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Abstract

Tracing microtubule centerlines in serial section electron tomography requires

microtubules to be stitched across sections, that is lines from different sections

need to be aligned, endpoints need to be matched at section boundaries to

establish a correspondence between neighboring sections, and corresponding

lines need to be connected across multiple sections. We present computational

methods for these tasks: 1) An initial alignment is computed using a distance

compatibility graph. 2) A fine alignment is then computed with a probabilistic variant

of the iterative closest points algorithm, which we extended to handle the orientation

of lines by introducing a periodic random variable to the probabilistic formulation. 3)

Endpoint correspondence is established by formulating a matching problem in

terms of a Markov random field and computing the best matching with belief

propagation. Belief propagation is not generally guaranteed to converge to a

minimum. We show how convergence can be achieved, nonetheless, with minimal

manual input. In addition to stitching microtubule centerlines, the correspondence is

also applied to transform and merge the electron tomograms. We applied the

proposed methods to samples from the mitotic spindle in C. elegans, the meiotic

spindle in X. laevis, and sub-pellicular microtubule arrays in T. brucei. The methods

were able to stitch microtubules across section boundaries in good agreement with

experts’ opinions for the spindle samples. Results, however, were not satisfactory

for the microtubule arrays. For certain experiments, such as an analysis of the

spindle, the proposed methods can replace manual expert tracing and thus enable

the analysis of microtubules over long distances with reasonable manual effort.
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Introduction

The problem of stitching lines arises when filamentous or tubular structures, such

as microtubules, need to be traced across multiple consecutive semi-thin (a few

hundred nanometer thick) sections, each of which contains only a portion of the

filaments. Three-dimensional images of such sections can be obtained, for

example, by electron tomography. Due to sample processing, however, the

sections are often individually rotated, shifted, scaled, or deformed in a non-linear

way. In this paper, we focus on the stitching of microtubules segmented from

serial section electron tomograms. Within each section, microtubules are

represented as polygonal centerlines. For microtubules that traverse the entire

thickness of the section, the lines have two endpoints at or close to the two section

boundaries. Endpoints may also occur further away from the section boundary for

microtubules that naturally end there. Stitching consists of aligning sections,

matching corresponding endpoints at two facing section boundaries, and

connecting corresponding lines across multiple sections. See Figure 1 for an

example that illustrates the complexity of the task and a solution achieved with

our methods. Manual stitching of microtubule centerlines is labor intensive, and

sometimes it is even impossible for a human to reliably decide how to align

sections and how to connect the lines. Automated processing would be an

attractive alternative, in particular, because the volumes reconstructed using

electron tomography have been constantly increasing towards covering full cells

(for example, Höög et al. [2, 3]), or large dense structures like centrosomes during

cell division (for example, Müller-Reichert et al. [4], O’Toole et al. [5]). A purely

manual segmentation of even larger structures, such as the massive meiotic

spindle of X. laevis (see Brugués et al. [6], Loughlin et al. [7]), seems unrealistic.

Automatic stitching of microtubule endpoints from consecutive sections is

challenging. The samples suffer from shearing and material loss at the boundary of

sections during cutting and image acquisition. Samples shrink, warp and twist as a

consequence of the electron exposure (see Figure S4 and also Luther [8]).

Furthermore, automated and manual segmentation, too, will not always perfectly

capture the endpoints (see Weber et al. [1]). Since microtubules, on the other

hand, can be as close to each other as 25 nm (Lacomble et al. [9], Höög et al.

[2, 10], McDonald et al. [11], Ding et al. [12]), the correspondence of endpoints

of close-by microtubules may be difficult to decide. A stitching method must

handle the described deformations and be robust in the presence of noise.

To the best of our knowledge, the only software for stitching microtubule

endpoints using the segmented centerlines is a semi-automatic tool integrated

into the IMOD software (Kremer and Mastronarde [13]). Tomograms are roughly

aligned using manually selected landmarks that are used to correct the

deformation with a thin-plate spline model. Microtubules are traced afterwards in

the aligned tomograms. Identified microtubules are then used to refine the

deformation correction. This approach has been used successfully, for example, by

McIntosh et al. [14], O’Toole et al. [5, 15], and Höög et al. [16]. However,

selecting matching microtubules manually is time consuming, tedious and,
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depending on the contrast of the tomogram and the presence of features to guide

the user to potential matches, it can be infeasible.

An automated method could facilitate the stitching of microtubule centerlines

over long distances in a reliable manner. Assuming that microtubule centerlines

have been traced for a stack of electron tomograms of consecutive serial sections,

two related problems need to be solved: 1) The sections need to be aligned, that is

they need to be rotated and translated, and local distortions that are caused by

tomogram acquisition need to be corrected. 2) Corresponding microtubules need

to be matched and connected across section boundaries. If all centerlines and a

perfect alignment were available, the matching should be obvious, because

corresponding endpoints should be closer to each other than to any other

endpoint. If a perfect endpoint matching was known, it could be used to compute

an alignment such that the matched endpoints would be transformed onto each

other. In practice, however, a perfect solution cannot be expected due to the

limited data quality.

Figure 1. Starting point and output of our computational methods. Results are displayed for a stack of 3
00 nm thick and 5mm wide sections of microtubule centerlines in the mitotic spindle of a C. elegans early
embryo. Each section contains approximately 1500 microtubules, which were traced in electron tomograms.
Top: Side view of unaligned centerlines before stitching. Colors indicate different sections. Bottom:
Perspective view of the stitched microtubules after applying our algorithms. Color indicates length of the
stitched microtubules: greenish lines are longer; bluish lines are shorter. The orange bounding boxes help
getting an impression of the alignment transformation. The boxes were oriented parallel to the main
coordinate axes before alignment. Some lines do not have a continuation in the next section (for example
bluish lines at top right), because the area covered by the tomograms varied from section to section.

doi:10.1371/journal.pone.0113222.g001
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Solutions to the alignment and the matching problem have been studied before.

A common method for finding an initial alignment of points is to identify a subset

of matching points using transformation invariant features and then compute the

initial alignment from these pairs. Point pairs can be sampled, for example, with

RANSAC (see Fischler and Bolles [17]) based on a local feature descriptor such as

the sorted distance to neighboring points (see for example Lee et al. [18]). This

method has been successfully applied in point registration in biology (Preibisch et

al. [19]), image registration (Saalfeld et al. [20]), and to register lines (Yao et al.

[21]). RANSAC-based methods have been demonstrated to perform well even in

the presence of noise, outliers and strong deformation.

If only a few points need to be aligned, the problem can be formulated as

finding cliques in a graph representation, called the distance compatibility graph

(DCG). This method has been used for molecular shape analysis (for example

Baum et al. [22]). It has also been applied for matching of neuron ends (for

example Dercksen et al. [23]).

The most popular algorithm for the registration of points that are already

coarsely aligned is the iterative closest points algorithm (reviewed in Rusinkiewicz

and Levoy [24]). A probabilistic variant that formulates the problem in terms of a

Gaussian mixture model was proposed by several authors (Rangarajan et al. [25],

Wells [26]). The probabilistic variant has many advantages, including that the

deviation of the assumed Gaussian mixture model can serve as a measure of

uncertainty of the result; that the method naturally deals with outliers; and that

the method is easy to implement. The approach has also been adapted for solving

elastic deformation models (Jian and Vermuri [27], Myronenko and Song [28]).

Once the points are aligned, a common approach to finding unambiguously

corresponding pairs is to compute a maximum weighted matching (MWM) on a

bipartite graph (see Kuhn [29]). If a bipartite graph cannot capture enough prior

information about the data, the matching can also be formulated in terms of a

Markov random field (see Koller and Friedman [30]). This has received a lot of

attention (for example, Caetano et al. [31], Sanghavi et al. [32]) and has been

successfully applied to many applications, the closest to ours being the one

described by Amat et al. [33], where the point matching computation is used to

find a proper alignment of series of transmission electron microscopy images

using the gold particles on top of the sample for alignment.

In the following, we present computational methods for the alignment and

matching of microtubule centerlines that build upon the described work. See

Figure 2 for an overview. 1) For the initial coarse alignment, we identify cliques in

a distance compatibility graph. 2) For a fine alignment of the endpoints, we

extend Myronenko and Song’s work [28] by integrating line orientation. 3) For

establishing correspondences between endpoints, we formulate a matching

problem in terms of a Markov random field similar to Amat et al.’s [33].

Matchings are computed with belief propagation on a factor graph. Because belief

propagation does not necessarily converge to a minimum in general, we propose a

scheme to seek user input to resolve non-converging cases. With little, although

carefully selected input, convergence is achieved for our application. We
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demonstrate the utility of the approach on electron tomograms of microtubules in

Caenorhabditis elegans mitotic spindles in early embryos (C. elegans), Xenopus

laevis oocyte meiotic spindles (X. laevis) and the sub-pellicular microtubule

skeleton of Trypanosoma brucei (T. brucei). The combination of sample

preparation and computational methods allows automated stitching of micro-

tubule centerlines with less that 5% connections that disagree with an expert’s

opinion at each section boundary.

