
A Sub-Quadratic Algorithm for
Approximate Regular Expression Matching

Sun Wu, Udi Manber1, and Eugene Myers2

Department of Computer Science

University of Arizona

Tucson, AZ 85721

May 1992

Keywords: algorithm, approximate string matching, finite automata, regular expressions,

sequence comparisons.

ABSTRACT

The main result of this paper is an algorithm for approximate matching of a regular expression of

size m in a text of size n in time O(nm/ log d +2 n), where d is the number of allowed errors. This

algorithm is the first o(mn) algorithm for approximate matching to regular expressions.

1. Introduction
Let A = a 1 a 2 a 3 ...a n and B = b 1 b 2 b 3 ...b m be two sequences of characters from a finite

fixed alphabet Σ. An edit script from B to A is a sequence of insertions, deletions, and/or substitu-

tions to B that result in A. The problem of determining a shortest edit script (SES) between two

sequences of symbols has been studied extensively ([Hi75, HS77, My86, NKY82, Uk85, WF74,

WMMM90] is a partial list). The approximate string-matching problem is a similar problem, with

the difference being that B is to be matched to any substring of A (that is, we want the match B

inside A) rather than to all of A. The approximate regular-expression matching problem is similar

to the approximate string-matching problem, except that instead of a simple string as a pattern we

are given a regular expression R of size m. We want to find all the substrings in A that are within

edit distance d to strings that can be generated by the regular expression.

We assume a unit-cost RAM model, in which arithmetic operations on O(n)-size numbers

and addressing in an O(n)-size memory can be done in constant time. This model, of course,

holds in most practical situations. This assumption allows us to perform some operations on

O(log n) bits in constant time. In practice, one can indeed perform operations on w bits, where w

is the computer word size, in essentially one unit of time, and most algorithms implicitly assume
������������������������������������

1 Supported in part by an NSF Presidential Young Investigator Award (grant DCR-8451397), with matching funds from

AT&T, and by NSF grant CCR-9002351.

2 Supported in part by NLM grant LM04960, and by NSF grant CCR-9002351.

2

so. Algorithms that utilize this ability (besides regular arithmetic operations and addressing) are

sometimes called 4-Russian algorithms, after a seminal paper [ADKF70] that used that technique

for Boolean matrix multiplication. This is, however, a much more general technique, which can

lead to very impressive speedups in practice. We call it the bit-parallel technique. In our opinion,

this technique is underutilized in the theory of algorithms.

Algorithms for approximate regular expression matching with running time of O(mn) have

been given by [WS78] and [MM89]. Wu and Manber [WM92] presented another algorithm

(which is part of the agrep package) that performs very fast in practice for small regular expres-

sions. Masek and Paterson [MP80] used the bit-parallel technique to obtain an O(mn/log n) algo-

rithm for finding the edit distance between two simple strings. Myers [My92] used the bit-parallel

technique to speed up the exact regular expression matching problem (i.e., no errors are allowed)

to O(mn/log n). Speeding up the approximate case is listed as the major open question in his

paper. We also developed simpler and faster algorithms for special types of regular expressions,

called limited regular expressions, which are common in practice [WMM94]. In this paper we

present a new algorithm for the approximate matching of regular expressions with a running time

of O(nm/log d +2 n).

2. Preliminaries
Most string-matching algorithms operate by scanning the text, character by character, recording

some information and looking for matches. The question is what information to maintain and how

to process it. We take a general approach. We model the scanning by an automaton. In each step

we scan one character and model the information we have so far as a state in the automaton.

Thus, processing the next step after seeing the next character corresponds to moving in the auto-

maton from one state to another. The main problem, of course, is to find a good short encoding of

the states of the automaton, and a good fast traversal algorithm for the automaton.

The input to the problem is a text A = a 1 a 2 a 3 ...a n, a regular expression R of size m, and d

the number of allowed errors (i.e., insertions, deletions, and/or substitutions). We want to find all

the substrings in A that are within d errors to strings that can be generated by regular expression R.

We use the approach of dividing the pattern into parts and processing each part in constant time.

