants that
used to be essentially harmless for MASCOT searches, so
detrimental to MS BLAST identifications? The reason is that

Figure 4. Unbiased filtering of
background spectra enabled the
MS BLAST identification of an
unknown protein from D. salina.
(A) The output of MS BLAST
search with peptide sequence
candidates produced by de novo
interpretation of the entire pool
of acquired tandem mass spec-
tra (5511 dta files); (B) the frac-
tion of dta’s unmatched by
MASCOT was filtered against a
background library. The remain-
ing 874 dta files (16% of the total
number of dta’s) were inter-
preted de novo and sequences
with the quality score above the
value of 5.0 (in total, 131 pre-
cursors) were submitted for MS
BLAST search; (C) HSPs of the
top hit from MS BLASToutput in
panel B. Only the most signifi-
cant alignments are presented
(HSPs with scores above 55).
Note that this protein was not
identified by MASCOT since its
sequence is not in a database
and none of its sequenced pep-
tides was identical to known ho-
mologous proteins.
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de novo interpretation of MS/MS spectra produces several (in
this work we considered up to seven) partially redundant
sequence candidates, essentially “cloning” the same
sequence into multiple copies. MS BLAST engine treats
them equally and tries to match them to different sequence
segments of the same protein, or different proteins in a
database. Since keratins are rich in low complexity sequence
stretches, similarity searches with their multiple, partially
different, variant sequences trigger an avalanche of hits, lar-
gely based on similarly looking HSPs. This, however, does
not happen in MASCOT searches because a much higher
stringency of the match is required and any deviation from
the expected fragment patterns heavily penalized.

As shown in Fig. 4B, stringent (MASCOT) searches were
unable to completely remove peptide spectra matching
background proteins. In contrast, the identification-inde-
pendent filtering, that is based on the rapid comparison of
uninterpreted fragment ion patterns between the examined
and library spectra, recognized and removed background
spectra, regardless of whether they matched anything in a
database. The representative examples included, but were
not limited to, orifice fragmentation products, products of
unspecific enzyme cleavage or polymorphic sequences.
Continuous updating the library by adding newly recognized
peptide spectra of trypsin, keratins, and other common (or,
on user’s request, experiment-specific) contaminants even-
tually should eliminate background spectra (almost) com-
pletely from any probed query. We note, however, that the
number of falsely retained background spectra also depends
on the user-defined filtering stringency. Under stringent fil-
tering settings, less background spectra would be retained,
albeit with a higher chance of losing bona fide spectra from
target proteins due to their random similarity to background.

3.4 Validation of MASCOT cross-species

identifications with borderline statistical

confidence

Conventional proteomics methodologies are capable of
cross-species identification of unknown proteins by match-
ing identical peptides in known homologous proteins. How-
ever, such peptides are relatively rare and their identification
typically relies on matching only a few peptide sequences,
often with borderline statistical confidence. Here, we
demonstrate how de novo sequencing and MS BLAST
searches provided independent validation of borderline
cross-species MASCOT hits.

In the above sample of D. salina proteins, the MASCOT
search identified a plausible homologue of the ATP synthase
from another alga, Bigelowiella natans. However, this identi-
fication relied upon a single exactly matching peptide
(Fig. 5A) and, in line with current proteomics guidelines [51],
it should be considered as borderline. To validate this hit, the
dta file corresponding to the matched spectrum was then
interpreted de novo (Fig. 5B) and partially redundant candi-
date sequences submitted to the MS BLAST search (Fig. 5C),

which produced a statistically confident hit to the over-
lapping sequence stretch in a related database entry. We note
that peptide sequences of the MASCOT hit and de novo can-
didates differed at their N-termini and, currently, it is not
possible to judge which peptide sequence was correct, since
the full sequence of D. salina protein remains unknown.
This, however, did not affect the confidence of MS BLAST hit
assignment, which relies upon an independent scoring
scheme that only considers the local similarity of sequence
stretches aligned within the HSP.