Materials and Methods

Sample preparation

Three different types of samples were used. Samples were prepared using well-

established protocols. 1) Bipolar spindles were assembled from X. laevis egg

extract using the previously published protocols Hannak and Heald [34] and

Murray [35]. In brief, eggs collected from adult frogs were cleaned, de-jellied and

centrifuged at 16,488 rcf for 12 min. 100 ml of the collected cytosolic fraction,

which is naturally arrested in metaphase, was sent to interphase with the addition

of 0.4mM calcium and sperm nuclei. Once in interphase, equal volumes of the

collected cytosolic fraction and the now interphasic fraction were mixed with 1 ml

Figure 2. Computational methods. Top and middle: Illustration of two neighboring sections (view from top) and main processing steps. Bottom: algorithmic
details and references. Endpoints are illustrated in blue and green. The initial alignment computes a coarse, linear alignment from a subset of endpoints. The
fine alignment moves endpoints closer in two steps: a linear alignment followed by an elastic alignment. The matching determines pairs of corresponding
endpoints (indicated in different colors), which are finally connected across sections (not illustrated).

doi:10.1371/journal.pone.0113222.g002
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of Cy3-labelled tubulin to generate bipolar spindles. Animal use was approved by

The Institutional Animal Care and Use Committee of The European Molecular

Biology Laboratory (Permit Number: CA0555005). 2) As described in Müller-

Reichert et al. [36], C. elegans (Bristol N2) expressing GFP-tagged tubulin were

cut in half and individual single-cell embryos were extracted and sucked into

capillary tubes (Leica) cut to 1mm length. The capillary tubes were placed in 100-

mm-deep membrane carriers (Leica) in M9 buffer containing 20% BSA. The cell

cycle of embryos was followed by fluorescence miscroscopy until metaphase was

reached. 3) As decribed in Höög et al. [37], T. brucei cells were grown at

logarithmic phase in HMI-9 medium supplemented with 15% (v/v) HIFCS at

37 C̊. Cells were pelleted by gentle centrifugation (600g). A few microliters of

pellet were transferred to membrane carriers.

The specimens (X. laevis, C. elegans embryos or T. brucei cells) were high-

pressure frozen using a Leica EMPACT2 or HPM-010 high-pressure freezer, and

freeze-substituted in a Leica AFS2. The substitution cocktail contained 2% uranyl

acetate in acetone for T. brucei; 1% osmium tetroxide, 0.1% uranyl acetate in

acetone for C. elegans; and 0.1% Tannic Acid, 0.2% glutaraldehyde, 2.5% water in

acetone followed by 1% osmium tetroxide, 0.1% uranyl acetate in acetone for X.

laevis. Specimens were thawed, infiltrated and embedded in epoxy (Epon) or

metacrylate (HM20) resins. Semi-thin (300–350 nm thickness) serial sections

were cut and collected on formvar-coated slot copper grids for EM. T. brucei

samples were post-stained with 2% aqueous uranyl acetate (8 min) followed by

Reynold’s lead citrate [38] (3 min). C. elegans samples were post-stained in 2%

uranyl acetate in 70% methanol (15 min) followed by lead citrate (5 min). X.

laevis sections were post-stained only with lead citrate (12 min).

Electron tomography

10 or 15 nm colloidal gold fiducial particles were deposited on the grids before

imaging. Electron tomography tilt series were acquired in a Tecnai F30 electron

microscope (FEI Company Ltd., Eindhoven, The Netherlands) operated at 300 kV

at 1˚ tilt increments between {60 and z60 degrees, with the SerialEM software

(Mastronarde [39]) using a Gatan US1000 2k camera or a FEI 4k Eagle camera.

The pixel size was 1–2.5 nm. To minimize sample shrinkage during acquisition,

the samples were pre-irradiated with a dose of 2000 electrons per square

Angstrom or more, resulting in pre-shrinkage of the sample. During tomogram

acquisition, the samples were submitted to a smaller or equivalent dose of

electrons as during pre-irradiation. The tomograms were reconstructed and

flattened using the IMOD software package as described in Kremer et al. [13].

Standard settings for plastic tomography were used for the fine alignment of 2D

projections, including corrections for rotation, magnification changes due to

defocus, distortions, and tilt angles, based on the tracking of gold fiducials on two

surfaces of the grids. Due to the large area of interest, 1|2 to 1|4 frame

montages were acquired for T. brucei; for X. laevis, 363 montages (11.4
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mm|11.4 mm) were acquired 3 or 4 times per section, before being joined into

large supermontages (11.4 mm|32 mm).

Microtubule tracing

Microtubule centerlines were traced for each section individually from

tomograms that had not been aligned between sections. For the X. laevis and C.

elegans samples, centerlines were traced automatically as described by Weber et al.

[1]. The supermontage data was binned prior to tracing. Automatically traced

segments were manually validated and corrected using Amira [40]. The

segmentation for T. brucei was performed manually by an expert using the IMOD

software (Kremer et al. [13]).

Computational methods overview

The input to the computational methods are centerlines from unaligned sections.

The final result is a pairwise alignment of sections and a matching of endpoints

that is applied to connect corresponding lines across sections.

The algorithms use a model for two facing section boundaries as illustrated in

Figure 3. Section boundaries are modeled as parallel z-planes. The underlying

assumptions are that sections can be cut reasonably parallel and that deformations

during tomogram acquisition were minimized by a) coating the grids with carbon

to minimize beam damage and sample distortion, b) pre-irradiating a wide area of

the sample before tomogram acquisition to minimize local deformations during

acquisition, c) by flattening the tomograms after reconstruction. Every section

tomogram was visually inspected for flatness and corrected in IMOD or Amira if

necessary. Top and bottom tomogram boundaries, therefore, were nearly parallel

z-planes before microtubule tracing.

We assume that microtubules cross the section boundary as straight lines. This

seems reasonable for microtubules that are perpendicular to the section

boundaries, since such microtubules do not curve much over the thickness of a

section (300–350 nm). The straightness assumption may be problematic,

however, for microtubules that are parallel or nearly parallel to the section

boundaries. In practice, the model should be reasonable if enough microtubules

are sufficiently perpendicular. Results should be carefully evaluated, though, for

regions were microtubules seem to be oriented mostly parallel to the section

boundaries.

The endpoints are modeled as points that are located exactly at the section

boundary. For microtubules that cross the section boundary, it seems reasonable

to assume that they end exactly at the boundary even though real centerlines may

contain some positional errors. Microtubules, however, may also naturally end

within a section. In practice, the model should be reasonable if more microtubules

cross the section boundary than end within a section. The algorithms include

means to handle outliers. We simply treat all endpoints as if they ended at the

boundary and leave it to the algorithms to handle endpoints without
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corresponding endpoint in the next section. X. laevis samples seem to meet the

assumption well (the centerlines displayed in Figure 3 are a typical example). But

also for the C. elegans samples, which contain many short lines close to the

centrosome center, we have not observed problems in practice; the assumption

seems to be sufficiently fulfilled.

The final result is computed in three main steps as illustrated in Figure 2.

During initial alignment, each section pair is coarsely aligned using a linear

transformation. During fine alignment, first a refined linear transformation is

applied to each section pair followed by an elastic transformation to correct

deformations. The matching identifies corresponding endpoints across the section

boundaries, which is finally used to connect lines across multiple sections. We

apply all steps in order they are described unless explicitly stated otherwise.

Figure 3. Model for section boundary. Top: View from side at traced microtubule centerlines for two small regions from two neighboring sections of a C.
elegans sample and a X. laevis sample. For the purpose of illustration, the sections have been aligned. Many microtubules are regularly oriented in parallel
bundles in the X. laevis sample. Microtubules are less regularly oriented in the C. elegans sample. Bottom left: Part of a centerline together with the
corresponding tomogram slice. Bottom right: Model for boundary between two neighboring sections. Microtubule centerlines are modeled as straight lines
with a single orientation (illustrated as dashed arrows). Endpoints close to a boundary (gray area) are described by two-dimensional coordinates as if they
were located in a single plane. The transformation T acts on one section boundary (the y’s in section 2). A matching consists of pairs of corresponding
endpoints (one pair indicated as dotted line). The goal is to find a transformation and a matching such that corresponding centerlines can be connected
across several sections. See main text for detailed notation.

doi:10.1371/journal.pone.0113222.g003
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Notation

Since we assume that all microtubule endpoints lie in a plane, their positions can

be described by two-dimensional coordinates. The N endpoint positions x1,:::,xN

with x[R2 are collectively denoted by X and the M endpoint positions y1,:::,yM in

the neighboring section by Y . The corresponding line orientations ~x1,:::,~xN with

~x[R3, jj~xjj~1 are denoted by ~X and the orientations of the neighboring section

~y1,:::,~yM by ~Y . T (y,H) denotes a transformation with parameters H. For example,

if T (y,H)~sRyzt with scaling s, a rotation matrix R and a translation t, then

H~(s,R,t). For the fine alignment, we will introduce a continuous random

variable x and a discrete random variable m that has states fy1,:::,yMg. We will

write P(x) to refer to the probability density function of x and abbreviate the

probability of P(x~xi) by p(xi). Similarly we will write P(m~ym)~p(ym)~p(m)

for the discrete random variable. When we describe the Markov random field for

endpoint matching, we will introduce one discrete random variable xi for each

endpoint.

Initial alignment

The initial alignment algorithm computes a linear transformation of the two sets of

endpoints X and Y by finding cliques in a distance compatibility graph (DCG) (see

Dercksen et al. [23]). Each clique of the DCG establishes a one-to-one

correspondence between some points from X and Y , which can be used to compute

an alignment. The method works by identifying similar spatial patterns in X and Y .