In a nutshell, we first use Thompson’s construction of a non-deterministic finite automaton (NFA)

for the regular expression [Th68], then partition the NFA into modules (following Myers’ con-

struction [My92]) such that the modules ‘communicate’ among themselves in a particular way.

The state of each module is maintained during the scan of A with two DFA’s in an amortized

fashion. We design the recurrences to take advantage of the construction. We then put it all

together to improve the running time.

We start by briefly describing Thompson’s method for constructing an NFA for a given reg-

ular expression (see also [Th68, HU79, ASU86]).

3

(1) For each symbol a ∈ Σ in R, an NFA accepting ’a’ consists of a start node θ and an accept-

ing node φwith a transition a from θ to φ.

(2) Suppose N(s) and N(t) are NFA’s for regular expressions s and t respectively, then the fol-

lowing three construction rules are used to construct NFA’s for N(s| t), N(st), and N(s*).

(2.1) N(s| t): We add two new nodes: θ, a new start node with ε-transitions to the start nodes of

N(s) and N(t) (which cease to be start nodes), and φ, the accepting node of N(s| t), with ε-

transitions from the accepting nodes of N(s) and N(t) (which we don’t call accepting nodes

anymore) to θ.

(2.2) N(st): The start node of N(s) becomes the start node of N(st) and the accepting node of

N(t) becomes the accepting node of N(st). The accepting node of N(s) is merged with the

start node of N(t).

(2.3) N(s*): Like (2.1) we add two nodes where θ is the new start node and φ is the new accept-

ing node. There is a new ε-transition from the accepting node of N(s) to the start node of

N(s), and a new ε-transition from θ to φ. Also, there is an ε-transition from θ to the start

node of N(s) and an ε-transition from the accepting node of N(s) to φ. The transition from

the accepting node of N(s) to the start node of N(s) is called a back edge.

The NFA N(R) constructed by Thompson’s algorithm has the following properties

([ASU86, HU79]):

1. The number of nodes in N(R) is no more than twice the number of the symbols and opera-

tors in R.

2. N(R) has one start node and one accepting node. The start node has no incoming edges and

the accepting node has no outgoing edges.

3. Each node of N(R) has at most two incoming edges and two outgoing edges, which implies

that the number of edges is bounded by O(| R|). If a node has two incoming edges, then

both are ε edges.

4. Any loop-free path on N(R) contains at most one back edge, because the underlying graph

is a reducible graph (see [MM89] for a proof).

Let R be a regular expression, and hereafter let M = N(R) denote the corresponding NFA

constructed using Thompson’s construction with start node θ and final node φ. We call a node

whose incoming edge is labeled by a symbol from Σ, an L-node, and a node whose incoming

edges are labeled ε, an ε-node. Because all edges into a node have the same label, we can con-

sider each node to be labeled with this common incoming label. The start node of the machine,

which has no incoming edges, is considered to be labeled with ε. We number the nodes by a topo-

logical order disregarding the back edges (which were formed by the closure operation). Let r i

denote the character corresponding to node i, and let Pre(i) denote the predecessors of node i,

namely, the nodes in M that have edges that point to node i. Let Pre
���

(i) ⊆ Pre(i) denote the

predecessors of i excluding back edges.

4

Next, we present a dynamic-programming type recurrence that is the basis of the algorithm.

Let E[i, j] be the minimum edit distance between any string that can reach node i when it is used

as an input to M and any substring of A that ends at a j . For a given j, the set of values E[i, j] over

all nodes i in M constitute the state of our scanning automaton, and we call E[i, j] the edit dis-

tance of node i after scanning j. As will be seen momentarily the data-dependencies of the

recurrence for E[i, j] are such that the state after scanning j can be determined just from the state

after scanning j −1.