3.5 The characterization of a complex mixture of

unknown proteins by a layered proteomics

workflow

The workflow (Fig. 1) was applied to the complete analysis of
a 55 kDa spot excised from a 2-D Blue Native gel separating
D. salina membrane proteins (Table 1). Out of the ten pro-
teins identified in this sample, five were identified by MAS-
COTsearches. Two were known D. salina proteins (proteins 1
and 2 in Table 1) and another three were identified by statis-
tically confident cross-species matches to multiple identical
peptide sequences in proteins from related algal species
(proteins 3, 4, and 5). Three more identifications were statis-
tically borderline (proteins 6, 7, 8, see also Fig. 5) and were
subsequently validated by a combination of PepNovo se-
quencing and MS BLAST searches, as described above.
When all dta’s corresponding to matching peptides were
removed and the rest was submitted to de novo sequencing
followed by the MS BLAST search, we identified two more
proteins (proteins 9 and 10), which were missed by the
MASCOT search. Importantly, the examination of the corre-
sponding extracted ion current (XIC) traces in LC-MS/MS
profiles suggested that, in fact, protein 9 could be the major
component of the mixture. Additionally, MS BLAST searches
also revealed several new peptides from proteins already
identified by MASCOT (proteins 3 and 4) thus improving the
sequence coverage and confidence of cross-species identifi-
cations.

This analysis is representative of a series of 32 samples
from D. salina, isolated by Blue Native gel electrophoresis
(Table 2) and suggested the high relevance of the multi-layer
datamining strategy, compared to previously reported iden-
tifications based on de novo sequencing by nano-ESI MS/MS
[20]. Stringent (MASCOT) and sequence-similarity searches
proved to be complementary identification tools and the lat-
ter increased the number of confident hits by more than
15%, including several major protein components in ana-
lyzed samples.

Out of a total of 75 proteins identified in 32 spots, 55
proteins were unique (Table 2). Eight proteins (15%) were
identified by matching to known D. salina sequences. Con-
fident cross-species identifications by MASCOTaccounted for
almost a half of all identified proteins (25 hits, 45%), matching
sequences from algae (13 proteins), plants (3 proteins),
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Figure 5. De novo sequencing
and an MS BLAST search vali-
dated a borderline cross-species
hit produced by the MASCOT
search. (A) A MASCOT search
produced a candidate hit with
one matched peptide to the pro-
tein from the related organism
(B) The dta file corresponding to
the spectrum in panel A was
retrieved by a script and its de
novo interpretation produced
two candidate sequences with
the quality score of 11.1; (C)

They were merged into an MS
BLAST query and the search hit
the same peptide from the relat-
ed alga B. natans. According to
the MS BLAST scoring scheme,
the hit was confident albeit the
N-terminal piece of the
sequence, for some reason,
mismatched. Note that the N-
terminal stretch of amino acid
residues in all three variant se-
quences is isobaric and that the
true sequence of the fragmented
peptide is currently unknown.

bacteria (8 proteins) and fungi (1 protein). Sequence-simi-
larity searches with MS BLAST added a substantial number
of novel identifications (6 hits, 11%) by matching corre-
spondent protein homologues from algae (3 proteins), plants
(1 protein) and bacteria (2 proteins). Importantly, the exam-
ination of peptide signal intensities in XIC traces showed
that two of them were, most likely, the major components of
the samples. Finally, MASCOT searches against an EST
database containing about 4000 D. salina sequences more
than doubled the number of intra-species identifications (al-
though relatively short EST sequences do not provide the
functional annotation of hits directly). Additionally, validat-

ing MASCOT identifications by MS BLAST rescued one,
otherwise a false negative, borderline hit and unequivocally
rejected another 11 borderline hits.