The nodes of the DCG are pairs (xi,yk) of endpoints from X and Y . Two DCG nodes

(xi,yk) and (xj,yl) are connected by an edge if j jjxi{xjjj{jjyk{yljj jvd, where d is a

threshold [Rz. Such a graph is called a d-bounded DCG. In the worst case, the

memory requirement for building the graph is (NM)2, since there are NM nodes

and each of these nodes can be connected to every other node. In practical

applications, however, it is much smaller. Now consider a maximal connected

subgraph (clique) in the DCG. Because all nodes in this subgraph are mutually

connected, all distances jjxi{xjjj of endpoints from X in the clique are close to the

respective distances jjyk{yljj of the endpoints from Y . Therefore the endpoints xi in

the clique and the paired yk are arranged in a similar spatial pattern. To find a good

initial alignment, we search for large cliques in the DCG. This method is only

successful if the distortions of the point sets are small.

For the alignment of microtubule endpoints, we can further restrict the number

of edges in the DCG by taking into account the line orientations. Thus, we only

connect two nodes by an edge in the DCG if jacos(~xT
i ~xj){acos(~yT

k~yl)jva. With

this modification, we find cliques using the Bron-Kerbosch algorithm [41], similar

to Dercksen et al. [23]. Due to the high memory requirement of (NM)2 in the

worst case and the exponential running time of the Bron-Kerbosch algorithm, the

DCG graph should contain fewer than 10,000 nodes. In practice, the number of

vertices in X and Y should be less than 100. This is often much fewer than the

number of endpoints of microtubule centerlines in tomograms. We therefore use
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a heuristic to reduce the number of points: First, we sort all endpoints in

descending order of angle of the line with the cutting plane of the section. Then,

we pick the first 50 to 100 endpoints in each list. The microtubules that are most

perpendicular to the plane of sections are expected to be easiest to match in the

initial alignment. Furthermore, we only consider a clique if its size is at least 10 to

30% of the number of nodes in the smaller set. Also, we only consider the first

1000 cliques computed by the Bron-Kerbosch algorithm.

From the resulting endpoint correspondences, we compute an optimal (in a

least-square sense) rigid alignment of the form T (y,H)~Ryzt using singular

value decomposition (SVD) as described by Umeyama [42] and Myronenko and

Song [43]. To compute this alignment, we only take into account the endpoint

positions. Line orientations could probably be incorporated by formulating the

transformations with dual quaternions as described by Walker et al. [44]. The

method described above, however, seems sufficient to compute a coarse initial

alignment for sufficiently straight lines.

Fine alignment

The initial alignment considered only a subset of endpoints. We next describe how

to compute a fine alignment from all endpoints for a linear and an elastic

transformation model. The main text summarizes the methods. A detailed

derivation of equations and the precise algorithms are given in the Supporting

Information. Our fine alignment algorithms build upon the work of Myronenko

and Song [28]. After briefly recapitulating their approach, we describe our

extension to incorporate line orientations in the formulation. A basic under-

standing of probability distributions and statistical learning is assumed. For a

practical introduction to statistics, see, for example, Dekking et al. [45], or Bishop

et al. [46] for a more thorough treatment.

General methodology

The general idea is to formulate a probabilistic model and find the transformation

T that maximizes the likelihood of the data. The probability of a point x[X being

a match for y[Y is modeled as a joint distribution of a D-dimensional continuous

random variable x and a discrete random variable m with states fy1,y2,:::,yMg
P(x,m)~P(m)P(xjm): ð1Þ

For two sets of two-dimensional points, P(xjm) will be a Gaussian N (x; m,s2)

located at the transformed ym. T will be a transformation T (ym,H)~s~Rymzt,

where s is a uniform scaling factor, ~R is a two-by-two rotation matrix, and t is a

translation vector. Written out, P(xjm) then reads:

P(xjm)~N (x; T (ym,H),s2)~
1

2ps2
exp (

jjx{(s~Rymzt)jj2

2s2
): ð2Þ

The prior P(m) is uniformly distributed as 1=M since we have no measure of

certainty of the ys and therefore assume that each is equally valid.
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To find the optimal parameters s, ~R, t and s, Myronenko and Song use the

expectation maximization algorithm. Two steps are performed iteratively to

compute optimal transformation parameters (illustrated in Figure 4). First, the

posterior P(mjx)~
P(x,m)

P(x)
is computed in the expectation step (E-step). Here,

P(x,m) is given by Equation 1 and P(x) can be obtained from P(x,m) by

marginalizing out m. The posterior for each pair xi,yj can be seen as a weight that

indicates how much xi pulls yj closer. Second, transformation and distribution

parameters are updated by minimizing the expectation of the complete negative

log-likelihood Q with respect to H and the parameters of the distribution. This

step is called the maximization step (M-step). Q is given by

Q~{
XN

n~1

XM

m~1

pold(mjxn) log (p(m)p(xnjm)): ð3Þ

The first term, pold is the posterior P(mjx) which was computed in the E-step and

is kept fixed during optimization. Q is minimized with respect to the new

transformation parameters H and the parameters of the distribution. In case x is

distributed as a Gaussian and T is the transformation from above, we would

minimize Q with respect to s2 and (~R,s,t). The detailed algorithm is given in

Myronenko and Song [28].

The expectation maximization algorithm always converges to a local minimum

(see Bishop et al. [46]). To adapt this algorithm for lines we 1) define a

distribution for the lines, 2) define a transformation model and 3) find a way to

compute LQ=LH~0 for each parameter H in the M-step.

Linear alignment

For the linear alignment, we model the transformation of the line orientations as a

rotation matrix R[R3|3,T (~y,H)~R~y. Assuming that all endpoints lie in a plane,

we restrict the rotation to be around an axis that is perpendicular to the cutting

plane, so that

T (~y,H)~R~y~
~R 0

0T 1

 !
~y, ð4Þ

where ~R[R2 is a two-dimensional rotation matrix. We model the transformations

of the endpoint positions as T (y,H)~s~Ryzt, where ~R is the same

two-dimensional rotation matrix, s[R is a uniform scaling parameter, and t[R2 is

a translation vector.

The algorithm for linear alignment from orientation uses only the line

orientations during expectation maximization, from which only the rotation ~R
can be directly computed. We introduce two more random variables ~x
(continuous) and ~m (discrete with states ~y1,:::,~ym) and describe the joint

distribution of the orientations by

P(~x,~m)~P(~m)P(~xj~m): ð5Þ
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Because ~x is periodic, we assume that P(~xj~m) is distributed as a Fisher-Mises

distribution (see Mardia [47]):

P(~xj~m)~F (~x;~ym,k)~
k

2p(ek{e{k)
exp (kT (~ym,H)T~x): ð6Þ

The Fisher-Mises distribution is equivalent to a Gaussian distribution on a

sphere (illustrated in Figure 5). The prior P(~m) is uniformly distributed as 1=M as

in the work of Myronenko and Song [28].

To obtain the optimal rotation in the M-step, we write down the expectation of

the negative complete log-likelihood function (Equation 3) and minimize Q with

respect to R and k. We give details of this derivation in the Supporting

Information. In brief, the optimal rotation can be obtained with a singular value

decomposition (see Umeyama [42] and Myronenko and Song [43]). k cannot be

obtained in closed form, but it can be computed with Newton’s method.

Even though we did not consider the endpoint positions during expectation

maximization, we can apply the final rotation to the positions and compute a

translation vector from all potential pairs weighted by the posterior (see

Supporting Information). The complete algorithm is summarized in Figure S1.

The algorithm for linear alignment from position and orientation considers both

endpoint positions and line orientations and uses the full linear transformation

model as introduced in Equation 4 and below. We define a joint distribution

P(x,m,~x,~m) that factorizes as follows:

P(x,m,~x,~m)~P(xjm)P(~xj~m)P(m,~m): ð7Þ

Figure 4. Illustration of the expectation maximization algorithm for a Gaussian mixture model. Dots
represent the centroids of the Gaussians which are located at T (y1,H),:::,T (yM ,H). Crosses represent the
points in X. E-step: Arrows indicate values of the posterior for each point in Y. M-step: Steps towards
convergence move the points closer and reduce the width of the Gaussians. Upon convergence,
corresponding points should be close to each other and the Gaussian should be sharply peaked.

doi:10.1371/journal.pone.0113222.g004
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P(xjm) and P(~xj~m) are defined by Equation 2 and 6 respectively. We define the

prior P(m,~m) by

P(m,~m)~
1
M

dind(m),ind(~m), ð8Þ

where ind(:) denotes the index operator, which returns the index of the current

assignment and d is the Kronecker delta which is 1 if ind(m)~ind(~m) and 0

otherwise. We chose this prior because we know the pairs (yj,~yj), and pairs with

mixed indices (yi,~yj), i=j do not occur.

We can again write out Q for this distribution and the transformation model

and then solve for the s, ~R, t, s2and k that minimize Q in the M-step. However,

we do not have a closed-form solution for the optimal parameters. Instead, we

minimize Q numerically. We give a derivation of the update equations and the

first and second order derivatives necessary for the numerical optimization in the

Supporting Information. For optimization, we use the library IPOpt [48]. The

algorithm is summarized in Figure S2.

Elastic alignment

A linear transformation cannot correct distortions, which usually appear in

electron tomograms. To correct such distortions, we apply an elastic alignment.

For the algorithm for elastic alignment, we model the transformation as

individual translation vectors n(yk) that modify the positions such that

T (yk,H)~ykzn(yk). The formulation closely follows Myronenko and Song [28].