The dynamic programming recurrence for E[i, j] is given below. To avoid cyclic depen-

dencies in the recurrence due to the back edges of the Kleene closure construction, we use two

passes to compute the state after scanning j from the state after scanning j −1. The value of

E[i, j] after the first pass is denoted by E ′ [i, j]. We let E[Pre(i) , j] denote
k ∈ Pre(i)

min E[k , j], that

is, the minimum edit distance to any predecessor of i. E ′ [Pre(i) , j] is defined similarly with E ′
replacing E, and E[Pre
���

(i) , j] is defined similarly with Pre
���

replacing Pre. The exact recurrence is

as follows:

For j∈ [0, n]:

E[θ, j] = 0 for 0 ≤ j ≤ n

For i ≠ θ:

E[i, 0] =

�
�
�

min E[Pre
���

(i) , 0]

min E[Pre
���

(i) , 0] +1

if i is an ε −node

if i is an L −node

For j∈ [1, n] and i ≠ θ:

E ′ [i, j] =

�
�
�

E ′ [Pre
���

(i) , j]

min(E[i, j −1] + 1, E[Pre(i) , j −1] + δr i, a j
, E ′ [Pre
���

(i) , j] + 1)

if i is an ε −node

if i is an L −node

where δa, b is 0 if a =b and 1 otherwise.

E[i, j] = min(E ′ [Pre(i) , j] , E[Pre
���

(i) , j]) + (1 if i is an L −node) (2.1)

This recurrence is equivalent to Figure 6 in [MM89], and its proof follows from the discus-

sion in [MM89]. We prove it here for completeness. First, however, we outline the intuition

behind it. The first pass for L-nodes handles insertions, substitutions/matches, and deletions (in

that order), but only for edges in the forward direction (which is always the case for L-nodes). We

cannot handle back edges in one pass, because they might come from nodes with higher labels,

which we have not processed yet. The first pass for ε-nodes propagates the values obtained so far

through ε-moves. Again, no back edges are used. After the first pass, the values of E ′ [i, j] are

equal to the desired E[i, j], except for a possibility of a series of deletions on a path that includes

back edges. The second pass handles such paths. A node i receives the best E ′ value from all its

predecessors including those connected by back edges, and the best E value from all its regular

forward predecessors. So, a series of deletions on a path with no more than one back edge will be

handled. It turns out that one never has to use more than one back edge in such a propagation (see

[MM89]) by property 4 of the NFA M. Figure 1 shows an example of computing E[i, j] by using

5

Recurrence (2.1).

Theorem 1: Recurrence (2.1) correctly computes the edit distance E[i, j].

Proof: The proof is by induction. Suppose that E[i, j −1], for all nodes i in the NFA, has

been correctly computed. We want to show that E[i, j] computed by recurrence 2.1 is correct.

Recall that we refer to E[i, j] as edit distance of node i after scanning j, and to E[i, j −1] as the

edit distance after scanning j −1. The base case for j = 0 is handled by the initial conditions

which are obviously correct as they set E[i, 0] to the length of the shortest string that takes one

from the start node of M to node i.

The value of E[i, j] must be the value of E[k , j −1] for some k plus the cost of editing a

string s into a j where s can range over all strings on paths from k to i in M. Without loss of gen-

erality, we can assume that (a) a j is inserted and then the symbols of s are deleted, or (b) a j is

matched or substituted for the first symbol of s and then the rest of s is deleted. This follows

because if any prefix of s were first deleted then this prefix would take us to some vertex h and it

would follow that the value of E[i, j] is that of E[h, j −1] plus the cost of aligning a j with the

remaining suffix of s. Moreover, in case (a) we can assume with out loss of generality that k is an

L-node by the same reasoning.

First we show that E ′ [i, j] correctly reflects the best edit distance over all strings w that do

not take us across a back edge of M. If i is an ε-node then E ′ [i, j] must get its best value from a

predecessor along an edge that is not a back edge, i.e., E ′ [i, j] = E ′ [Pre
���

(i) , j]. Its value cannot

come from E[Pre(i) , j −1] or E[i, j −1] as either of these require i to be an L-node by our

assumption about k. On the other hand if i is an L-node then just before reaching i either (i) the

last symbol of w is deleted in which case E ′ [i, j] = E ′ [Pre
���

(i) , j] +1, or (ii) a j is deleted

ε

ε

ε

ε

E[i,8]

ε

ε

ε

ε

E[i,7]

ε

ε

E’[i,8]

ε

ε

1
j

2 2 0
i

1

2 32

hg

0

2

3

3 3 3 2 1 1 1

1 2

f

c
1

d e f g h i

j

0

ed

2

cb

a

0 1 2 3

3 2 1 1 1

1 2
a b c

d e f g h i

j

b

a

1

3

1 2

3

Figure 1: An example of computing E[i, j] where R = abc(defghi)*j and A = abcdefgi.