These results demonstrate the efficiency of the workflow
that combines stringent and sequence-similarity searches for
the proteomic characterization of organisms with unse-
quenced genomes. The relative contribution of com-
plementary database interrogation strategies depends on the
species of origin, particularly on the number of sequences
available in protein or EST databases, and the phylogenetic
distance between the studied species and reference organ-
ism(s), completely or partially covered by genomic sequenc-
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Table 1. Proteins identified in a single spot on a 2-D Blue Native gel separating D. salina membrane proteins

Hit
number

Protein Species MW
(kDa)

MASCOT
score
(peptides)

MS
BLAST
score
(HSPs,
score.55)

Highest
XIC of
matched
peptides

Comments

1 High affinity nitrate transporter D. salina 59 450 (10) 3E105 Known D. salina
proteins2 Transferrin-like protein Ttf-1 D. salina 140 137 (4) 1E105

3 Photosystem II reaction centers
CP47 apoprotein

C. reinhardtii 56 297 (6) 94(1) 6E105 Cross-species
MASCOT hits

4 Photosystem II chlorophyll
a-binding protein psbC

Chlamydomonas
eugametos

50 215 (5) 120(1) 5E105

5 P700 chlorophyll a-apoprotein A2 Chlamydomonas
moewusii

82 149 (3) 7E104

6 Putative plastidic ATP/ADP-
transporter (fragment)

Prototheca
wickerhamii

24 72 (1) 80(1) 3E105 Borderline hits
validated by
MS BLAST7 ATP synthase gamma subunit B. natans 42 68 (1) 64(1) 2E105

8 Probable multispanning
membrane protein

Arabidopsis
thaliana

74 44 (1) 67 (1) 8E104

9a Low-CO2 inducible protein LCICa C. reinhardtii 48 – 578(5) 2E106 New proteins
identified by
MS BLAST

10 UDP-N-acetylglucosamine-
N-acetylmuramyl-(penta-
peptide)pyrophosphoryl-
undecaprenol N-acetyl-
glucosamine transferase

Geobacter
sulfur-
reducens

40 – 75(1) 9E104

a) The most abundant protein (as judged by corresponding XIC traces) is shown in bold.

Table 2. Overview of protein identifications by MASCOT and
PepNovo–MS BLAST in the preparations of D. salina
membrane proteins separated into 32 individual spots
by Blue Native gel electrophoresis

Search Species Database Identifications
Hits (%)

MASCOT D. salina MSDB 8 15
EST 15 27

Other MSDB 25 45

MASCOT/MS
BLASTa

MSDB/
nrdb95

1 2

MS BLAST nrdb95 6 11

Total 55 100

a) Borderline hits from MASCOT searches validated by de novo
sequencing and MS BLAST.

ing [16]. It is important, however, that complementary data-
base searches operate with the same dataset of MS/MS
spectra and no adjustment of the data acquisition routine is
required.

4 Concluding remarks

We demonstrated that a combination of a fast and accurate de
novo sequencing software and MS BLAST searches enabled
sequence similarity-driven proteomic interpretation of large
LC-MS/MS datasets acquired on a rapid scanning, low mass
resolution linear IT instrument. A layered database mining
workflow improves substantially the characterization of pro-
teomes of organisms with unsequenced genomes. Yet, we
have reason to believe that it might also have important
implications for proteomics in fully sequenced organisms, as
it validates borderline hits produced by conventional data-
base searches and has the potential for unbiased screening
for PTMs, sequence polymorphism and unrecognized splic-
ing variants.

It is important that, regardless of the availability of data-
base sequences, a single LC-MS/MS dataset is always
acquired and, subsequently, used for conventional (strin-
gent) and sequence-similarity searches. There is no need for
chemical derivatization or isotopic labeling of analyzed pep-
tides, or for repetitive LC-MS/MS analysis under specific
settings, which, for example, would target the data acquisi-
tion at the most abundant ions or employ zoom scans. Once
acquired, the complete spectral dataset can be post-processed
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according to the user’s needs. More interpretation or data
processing layers could be included, such as, for example,
searches against species-restricted databases, or searches
with an alternative set of variable PTMs, or screening against
a spectra library produced in specific control experiments.
Whenever the search produces confident hits, the corre-
sponding dta’s should be subtracted, thus compacting the
query down to essential and informative spectra that do not
match anything in a database in a stringent manner and,
hence, require error-tolerant interpretation. The entire data
processing routine could be automated and integrated into
any proteomics pipeline adopted in the laboratory.

In the rapidly evolving field of proteomics, it is important
that data interpretation pipelines maintain a modular
organization that utilizes a common data format and allows
unrestricted and independent operations with individual
MS/MS spectra, while program elements could be added or
replaced, according to specific user demands.
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