They obtain the translation vectors by minimizing the regularized Q function with

calculus of variations. The resulting vectors n(yk) are the product of an M|M
smoothing matrix G and an M|3 matrix W, that is T (yk,H)~ykzG(k,:)W,

where G(k,:) denotes the kth row of G. Here the transformation parameters H are

the entries in the matrix W, whereas G is initialized once as

gij~ exp ({
1

2b2 jjyi{yjjj2) and stays fixed. Myronenko and Song call the

Figure 5. Illustration of the expectation maximization algorithm for periodic variables. The dashed
circles illustrate the unit sphere. Arrows indicate the orientation unit vectors projected onto the plane (blue:~x,
black:~y). The green circles depict values of the Fisher-Mises distribution with centers located at the arrow tips.
In the M-step, a rotation around the center is computed that moves the arrow tips closer. Simultaneously, the
concentration parameter k is updated and the width of the Fisher-Mises distribution is reduced. Left: before M-
step. Right: after M-step.

doi:10.1371/journal.pone.0113222.g005

Automated Stitching of Microtubule Centerlines

PLOS ONE | DOI:10.1371/journal.pone.0113222 December 1, 2014 13 / 36



algorithm for computing the optimal W the coherent point drift algorithm (CPD)

for non-rigid point set registration.

Incorporating orientation into the described transformation model is not

obvious, because the rotation that should be applied to the orientations is not

apparent from the translation vectors n(yk). In practice, however, we can assume

that orientations are fixed, because we performed a linear alignment before. It is

therefore reasonable to assume that the remaining elastic deformation contains

negligible rotation. With this assumption, the orientations only influence the

result via the posterior Pold(m,~mjx,~x). k can be updated in each iteration again

with Newton’s method. See details in the Supporting Information. The algorithm

is summarized in Figure S3.

We use the moving least squares algorithm as described by Schaefer et al. [49]

to interpolate the deformation and apply it to the tomograms. The displacements

vectors n(yk)~G(k,:)W define the landmarks for moving least squares.

Endpoint matching using Markov random field

The previously defined distribution describe the probability that endpoints

correspond. However, we cannot simply assign each endpoint in X to its most

probable counterpart in Y , because assignments might conflict and the final pairs

might not be unique. A common approach to finding unambiguously

corresponding pairs is to compute a maximum weighted matching (MWM) on a

bipartite graph (see Kuhn [29]). Furthermore, neighboring assignments might

influence each other. For example, we would expect that the assignment of

endpoints in Figure 6A is preferable to the assignment in Figure 6B, because

remaining deformations of the data should be coherent in a neighborhood.

To find a matching of the endpoints, we use a Probabilistic Graphical Model

(PGM) (see Koller and Friedman [30] for a comprehensive introduction) to

model the influence of neighboring assignment on a pairing decision. Here,

endpoints in X are represented by discrete random variables x1,:::,xN , each of

which can have Mz1 states: either y1,:::,yM to indicate the matching endpoint in

Y or the placeholder y0 to indicate that there is no match. Each xi must be

assigned with the constraint that two xi,xj cannot be assigned to the same

y1,:::,yM . Multiple assignments to the placeholder y0 are explicitly allowed.

Figure 6 illustrates possible states for a joint distribution of three variables.

To find a good assignment, we first define the joint distribution P(x1,:::,xn) and

then determine the joint assignment that yields the largest probability. P(x1,:::,xn)

is defined by a Gibbs distribution (Koller and Friedman [30])

P(x1,:::,xN)~
1
Z
P
N

i~1
Wo(xi) P

N,N

i,j~1
Woo(xi,xj), ð9Þ

each state of which is a valid matching. Z ensures that P(x1,:::,xN) is a valid

probability distribution. The W’s are called factors. Since the x1,:::,xN are discrete

random variables with values from a finite set, the factors are discrete tables with
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entries that can be though of as weights that represent our beliefs about a

particular assignment. The singleton factors Wo(xi) contain information on how

likely xi and each y1,::,ym or y0 match if no further information is available. The

pair factors Woo(xi,xj) represent beliefs about the joint assignment xi~yk and

xj~yl. We can use the pair factors to model, for example, the mutual

exclusiveness constraint of the assignments.

Factor values for matching microtubule endpoints

We use three types of information to fill the factors Wo in Equation 9. First, we

assume that microtubules are rather straight and, therefore, expect the angle

da(~x,~y)~acos(~x:{~y) to be small. Second, we expect that the positions of

matching endpoints are close and, therefore, compute the direct distance

dc(x,y)~jjx{yjj. dc measures the distance on a plane, which we assume all

endpoints to lie on (see Figure 7). Third, we expect that the straight extensions of

corresponding lines should meet. To measure how close they get, we define the

projected distance dp(x,y) as the distance of y to the intersection of the line through

x and a plane at y that is normal to~y (see Figure 7). Each of the three d’s is used

in an exponential distribution with parameters lp, lc, la, for example

Wp(xi~yk)~lp exp ({lpdp(xi,yk)) (see also Amat et al. [33]). For assignments to

the placeholder y0, we use placeholder distances d0
p,d0

c ,d0
a. The individual factors

are multiplied to define the singleton factors

Wo(xi~yk)~Wp(xi~yk)Wa(xi~yk)Wc(xi~yk): ð10Þ

Figure 6. Examples of matching configurations. Centerlines from two consecutive sections are depicted in blue and green. The random variables x1,x2,x3

are illustrated on the left of each panel. Connections to y1 and y2 indicate assignments to endpoints in the neighboring section. Connections to y0 indicate
assignments to the placeholder. A and C: consistent assignments. C should be preferred because the corresponding points are closer. B and D:
assignments that should be penalized.

doi:10.1371/journal.pone.0113222.g006
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To account for joint assignments, we fill the pair factors as in Amat et al. [33]

by considering the pair of displacement vectors yk{xi, yl{xj induced by a joint

assignment xi~yk, xj~yl. We define ds(xi,yk,xj,yl)~jj(yk{xi){(yl{xj)jj. If ds is

large, then the displacement vectors disagree. For example, ds(x1,y2,x2,y1) in

Figure 6B would be larger than ds(x1,y1,x2,y2) in Figure 6C, because the

connections cross and the displacement vectors are farther apart. We want to

prevent such joint assignments and, therefore, penalize large values of ds by filling

Woo with

Woo(xi~yk,xj~yl)~ls exp ({lsds(xi,yk,xj,yl)): ð11Þ

For assignments that involve the placeholder y0, we use the placeholder distance

d0
s . Furthermore, we set entries to 0 if k~l to account for the mutual exclusiveness

constraint (see Koller and Friedman [30]). To reduce the number of factors that

have non-zero entries, we introduce thresholds that restrict assignments to

include only close-by points x,y, specifically dc(x,y)vtc, dp(x,y)vtp and

da(x,y)vta: We then omit all pair factors for variables that cannot be assigned to

the same yi. In practice, this causes the distribution to decompose into several

independent joint distributions of subsets of the random variables that can be

solved independently.

Maximum a posterior assignment

Each valid matching is a single joint assignment in the distribution P(x1,:::xN).

The goal now is to compute the maximum a posteriori (MAP) assignment

argmaxx1,:::xN P(x1,:::xN), the joint assignment with the greatest probability.

Computing a MAP assignment is not generally feasible, because the problem is

NP-hard.

We use an approximation technique called belief propagation on a graph

representation called a factor graph (see Koller and Friedman [30], Amat et al.

[33] and Kschischang et al. [50]). Briefly, each node in a factor graph represents

one of the factors as depicted in Figure 8. Nodes are connected if their factors

Figure 7. Endpoint distances. dc(x,y) is the direct distance, which is computed as the horizontal distance
between x and y. dp(x,y) is the projected distance, which is computed by projecting x along the line orientation
at x onto a plane through y that is perpendicular to the orientation at y.

doi:10.1371/journal.pone.0113222.g007
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share a variable. Messages that express the belief about a MAP assignment of a

variable are passed between the nodes in a particular order (red arrows and

numbers in Figure 8). Each node uses incoming messages and its own factor value

to compute its own belief. This is in turn passed on to the next nodes. For

example, in Figure 8, the node representing the pair factor for x1,x2 uses message

1 to compute a belief about the assignment of x2 and passes this belief to the node

representing the singleton factor for x2 in message 4. The message passing finishes

if all messages agree. The MAP assignment can be read from the messages in the

graph after convergence.

Unfortunately, convergence is not guaranteed. Success depends on the

underlying model. If two assignments conflict, messages with different beliefs

about MAP assignments will be passed back and forth and the algorithm will not

converge. This oscillatory behavior is often a local problem of a network (see

Koller and Friedman [30], 401 pp, 570 pp). To achieve convergence, we identify

the endpoints that cause oscillation. We then point an expert to these endpoints

and ask to provide a manual assignment. The opinion on a particular assignment

is incorporated into the statistical model by setting the chosen assignment in all

associated factors to 1 and all other entries to 0. We then run belief propagation

again to check if all conflicts have been solved and convergence is achieved. If not,

the expert is asked for more assignments.

To identify nodes that cause oscillation, we compute the disagreement of two

messages mi, mj about variable xk as the L? norm of the difference vector,

jjmi{mjjj?~ max (mi(xk~y1){mj(xk~y1),:::,mi(xk~yl){mj(xk~yl)), where l is

the number of possible states of xk. We collect for each variable each incoming

message for all factors that have the variable. For example, in Figure 8, we would

collect messages 1, 2 and 3 for variable x1, messages 4 and 6 for variable x2 and so

on. We compute the disagreement for each pair of messages. We define the

maximum disagreement for each variable as the maximum of the computed

differences. For each independent network in the factor graph, the variable whose

messages disagree most is then shown to the expert. We refer to these endpoints as

critical nodes.