6

(implying w = ε) in which case E ′ [i, j] = E[i, j −1] +1, or (iii) r i is substituted or matched to a j

(implying w = r i) in which case E ′ [i, j] = E[Pre(i) , j −1] + s i , j . Note that in case (i) we only

consider the predecessors in Pre
���

(i) as w is not permitted to take us across a back edge. Moreover,

E ′ [i, j] must be the minimum of one of the three cases and so the first pass of Recurrence (2.1) is

correct.

It remains to enlarge the range of w to the set of strings that take us across at most one back

edge. If the best value of E[i, j] is obtained for a choice of w which does not involve a back edge

then E[i, j] = E ′ [i, j]. Otherwise E[i, j] obtains its value from a predecessor k’s edit distance

after scanning j. If k is in Pre
���

(i) then clearly E[i, j] = E[k , j] + (1 if i is an L-node). However if

the edge from k to i is a back edge then E[k , j] must equal E ′ [k , j] as the string minimizing it

must traverse no back edges. So in this case E[i, j] = E ′ [k , j] + (1 if i is an L-node). Thus

E[i, j] cannot be less than the right hand side of the second pass of Recurrence (2.1) as this right

hand side is less than all the terms above. Moreover, all of the terms in the recurrence reflect

potential edit scripts and so equality holds. �

3. The Algorithm
Recurrence (2.1) leads to an algorithm whose running time is O(nm) in the worst case,

because Thompson’s construction guarantees that | Pre(i)| ≤ 2 for all i. We improve the running

time in the following way. First, we allow only d +2 values for the E[i, j]’s: If the edit distance

is d, then there is no need to distinguish among values > d, and they can be replaced by d +1.

Secondly, we decompose the NFA into modules, each of size O(log d +2 n), such that, when com-

bined together, they can be used to simulate the behavior of the original algorithm.

To improve the algorithm we have to answer the following two questions: 1) how to decom-

pose the NFA into appropriate modules, and 2) how to combine the modules to simulate the func-

tion of the original algorithm. The ‘decomposition’ part is about the same as in [My92], and we

will describe it only briefly here. The ‘combine’ part is quite elaborate and will be described in

detail.

The decomposition of the NFA for R takes advantage of the hierarchical form of regular

expressions. For this reason, we will first express the decomposition in terms of the associated

parse tree, T R, for R. Hereafter, T refers to T R whenever R can be inferred from context. We first

partition the vertices of T as specified in Lemma 2 and illustrated at the left in Figure 2. Note that

the partitioning of T is such that each block of vertices in the partition induces a subgraph that is a

connected subtree of T. We describe such blocks as connected.

Lemma 2: For any K ≥ 2, we can partition the parse tree T for a regular expression R into

a connected block U that contains T’s root and has no more than K vertices, and a set of other con-

nected blocks, denoted by X, each having between�K/2�and K vertices.

Proof: The proof is by induction on size of the tree. Suppose that the hypothesis is true for

trees of size m −1, and consider a tree of size m. (The base case is trivial.) Let r be the root of T.

7

.

.

a *

|

b

*

.

gd

c

e f

.

|

U1

U4
.

g

|

.

a

d

.

*

|

b c

*

.

e f
U3

U2 U2

U3

U1

U1

U2

U4

U3

(a) (b)

Figure 2: Parse tree of a(b|c)*d |(ef)*g and its decomposition with K = 4.

There are two cases:

(a) r has two children:

Let c and d be the children of r and T c and T d be the subtrees rooted at c and d respectively.

By the induction hypothesis, T c and T d can be decomposed into U c ∪ X c and U d ∪ X d

respectively. Let k c be the number of vertices in U c , and k d be the number of vertices in

U d. If k c + k d < K then we can set U = U c ∪ U d ∪ { r }, and X = X c ∪ X d. Otherwise,

without loss of generality, assume that k c ≥ k d. This implies that k c ≥�K/2�. If k d < K

then we can let U = U d ∪ { r }, and X = X c ∪ X d ∪ U c . Otherwise it must be that k c = k d

= K, and we can let X = X c ∪ X d ∪ U c ∪ U d and U = { r }.