Figure 8. Illustration of a factor graph with message passing. Circles depict singleton factors. Squares
depict pair factors. Red arrows and numbers indicate a possible message passing schedule.

doi:10.1371/journal.pone.0113222.g008
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Parameters

The PGM algorithm for point matching has 11 parameters: the four weights

lp,lc,la,ls, the three thresholds tp,tc,ta, and the four placeholder distances

d0
p,d0

c ,d0
a,d0

s . We determine the thresholds and the placeholder distances from their

corresponding l’s by choosing a single placeholder significance parameter r in the

range ½0,1�. The placeholder distances are then computed such that the cumulative

distribution function of the exponential distribution 1{e{ld0
reaches 1{r. Thus

d0
p~{ log (r)=lp and equivalently for d0

c , d0
a, and d0

s . We use the same values for

the thresholds: tp~d0
p, tc~d0

c , ta~d0
a. Intuitively, r controls how much of the

cumulative distribution function is ignored by ignoring assignments to real

endpoints above a certain distance. We used r~1% in all our experiments.

We determine reasonable choices for the weights lp,lc,la,ls with a maximum-

likelihood estimate using the ground truth. To do so, we consider Equation 9 as

being the likelihood function for the distribution when only one sample was seen.

Because the maximum-likelihood estimate for the parameter of an exponential

distribution is directly related to the mean of the data, we can compute

l{1
p ~

1
N

XN

i~1
dp(x,y) and equivalently for lc,la, and ls. Figure S12 illustrates

the choice of the parameters for our samples.

The parameter choice influences two aspects of the result. First, while manual

input about assignments necessarily enforces convergence of belief propagation

after a finite number of steps, we cannot know in advance how many assignments

and iterations are needed. To measure it, we experimentally tested the procedure

on the evaluation samples described. We iteratively ran belief propagation (5

passes) and assigned the endpoints that caused oscillation automatically by

reading the assignments from the ground truth until belief propagation converged

(see Results).

Second, the parameter choice might influence the quality of the result. We

distinguish three types of errors: 1) False negatives (FN): A pair assignment in the

ground truth is missing in the automatically computed matching. 2) False

positives (FP): A pair was computed that is not in the ground truth. 3)

Disagreements (D): An endpoint was matched differently in the ground truth and

the automatic assignment. We also measure how many pairs were assigned

correctly, that is, the true positives (TP). To estimate the sensitivity of the

parameters lp,lc,la,ls, we varied their value around the maximum-likelihood

estimate. For each value, we ran belief propagation and assured convergence using

the ground truths as described before. We measured the number of iterations, the

number of manual assignments, and the number of FN, FP and D resulting from

the computed matching. Furthermore, to get an estimate on the error rate, we

Figure 9. Endpoint positions and orientations of the evaluation samples. Endpoint positions and orientations on the facing boundaries of two
consecutive unaligned sections. The different sections are indicated by color. Left: endpoint positions (view from top). Right: line orientations plotted in polar
coordinates. Top: C. elegans. Middle: X. laevis. Bottom: T. brucei. Scale bars 2 mm.

doi:10.1371/journal.pone.0113222.g009
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provide the precision P5
TP
NA

, recall R5
TP
NM

, and fraction of disagreeing matchings

DIS5
D

NM
. NM here is the number of pairs in the ground truth and NA the number

of pairs in the automatic matching (see Results).

Implementation

We use libDai [51] to run belief propagation on the network with the scheduling

proposed by Elidan et al. [52]. The graphical user interface has been implemented

in Amira [40].

Ground Truth for Evaluation

To prepare a ground truth, we applied the described computational methods. The

programmer assigned evidence as she saw fit to the PGM point matching. The

result was then verified and corrected by experts in biology using a graphical user

interface (see Figure S5). The user interface supports inspection of the line

geometry in a perspective view and in a separate view together with an oblique

image slice. Both views can be interactively changed at any time. Different sections

are indicated by colors. To support the verification process, the user interface

automatically navigates to endpoints and restricts the perspective view to show

only neighboring lines and endpoints. The experts made decisions primarily based

on such closeup views. They inspected the three-dimensional situation by

interactively changing the viewing direction to verify that connections of

neighboring lines were consistent. The experts felt that they could make

reasonable decisions. They systematically verified all endpoints close to the section

boundaries and corrected wrong connections or added missing connections. It

was sometimes helpful to verify lines also in an overview that shows larger parts of

a section. The experts did not add new lines that seemed to be completely missing

in neighboring sections. We accepted missing lines, because the primary purpose

of the evaluation was to determine whether the result of automatic alignment and

matching agrees with an expert’s opinion, and some lines are expected to be

missing in tracings from individual sections.

Results

To understand the performance of the computational methods, we tested them on

samples of different characteristics. We used more than 50 pairs of sections from

C. elegans mitotic spindles for general testing. See Figure 1 for an example of a

stitched stack of 20 sections. The C. elegans samples are relatively small in size (the

centrosome is less than 5 mm in diameter). Microtubules extend from a

centrosomal region that can be covered with a single frame tomogram. The

samples contain approximately 1500 lines per section. Endpoints are spread in a

ring-like structure around the microtubule organizing center and orientations are

distributed homogeneously (Figure 9 top). We limited detailed testing to three
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pairs of consecutive sections, for which we created a ground truth. Two experts

independently verified and corrected the computed matching for the whole

section boundaries. One of the ground truth samples is displayed in Figure S6.

We also used a stack of three sections of a X. laevis meiotic spindle. The sample

is larger, and tomogram montaging was necessary. Each section contains

approximately 3500 lines. Finding a transformation is hard due to deformations.

Establishing endpoint correspondence is difficult, because microtubules are

organized in dense bundles. Figure 9 (middle) depicts endpoint positions and line

orientations for a small area of these sections. Line orientations are clustered.

Unlike in the C. elegans centrosome, most microtubules in the X. laevis spindle

have a similar orientation. Since the sections are huge, we created a ground truth

only for a subregion. Manual verification and correction was preformed on a

region that contains approximately 1000 lines per section (see Figure S7). The

subregion covers a relevant part of the tomogram and should contain a variety of

typical configurations, which were indeed observed by the expert during

verification. We did not, however, perform additional tests that the region is

representative.

Furthermore, we used a sample of the sub-pellicular microtubule array of T.

brucei, which is a sheet of parallel microtubules underlying the plasma membrane

(reviewed in Gull [53], Farr and Gull [54]). Figures 9 (bottom) depicts endpoint

positions and line orientations of two consecutive sections. Tomogram montaging

was used. Each section contains 200–400 microtubules. This sample is challenging,

because microtubules are arranged in sheets. No ground truth was prepared for

the T. brucei data.

The running times of all algorithms were below 2 minutes per ground truth

section pair (single threaded optimized code, CPU AMD Opteron 6174).

Initial alignment

Our initial alignment algorithm worked reliably for C. elegans tomograms and

reasonably well for X. laevis tomograms, but it failed on T. brucei tomograms. A

reasonable initial alignment was found for more than 50 pairs C. elegans sections.

We used 50 endpoints in each section to build the DCG. In approximately 10% of

the cases, we had to scale one of the two sections between {5% and z5% to

obtain a reasonable result. We tried several uniform global scalings until we found

a reasonable result. For four X. laevis samples (each contained approximately 3500

lines), we had to pick at least 100 endpoints from each section, restrict the size of

the cliques in the DCG to 10 endpoints, and test different scalings to obtain a

rough alignment. For T. brucei, we rotated the sections to simulate completely

unaligned tomograms (Figure 10, top left). The algorithm failed to compute an

initial transformation. No matching points could be identified by comparing

angles of line orientations. The reason probably is that all lines are organized in a

regular pattern more or less in parallel with a fixed spacing (Lacomble et al. [9]).
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Fine alignment

Robustness of linear alignment

We tested robustness of the linear alignment and found that our algorithm for

linear alignment from orientation (Figure S1) and our algorithm for linear

alignment from position and orientation (Figure S2) seem to be a bit more robust

than the original rigid point set registration algorithm by Myronenko and Song

(Figure 2 in [28]). To test robustness, we rotated one section of a pair of correctly

aligned sections for several samples over a range of 360˚ in 5˚ steps and tested

whether the three algorithms were able to rediscover the original rotation. We

used two samples from the C. elegans ground truth and two randomly chosen

subregions from the X. laevis samples. Results are summarized in Figure 11. All

algorithms found correct alignments for small rotations. The algorithm for linear

alignment from orientation found the original rotation in more cases than the

other algorithms. Upon convergence, s2 was 8:68:10{5+1:25:10{4 (mean +
standard deviation) when the rotation angle was correctly computed and

6:92:10{2+7:09:10{2 when the angle was incorrect. k was 123+16:4 for correct

and 22:7+18:9 for incorrect results. Correct results can be clearly distinguished

from incorrect results by inspecting k and s2.

We also tested the algorithms on the T. brucei sample (Figure 10) and observed

that satisfactory results could only be achieved by applying the linear alignment in

two steps. The original rigid point set registration algorithm by Myronenko and

Song (Figure 2 in [28]) and our algorithm for linear alignment from position and

Figure 10. Alignment of T. brucei. The view is from the top. Unless stated otherwise, colors indicate 6
different sections. The stacking order is best seen in the final result (bottom right) at the right side: green,
cyan, purple, yellow, blue, green. The length of the microtubule array is approximately 8mm. Top left: initial
position of unaligned sections. Only endpoints are displayed. Top right: The result after applying the initial
alignment algorithm. Endpoints in all sections are depicted in black; lines in gray. The subset of endpoints that
were used for computing the transformation are highlighted in red. Some pairs of sections are reasonably
aligned. Other pairs are unaligned. Bottom left: endpoints after applying our algorithm for linear alignment from
orientation (Figure S1). All sections are reasonably rotated. Bottom right: result after applying our algorithm for
linear alignment from position and orientation (Figure S2). Endpoints and lines are displayed, both colored by
section. All sections are reasonably aligned.

doi:10.1371/journal.pone.0113222.g010
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orientation (Figure S2) both failed to compute a correct result from the initial

alignment (Figure 10, top right). A combination of the following two steps,

however, yielded a good result: By using our algorithm for linear alignment from

orientation (Figure S1) first, a reasonable rotation could be computed (Figure 10,

bottom left). In the second step, a refined alignment could then be computed

(Figure 10, bottom right) with our algorithm for linear alignment from position

and orientation (Figure S2).

Displacements during elastic alignment

The original CPD algorithm (Non-rigid point set registration algorithm, Figure 4

in [28]) and our algorithm for elastic alignment (Figure S3) compute similar

displacements. We compared the two algorithms by measuring the distances of

the manually connected endpoints before and after applying the transformation to

the X. laevis ground truth. Figure 12 shows the histograms of the distances. Both

methods performed similarly. The original CPD, however, needed roughly 1.5 as

many iterations. We measured similar factors for other samples.

Limitations

The algorithm for elastic alignment yielded a reasonable result for most parts of

the T. brucei sample. However, some parts were not aligned properly, see Figure

Figure 11. Stability of alignment. We rotated one section of a pair of correctly aligned sections for several
samples over a range of 360˚ at 5˚ steps, as depicted by the circles, and tested whether the algorithms
recovered the originally correct orientation, which is indicated by a vertical bar at the bottom of each circle.
Dark gray indicates failure of the algorithm to recover the original rotation angle. Light gray indicates that the
algorithm discovered the correct rotation. All algorithms found correct alignments for small rotations (light gray
area in bottom half of each circle). The algorithm for linear alignment from orientation was most successful
(largest light gray areas in middle row). Top: Rigid point set registration algorithm by Myronenko and Song
(Figure 2 in [28]). Middle: Algorithm for linear alignment from orientation (Figure S1). Bottom: Algorithm for
linear alignment from position and orientation (Figure S2).

doi:10.1371/journal.pone.0113222.g011
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S8. Here, the segmented lines were often too long or too short, and the

assumption that point displacements are coherent in a small neighborhood was

violated. The proposed deformation model failed to handle such cases.

Precisely locating the relevant part of a sample under an electron microscope is

difficult, and serial tomograms, therefore, might be shifted to each other. If the shift

is large, only a small portion of the lines in one section has a corresponding

counterpart in the next section. To test whether the algorithms handles small

overlaps, we cut two regions with little overlap out of a X. laevis (Figure S9) and

applied the alignment algorithms. None of the algorithms yielded a reasonable result.

Endpoint matching

Parameters of the probabilistic graphical model

The described maximum-likelihood estimate delivers reasonable parameters, and

matching results are relatively insensitive to parameter variations. We used the

ground truth of the X. laevis sample to estimate parameters: After linear alignment

but before elastic alignment, parameters were estimated as l{1
c ~771A

0
,

l{1
p ~577A

0
, l{1

s ~297A
0
, and l{1

a ~5:80. After applying the algorithm for elastic

alignment, parameters were estimated as l{1
c ~243A

0
, l{1

p ~170A
0
, l{1

s ~293A
0
,

and l{1
a ~5:80 (see Figure S12). The smaller values for l{1

c and l{1
p confirm that

Figure 12. Distances before and after alignment. Histogram of the distances between corresponding endpoints for the X. laevis ground truth before and
after applying the non-rigid point set registration algorithm by Myronenko and Song (Figure 4 in [28]) and our algorithm for elastic alignment.

doi:10.1371/journal.pone.0113222.g012
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the elastic alignment moved corresponding endpoints closer. To fine-tune the

parameters and test their sensitivity, we varied each parameter separately around

its maximum-likelihood estimate and measured the performance of the PGM

matching on the X. laevis sample to which the algorithm for elastic alignment had

been applied (see Figure 13). The performance was stable over a wide parameter

range. We also estimated the parameters from the C. elegans samples to which the

algorithm for elastic alignment had been applied: l{1
c was in the interval

(178A
0
, 300A

0
), l{1

p was in the interval (105A
0
, 121A

0
), l{1

s was in the interval

(155A
0
, 247A

0
), and l{1

a was in the interval (6:70, 8:10).

Figure 13. Matching performance over parameter variations. Displayed are false negatives (FN), false positives (FP), number of manual assignments,
number of iterations, and number of disagreements when varying matching parameters around their maximum-likelihood estimates (indicated by solid
vertical line) for the X. laevis sample: top left: by direct position distance parameter l{1

c ; top right: by shift difference parameter l{1
s (the dashed vertical line

indicates the value that we chose instead of the maximum-likelihood estimate); bottom left: by angle difference parameter l{1
a ; bottom right: by projected

distance parameter l{1
p .

doi:10.1371/journal.pone.0113222.g013
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We used the maximum-likelihood estimates that were computed from the X.

laevis sample after elastic alignment for further experiments, except for the pair

shift parameter l{1
s , which we set to 150A

0
, because fewer manual corrections were

required at this value (see Figure 13). We saw no reason to choose different

parameters for individual specimens, because the matching was stable over a wide

parameter range; the estimates from the C. elegans samples were in a similar range

as the estimates from X. laevis; and the matching quality later turned out to be

good for C. elegans.

Quality of matching

We compared the result of the PGM matching with the ground truth samples. We

used a placeholder significance of r~1% in all experiments. Figure S10 displays

typical differences that we observed for the X. laevis sample. When the PGM

matching disagreed with the ground truth, the PGM’s choice often seemed

reasonable, too. Some situation with disagreement seemed inherently difficult to

decide. In some situations, this might be caused by lines that are missing in one

section. Figure S11 displays typical differences that we observed for the C. elegans

samples. We observed far fewer disagreements than for the X. laevis sample. The

reason probably is that lines are oriented more arbitrarily. They do not form

bundles, and ambiguities seem less likely. We observed a few additional or missing

lines in the PGM matching.

We found that the result of the PGM matching clearly outperforms an MWM

for the three sections of the X. laevis spindle. Table 1 contains a quantitative

comparison. We first set the parameters to their maximum-likelihood estimates

from above and computed the matching for the sample to which the algorithm for

elastic alignment had been applied (Table 1, configuration X1). To examine the

effect of parameter variations, we ran the matching again with parameters set to

twice their maximum-likelihood estimate (Table 1, configuration X2). To test

stability of the PGM with respect to alignment quality, we ran the matching on the

X. laevis sample to which the algorithm for linear alignment from position and

orientation had been applied but not the algorithm for elastic alignment. We used

the maximum-likelihood parameters as estimated above for this situation:

l{1
c ~771A

0
, l{1

p ~577A
0

and l{1
a ~5:80 except for the pairwise shift l{1

s , which

we again set to 150 (Table 1, configuration X3). The results indicate that the PGM

approach is unaffected by parameter variations and imperfect alignment in terms

of precision (0.96), recall (0.95) and fraction of disagreeing matches (0.04); see

Methods above for definition of the quality measures. MWM performed worse,

with precision and recall dropping below 0.9 for parameters at twice the

maximum-likelihood estimate and below 0.65 without elastic alignment. In all

cases, only a small fraction of endpoints (v3%) had to be assigned manually to

achieve convergence. It took an expert 1 h per 100 nodes to provide assignments.

Checking unconnected lines after the final matching took 1 h per 500 endpoints.

On C. elegans samples, the PGM and the MWM delivered comparable results.

We tested on the six C. elegans ground truths (3 datasets, 2 experts). The bottom

part of Table 1 displays the mean of the performance measures. Both approaches
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performed equally well (precision 0.97, recall 0.96). We did not measure a

significant difference between experts. For the PGM, all networks always

converged without user input.

Limitations

We tested the PGM matching on the T. brucei sample to which the algorithm for

elastic alignment had been applied. We found that it is difficult to assign the

critical nodes due to the regular pattern formed by the microtubules. Figure S8

shows examples of configurations for which the algorithm requested assignments.

We failed to decide whether lines were missing and which endpoints should be

matched.

Discussion

We presented computational methods for automated stitching of filaments across

serial sections. Our tests on microtubule centerlines indicate good agreement of

the automated results with experts’ opinions for spindle samples (approximately

5% disagreeing connections per section boundary), which suggests that the

proposed computational methods can be used in practice to accelerate an expert

analysis. It is difficult, however, to conclude how close the results are to the true

physical reality. The ground truth that we used for measuring the accuracy was

created by correcting the output of the proposed computational methods. The

experts might have been influenced by the output and might have decided more

similar to the computational methods compared to what they would have decided

if they had started from scratch. Our measurements of accuracy might, therefore,

be biased in favor of our approach. On the other hand, when the computational

Table 1. Comparison of probabilistic matching (PGM) and maximum weighted matching (MWM).