(b) r has one child:

Let c be the only child of r, and T c be the subtree rooted at c. By induction hypothesis, T c

can be decomposed into U c and X c . Let k c be the number of vertices in U c . If k c < K then

we just let U = U c ∪ { r }, and X = X c . Otherwise, let U = { r } and X = X c ∪ U c , and the

proof is completed. �
Given the partitioning of Lemma 2, we connect the subtrees induced by the connected

blocks in the following way. Let T g and T h be subtrees, and assume that T g is connected to T h by

an edge (v , u) such that v ∈ T g and u ∈ T h. We add a pseudo-vertex to T g to represent u, and we

call T g a parent of T h. This pseudo-vertex will serve to communicate values between parents and

their children. We call the subtrees (with the extra pseudo-vertices) modules. We will use the

term original vertices to indicate vertices that are in T (i.e., vertices that are not pseudo-vertices).

The illustration at the right of Figure 2 shows the modules for the decomposition given at the left.

A square denotes a pseudo-vertex and a circle an original vertex.

8

We can decompose the NFA for R in a way corresponding to the decomposition of R’s

parse tree such that a module in the NFA for R corresponds to a module in R’s parse tree.

Specifically, each module of the NFA is the NFA corresponding to the regular expression modeled

by a module of the parse tree where pseudo-vertices should be thought of as modeling a special

symbol that matches any string denoted by the regular expression of the subtree it is connected to.

Inside such an NFA module M g, an edge corresponding to a pseudo-vertex is called a pseudo-

edge and any other edge is termed original. If the subtree for module M g is the parent of the sub-

tree for module M h, then M g is called the parent of M h and M h is a child of M g. Conceptually,

the pseudo-edge in M g that corresponds to M h is to be thought of as representing the action of M h

(and all its children, recursively). A module that contains only original edges is called a lea f

module. A module that contains pseudo-edges is called an internal module. The start state and

final states of module M h, denoted θh and φh are considered the input and output of the module.

Moreover, within the parent module M g let θh and φh denote the vertices at both ends of the

pseudo-edge. Which usage of the notation is in effect will always be clear from context. It is not

hard to see, based on Lemma 2, that for a given constant K, we can decompose the NFA into a

collection of modules such that 1) each module contains not more than K nodes, and 2) the total

number of modules is bounded by O(m/K). Figure 3 shows the NFA decomposition for the regu-

lar expression and parse tree decomposition of Figure 2. Pseudo-edges are shown as dashed lines.

ε
ε

ε

ε

ε

εε

b
ε

2M
c

2φθ1 φ1
a d

2
M

4M

θ4 φ4

2

θ 1

φ

θ3 φ3
g ε

ε

ε

ε
2

3

M

M

3M

1φ

θ

θ3 φ3

ε

ε
fe

ε
ε

M

1θ

2

1

d

ε

ε

ε

ε ε

ε
ε

ε

ε

ε

ε

εε

fe

c

b

g

a

ε
ε

ε
2M4M

3M

1M

Figure 3: The NFA for a(b|c)*d |(ef)*g and its decomposition with K = 4.

9

As will be seen later in the analysis of the forthcoming algorithm the desired choice of

module size is K = 1⁄2 log d +2 n − 1. As the text is scanned by our algorithm we will need to deter-

mine the values E[i, j] for every node of every module in the decomposition of M. Recall that we

think of the set { E[i, j] : i∈ M } as the state of our automaton after scanning a j , and the basic

O(nm) algorithm realizes the transition function that takes M from one state to the next in O(m)

time by applying Recurrence (2.1) directly in two passes. We think of each of the two passes as

inducing a state transition, the first depending on the scanned symbol, and the second an ε-

transition independent of the symbol. For our bit-parallel algorithm, we need to precompute

tables modeling these transition functions so that the state of a module can be advanced in O(1)

time. Consider a module M g containing t ≤ K nodes. A current state s of M g is a vector of t

values (e 0 , e 1 ,..., e t −1), where e i ∈ [0, d +1] is the current value of node i. We encode the state

s by an integer I s . In the encoding, I s contains t components each containing�log 2 (d +2)�bits.

A component of I s corresponds to an e i , 0 ≤ i ≤ t −1, in s. We write I s < i > to refer to the com-

ponent in I s that corresponds to e i .

First, we consider the transition functions of a leaf module, M g, that contains no pseudo-

edges. In this case, we can implement the transition functions for M g by precomputing two transi-

tion tables as follows. For every possible current state s represented by the integer I s , every possi-

ble input character a, and every possible pass 1 value e of θg after scanning a, we precompute the

state transition for M g using pass 1 of recurrence 2.1. The result is encoded as a state integer, I s ′

and is stored in a transition table Next 1 [I s , a, e]. Precisely,

I s ′ < θg > = e

I s ′ < i > =

�
�
�

I s ′ < Pre
���

(i) >

min(I s < i > + 1, I s < Pre(i) > + δa, r i
, I s ′ < Pre
���

(i) > + 1)

if i ≠ θg is an ε −node

if i ≠ θg is an L −node

It is critical to note that the new pass 1 state value of M g’s start node θg must be given explicitly

as its value can be a function of its predecessors in its parent module. Conversely, given e, the

new state value of every other node in M g is dependent only on the values encoded in I s . Once

the table Next 1 has been computed, we can advance a state of M g to its pass 1 state after scanning

a in constant time. The building of the pass 2 transition table is similar except that the input char-

acter a is not needed. Thus the pass 2 transition table, I s" = Next 2 [I s ′ , e] requires only a pass 1

state I s ′ and a pass 2 state value e of θg to produce the pass 2 state of the module. Precisely,

I s" < θg > = e

I s" < i > = min(I s ′ < Pre(i) > , I s" < Pre
���

(i) >) + (1 if i ≠ θg is an L −node)

Having treated the simple case of leaf modules we generalize this treatment to the case of

internal modules. Leaf modules will automatically be handled within this more general frame-

work. Assume that θh → φh is a pseudo-edge for M h in module M g. Suppose that u and v are

original nodes in M g, and that u is a predecessor of θh and v is a successor of φh. Note that the

computation of the next state value for the input node of M h depends on the next state value of u,

10

and the computation of the next state value for v depends on the next state value and potentially

the current state value (if v is an L-node) of the output node of M h. In other words, the computa-

tion of the next state value for v has to wait until the computation in module M h has been com-

pleted. This dependency on pseudo-edges prohibits us from building a transition table that can be

used to compute the state transition for M g in constant time. Fortunately, as will become clear

when we give the analysis of the algorithm, we do not have to implement the transition functions

for an internal module in constant time. It will be sufficient to implement the state transitions for

M g in p +1 steps, where p is the number of children of M g.

Consider partitioning the nodes of M g into p +1 layers as follows. First number the nodes

of M g in topological order where all nodes of subautomaton N(S) have a smaller number then all

nodes of subautomaton N(T) in an alternation subautomaton N(S| T). Suppose that the

θ1 < θ2 < . . . < θp are the start states of the p children modules of M g. Layer h ∈ [0, p] of M g

is the set of nodes whose topological numbers are in the interval [φh , θh +1] where we assume φ0

= θg and θp +1 = φg to simplify the definition. Note that in the topological numbering

φh = θh +1, so the layers do indeed partition the nodes of M g. We say that child M h separates

layers h −1 and h. Figure 4 gives an example of a layer partitioning and the topological order

used to define it. The set of edges u→v for which u is in one layer and v is in another satisfy the

following key properties: (1) every edge in the set is either an ε-edge or a pseudo-edge, and (2)

exactly one edge in the set is a psuedo-edge and it separates v’s layer from u’s layer.

For an internal module M g with p children, we build p +1 pass 1 and pass 2 transition

tables, one for each layer. Specifically, we compute tables Next1
h [I s , a, e] and Next2

h [I s ′ , e] that

are specified exactly as given in (3.1) and (3.2) for a leaf module except that φh replaces θg every-

where. In other words, the next state value e is now for the final state of child module M h if h > 0.

0

1 2 3 4

8

5 6 7

9 01

11

12 13 14 15

16

I
II

III

IV V VI

Σ

Σ

Σ

Σ

Σ

ε

ε

ε

ε

ε

ε

ε

ε

Figure 4: An example of a layer partitioning.