X. laevis

PGM MWM

P R DIS Assign. P R DIS

X1 0.956 0.951 0.038 4 0.901 0.904 0.088

X2 0.950 0.953 0.039 8 0.851 0.874 0.121

X3 0.956 0.948 0.038 19 0.609 0.634 0.349

C. elegans

PGM MWM

P R DIS Assign. P R DIS

0.946 0.975 0.01 0 0.934 0.97 0.018

Precision P: ratio of correct pairs to total pairs found by the matching. Recall R: ratio of correct pairs to total pairs in the ground truth. Disagreement DIS: ratio
of automatic matchings that disagree with the ground truth. Assign.: number of manual assignments. X. laevis: X1: after elastic alignment; PGM parameters
l{1

c ~243A
0
, l{1

p ~170A
0
, l{1

a ~5:80, and l{1
s ~150A

0
. X2: after elastic alignment; PGM parameters l{1

c ~486A
0
, l{1

p ~340A
0
, l{1

a ~11:60, and l{1
s ~150A

0
. X3:

after linear alignment, but before elastic alignment; PGM parameters l{1
c ~771A

0
, l{1

p ~577A
0
, l{1

a ~5:80, and l{1
s ~150A

0 . C. elegans: after elastic alignment;

mean of three samples with ground truth by two experts; PGM parameters l{1
c ~243A

0
, l{1

p ~170A
0
, l{1

a ~5:80, and l{1
s ~150A

0 .

doi:10.1371/journal.pone.0113222.t001
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methods disagreed with the ground truth, both choices often seemed reasonable,

which suggests that some connections might be inherently difficult to decide. We

also observed situations in which lines seemed to be completely missing in one

section, so that no reasonable connection could be made. Since some missing lines

are expected (from our experience, 4% after automatic tracing, see Weber et al.

[1]), we did not correct them in our evaluation. For the microtubule arrays in T.

brucei, the methods failed to yield satisfactory results, but experts also found it

difficult to decide locally how to connect lines. We think that the proposed

methods will be useful for certain experiments, like the analysis of spindle

microtubules, while they might not be immediately applicable in other

experiments. A good indicator whether the methods will work is probably whether

an expert is able to confidently decide locally how to connect microtubule

centerlines across section boundaries.

Using line orientation for the alignment has several advantages. In the

experiments on robustness of the linear alignment, our algorithm for linear

alignment from orientation succeeded in more cases than the other algorithms.

This algorithm furthermore was the only algorithm that succeeded in computing

an initial alignment for the T. brucei sample. Both results suggest that including

orientation in the formulation stabilizes results. Orientation probably helps

avoiding local extrema during optimization that would arise if only endpoint

positions were used. This seems reasonable if there are preferred orientations that

clearly indicated a certain alignment, such as in the X. laevis and T. brucei samples

(see Figure 9). But orientation might help, because it may contain different

information than position in general. The additional information might be the

reason that using orientation accelerated convergence of expectation maximiza-

tion for our algorithm for elastic alignment by a factor of 1:5 compared to the

non-rigid point set registration algorithm by Myronenko and Song (Figure 4 in

[28]). Finally, line orientation allows an estimation of the quality of the result by

inspecting the concentration parameter k in addition to s2. A large k and a small

s2 were clear indicators that the alignment succeeded. The ability to assess the

result in this way without ground truth can be valuable in practice.

Using orientation for stitching has received little attention in the literature as of

yet. Our approach is similar to the approach by Hogrebe et al. [55] and Dercksen

et al. [23], who use segmented neuron centerlines to compute an alignment for

serial sections of neurons imaged with confocal microscopy. The major difference

of our approach is that it uses orientation and probabilistic methods. We think

that the latter is essential here, because centerlines traced in electron tomograms

are subject to noise and artifacts, and modeling uncertainty might be key to

achieving reliable results.

The probabilistic approach to endpoint matching seems important. The PGM

matching clearly outperformed a maximum weighted matching (MWM) if only a

linear alignment was applied but no elastic alignment (Table 1, X3). Furthermore,

the matching results were robust to parameter variations (Table 1, X2 and

Figure 13). Both results suggest that a PGM is more reliable than a MWM and
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therefore the preferred approach in practice, although the performance of the

MWM and the PGM matching were similar if the algorithm for elastic alignment

had been applied and parameters were well chosen (Table 1, X. laevis X1 and C.

elegans). For the C. elegans samples, the reason might be that orientation already

limits the possible candidates and few ambiguities remain. The primary reason for

the good performance of the PGM is probably that the pair factors enforce a

coherent shift of neighboring assignments. Another reason might be that we seek

user input for unclear situations. Manually assigned endpoints obviously agree

with the expert’s opinion in the final result. They probably also stabilize the

decision on neighboring connections. Assigning endpoints manually is tedious,

but in all cases, manual assignment of less than 3% of the endpoints was sufficient

to achieve convergence. This seems to be an acceptable effort considering the

quality of the result.

The PGM matching seems relatively robust. The maximum-likelihood

estimates for the parameters were in a similar range for X. laevis and the C. elegans

samples to which the algorithm for elastic alignment had been applied. The

maximum-likelihood estimates for the direct and projected distances, however,

were larger before elastic alignment. This is expected, because a successful

alignment moves points closer and reduces the maximum-likelihood estimate,

which is the mean distance between corresponding points. For similar alignment

quality, similar differences in position and orientation of corresponding pairs can

be expected even for different samples. The matching results were relatively

unaffected by variations of the PGM parameters in our experiments on the X.

laevis samples. Together this suggests that the same PGM parameters can probably

be safely used for different samples if the alignment quality is known to be similar.

But different parameters should probably be used for different experimental

conditions that may introduce different errors.

The computational methods all rely on a model for facing section boundaries

that makes certain assumptions about the tomograms (see details in section on

computational methods): Boundaries are modeled as parallel z-planes, assuming

that a skilled operator can conduct experiments such that section boundaries are

relatively flat and parallel. Microtubules are modeled as straight lines, assuming

that many microtubules are sufficiently perpendicular to the section boundary.

Endpoints are modeled as points that are located exactly at the section boundary,

assuming that more microtubules cross the section boundary than end within a

section. The results suggest that the model is reasonable for the samples we used.

For different conditions, however, it might be inappropriate and results should be

carefully evaluated. Such conditions could be microtubules that are oriented

mostly parallel to the section boundaries or many short microtubules that are

likely to end within sections.

Despite the encouraging results, the limited accuracy should be considered in a

subsequent analysis. Stitching errors may, in particular, bias statistics on length

and number of microtubules. In our experiments, 95% of the computed

connections agreed with an expert’s opinion, but 4% (X. laevis) and 1% (C.

elegans) connections disagreed (Table 1). Even if disagreements counterbalanced a
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bit, 2% to 4% of the connections might be completely missing. This error will add

up for microtubules that traverse several sections. For example, the number of

microtubules might be overestimated by 80% in a stack of 20 sections in the worst

case. In practice, unconnected lines should always be verified and the impact of

the observed errors should be estimated for a specific analysis. Such a manual

verification takes time (one hour per 500 corrections in our experience). Yet, it is

still substantially less work than connecting all lines completely manually. Another

benefit of a manual verification is that other errors such as line tracing errors may

also be detected (from our experience 4% of the lines may be missing after

automatic tracing, see Weber et al. [1]).

A potential limitation of our current approach is that the initial alignment

based on the DCG might not scale for a larger number of endpoints. Although the

method was successful on all C. elegans and X. laevis examples, we believe that it

might be too slow for samples with more than 4000 endpoints per section. If the

global structure of the sample is obvious, a simple approach for initial alignment

might work, such as aligning the center and the eigenvectors of the mass

distribution. If global structure is not apparent, a feature descriptor approach like

Preibisch et al. [19] might be a suitable solution; or the initial alignment could be

completely skipped and replaced with the algorithm for linear alignment from

orientation. The algorithm could be applied from several starting points and the

best solution could be automatically chosen by inspecting k and s2.

The combination of methods that we propose might also be useful for stitching

other filamentous structures. However, one major assumption of the algorithms is

that lines are rather straight, which might not be the case for other applications.

For curved lines, our approach could perhaps be improved by incorporating a

measure of higher order line properties such as curvature. Even if lines are

straight, complications might arise. For example, we believe that computing a

matching for the sheets of parallel microtubules in T. brucei would require a

different approach. Establishing correspondences is particularly challenging due to

the periodicity in the sub-pellicular microtubule array.

An alignment of tomograms based on microtubules might be more accurate

than an alignment based on a few manually selected landmarks. Applying the

proposed methods may be useful even for samples that would otherwise be

aligned manually. If tomograms contain microtubules in all relevant parts, it

might make sense to segment microtubules using automatic tracing [1] and apply

the proposed alignment algorithms even if microtubules are not the focus of that

study.

In summary, we developed a tool to robustly stitch segmented microtubule

centerlines across the gap between serial electron tomograms. We believe that our

software will greatly facilitate research on microtubule organization in cell

biology. Up to now, the analysis of microtubules in electron tomograms has been

mostly based on observations of single sections or specimens containing only a

few hundred microtubules. A quantitative analysis of length or number of

microtubules was not possible for samples containing thousands of microtubules

such as the spindles of C. elegans and X. laevis. The approach we introduced here
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should allow the analysis of microtubule centerlines over long distances across

serial electron tomograms for certain structures, such as the spindle apparatus.

Supporting Information

Figure S1. Algorithm for linear alignment from orientation.

doi:10.1371/journal.pone.0113222.s001 (TIF)

Figure S2. Algorithm for linear alignment from position and orientation.

doi:10.1371/journal.pone.0113222.s002 (TIF)

Figure S3. Algorithm for elastic alignment. The differences to the non-rigid

point set registration algorithm by Myronenko and Song [28] (Figure 4 therein

for two dimension D~2) are the computation of the posterior pold(m,~mjx,~x) and

the update of k.

doi:10.1371/journal.pone.0113222.s003 (TIF)

Figure S4. Deformations caused by electron beam exposure. X. laevis sample;

scale bars 10mm. Left: Low-resolution image before acquisition. Middle: Same

sample after an exposure time of 11 hours, which is necessary for multiple area

acquisition. The sample is substantially damaged. Right: Surface that represents

boundary of relevant image signal in the reconstructed volume. The surface was

manually outlined using IMOD [13]. The tomogram for the surface in the

topmost panel was acquired first and consequently has the least amount of

deformation. The tomogram for the surface in the bottommost panel was

acquired last and consequently has the largest amount of deformation.

doi:10.1371/journal.pone.0113222.s004 (TIF)

Figure S5. Graphical user interface for manual inspection and correction. The

main interface elements are a perspective view of the line geometry (right) and a

view that shows an oblique image slice together with surrounding lines (center).

Lines from two different sections are indicated in green and blue. Black lines

indicate connections across the section boundary. Endpoints are displayed in grey.

The user interface elements on the left control line display parameters and support

navigation, such as adjusting the views to a specific endpoint. Top: The

perspective view is adjusted to show the full thickness of both sections. A line and

its continuation in the neighboring section are highlighted in red. The line ends in

the middle of the blue section, which probably indicates a natural microtubule

end. Bottom: Closeup view as it is typically used for inspection. The user interface

automatically adjusts the view to an endpoint and the surrounding lines. The

operator can then inspect and make modifications. The same line as in the top

panel is highlighted in red, but here only in one section.

doi:10.1371/journal.pone.0113222.s005 (TIF)

Figure S6. C. elegans tomogram and ground truth for evaluation. Top left: Slice

through tomogram (scale bar 2 mm). Bottom left: View from top on ground truth

microtubule centerlines for two consecutive sections. Right: View from the right

side (as indicated by the gray arrow) at the ground truth microtubule centerlines
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with increasingly closer views from top to bottom. The depth of view has been

restricted by a clipping plane to reduce overdrawing. Connections across the section

boundary are indicated in red (endpoints and connecting lines). Blue endpoints are

unconnected; microtubules probably naturally end there within a section.

doi:10.1371/journal.pone.0113222.s006 (TIF)

Figure S7. X. laevis tomogram and ground truth for evaluation. Top: Slice

through a tomogram (scale bar 2 mm). The orange box indicates the region for

which a ground truth was prepared. Middle: View from side (as indicated by the

gray arrow) at the ground truth microtubule centerlines for three consecutive

sections inside the orange box. Bottom: Two closeup views. The depth of view has

been restricted by a vertical slice through the tomogram to avoid overdrawing

(visible in light gray in the background; some lines are partially hidden).

Connections across section boundaries are indicated in red (endpoints and

connecting lines). Blue endpoints are unconnected; microtubules probably

naturally end there within a section, or the corresponding microtubule centerline

in the next section is missing.

doi:10.1371/journal.pone.0113222.s007 (TIF)

Figure S8. Alignment and matching of T. brucei samples. Colors indicated

different sections. Top: View from top onto results after applying the algorithm

for elastic alignment (Figure S3). Some endpoints are obviously not properly

aligned (yellow endpoints on left; cyan on right). The reason is probably that

endpoints do not outline the same shape in each section, because the outline

varies substantially from section to section. Bottom: View from side at sections for

which user input during matching was requested. Red boxes indicate two critical

nodes that an expert would have to assign manually. The correct continuation

between sections is hard to impossible to decide locally. Bottom left: The

continuation is obviously unclear. Bottom right: Assuming the small blue line that

is visible close to the right image border is assigned to the yellow endpoint right

above, then the assignment at the red box in the center is unclear.

doi:10.1371/journal.pone.0113222.s008 (TIF)

Figure S9. Alignment failure on sections with partial overlap. Left: example of

two sections with partial overlap. Middle: Result of applying the rigid point set

registration algorithm by Myronenko and Song (Figure 2 in [28]). Right: Result of

applying our algorithm for linear alignment from position and orientation (Figure

S2). Both algorithms failed to compute a reasonable alignment.

doi:10.1371/journal.pone.0113222.s009 (TIF)

Figure S10. Comparison with ground truth for X. laevis sample. Views at the

ground truth in comparison to the PGM matching that was computed after the

algorithm for elastic alignment had been applied. In-section centerlines are grey.

Endpoints that agree between the ground truth and the PGM matching are

indicated in blue. Endpoints that are connected in the ground truth and

connected differently in the PGM matching are indicated in red. Ground truth

connections are indicated in blue. Connections that are in the PGM matching but

Automated Stitching of Microtubule Centerlines

PLOS ONE | DOI:10.1371/journal.pone.0113222 December 1, 2014 32 / 36

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0113222.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0113222.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0113222.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0113222.s009


not in the ground truth are indicated in red. A red connection with two blue

endpoints indicates that the connection is in the PGM matching but not in the

ground truth (false positive). The depth of view has been restricted by a vertical

slice through the tomogram to avoid overdrawing (visible in light gray in the

background; some lines are partially hidden). A, B: all connections agree. C, D: the

PGM chose different connections. E, F, G: the PGM made additional connections.

H: rare situation with a line running nearly horizontally that has a long

connection in the ground truth but a short connection in the PGM matching. I, J:

the top and bottom section contain more lines than the middle section; lines are

probably missing in the middle section. K, L: more complex situation with

bundles of many parallel lines.

doi:10.1371/journal.pone.0113222.s010 (TIF)

Figure S11. Comparison with ground truth for C. elegans sample. Views at the

ground truth in comparison to the PGM matching that was computed after the

algorithm for elastic alignment had been applied. See Figure S10 for general

explanation. In addition, here a blue connection with two red endpoints indicates

that the connection is in the ground truth but not in the PGM matching (false

negative). A, B, D, E: the PGM chose additional connections. C: the PGM chose a

different connection; rare in C. elegans. F, G, H: the PGM decided against

connections that are in the ground truth.

doi:10.1371/journal.pone.0113222.s011 (TIF)

Figure S12. Parameter estimation for PGM factors. Plots show normalized

histograms of mutual angle da (top left), projected distance dp (top right), shift

difference ds (bottom left), and direct distance dc (bottom right) as obtained by

analyzing connections that were verified by an expert. Blue vertical lines:

Estimated means l{1
a ,l{1

p ,l{1
s ,l{1

c . Red curve: corresponding exponential

distributions l exp ({lx). Green vertical line: Placeholder parameters d0
a,d0

p,d0
s ,d0

c

computed with a placeholder significance of r~1%. Dashed lines (bottom left)

indicate distribution for our choice of l{1
s ~150A

0
and corresponding d0

s .

doi:10.1371/journal.pone.0113222.s012 (TIF)

Figure S13. Objective function Q plotted against s2. Left: the objective function

Q~a=s2zb log s2 plotted against s2 for different values of a and b. The smaller

the ratio a=b, the sharper the minimum becomes. Right: the derivative

LQ=Ls2~{a=s4zb=s2 plotted against s2 for different values of a and b. If s2 is

initialized on the right side of the peak, the minimum might not be found when

optimizing numerically.

doi:10.1371/journal.pone.0113222.s013 (TIF)

Figure S14. Q derivatives for minimization in algorithm for linear alignment

from position and orientation (Figure S2).

doi:10.1371/journal.pone.0113222.s014 (TIF)

Text S1. Detailed description of algorithms for fine alignment.

doi:10.1371/journal.pone.0113222.s015 (PDF)
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10. Höög JL, Huisman SM, Sebö-Lemke Z, Sandblad L, McIntosh JR, et al. (2011) Electron tomography
reveals a flared morphology on growing microtubule ends. J Cell Sci 124: 693–698.

11. McDonald KL, O’Toole ET, Mastronarde DN, McIntosh JR (1992) Kinetochore microtubules in PTK
cells. J Cell Biol 118: 369–383.

12. Ding R, McDonald KL, McIntosh JR (1993) Three-dimensional reconstruction and analysis of mitotic
spindles from the yeast, Schizosaccharomyces pombe. J Cell Biol 120: 141–151.

13. Kremer JR, Mastronarde DN, McIntosh J (1996) Computer Visualization of Three-Dimensional Image
Data Using IMOD. J Struct Biol 116: 71–76.

14. McIntosh JR, O’Toole E, Zhudenkov K, Morphew M, Schwartz C, et al. (2013) Conserved and
divergent features of kinetochores and spindle microtubule ends from five species. J Cell Biol 200: 459–
474.

Automated Stitching of Microtubule Centerlines

PLOS ONE | DOI:10.1371/journal.pone.0113222 December 1, 2014 34 / 36



15. O’Toole ET, Winey M, McIntosh J, Mastronarde DN (2002) Electron tomography of yeast cells. In:
Christine Guthrie GRF, editor, Guide to Yeast Genetics and Molecular and Cell Biology Part C, Academic
Press, volume 351 of Method Enzymol. pp. 81–96.
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