11

The tables only advance the state values of the nodes in the given layer. The state value of nodes

encoded in integer I s will be advanced in order of layer with intervening updates of the child

separating the layers. Thus at the time one is just about to advance layer h the state values of

i ≤ θh are those after the transition, and the state values of i ≥ φh are those before the transition.

It is then critical to observe that the nodes in layer h that have predecessors in another layer are φh

and possibly a few ε-nodes. The next state value of the ε-nodes only depend on the next state

value of their predecessors (and not the previous state value) by the form of Recurrence (2.1).

Moreover, I s still contains φh’s previous state value and its next state value is provided explicitly

by e. Thus the construction is such that all the values needed to advance the state of layer h is

indeed encoded in I s and e at the time the layer is advanced.

The complete algorithm is given in Figure 5. For each character of the text A, the state of

the root module of the decomposition is advanced first by function Transition1 and then function

Transition2 realizing the pass 1 and pass 2 transitions for every module recursively. Each func-

tion returns the current value of the module’s final state after the transition so that the algorithm

reports a match whenever a value not greater than d is returned by the invocation of Transition2

on the root module. Focusing on Transition1 (M , a, e), the function advances the state of M to

the pass 1 state after scanning a assuming that e is the pass 1 state value after scanning a for M’s

start node θ. Note by Recurrence (2.1) that e is 0 for the root module. Transition1 accomplishes

this goal by advancing each layer of its state I in increasing order, recursively advancing the state

of the child M h separating layer h −1 from layer h, as it proceeds. Observe that after advancing

the state over layer h −1 with a lookup in Next1
h −1, the value of I < θh > is the next state value of

thet start node of M h needed for the parameter e in the recursive application of Transition1 to M h.

Moreover, the recursive call to M h returns the next state value of its final state, φh, and this is

exactly the e value needed as input to the table lookup for layer h. In this way, the relevant next

state values are chained together to cleanly handle the interdependence of the modules. Note that

a leaf module has one layer and is just a special case of the more general treatment for internal

modules. The function Transition2 is analogous to Transition1 save that Next 2 tables are used

and the input character a is not needed.

Theorem 3: Given a regular expression of size m, a text of size n, and the number of errors

allowed d, the approximate regular expression pattern matching problem can be solved in time

O(
log d +2 n

n m
��������) and space O(

log d +2 n
n

1⁄2 m
��������).

Proof: Let’s start with space complexity. Recall that by construction every module has no

more than K nodes, and that there are X = O(m/K) modules. We choose K to be 1⁄2 log d +2 n − 1.

First, the maximum number of possible states for a module is (d +2) K = O(n) and so each state

can be represented by an integer under our unit-cost RAM model. There are at most

O((d +2) K | Σ| (d +2)) entries in each pass 1 and pass 2 transition table. Moreover, the total

number of tables is the sum of the number of layers over all modules. Charging the first layer of a

module to itself and every other layer to the child that separates it, it follows that the total number

12

Input: a regular expression R, a text A = a 1 a 2 a 3 ...a n, and the error bound d
Output: the ending positions of the approximate matches in A

begin
Build the NFA for R using Thompson’s construction.
Find the initial value of every node using recurrence 2.1.
Decompose the NFA hierarchically into modules.
Build transition tables Next 1 and Next 2 for each module.
Encode the E values of the initial states of all modules.
Let M be the root module.
for j ← 1 to n do

Transition1 (M, a j , 0)
if Transition2 (M, 0) ≤ d, then report a match at position j

end

Function Transition1 (Module M, input character a, input value e) : integer
begin

Let I be the current state of M and p the number of pseudo-edges in M.
for h ← 0 to p −1 do

I = Next1
h [I , a, e]

e = Transition1 (M h, a, I < θh >)
I = Next1

p [I , a, e].
return I < φ>

end

Function Transition2 (Module M, input value e) : integer
begin

Let I be the current state of M and p the number of pseudo-edges in M.
for h ← 0 to p −1 do

I = Next2
h [I , e]

e = Transition2 (M h, I < θh >)
I = Next2

p [I , e].
return I < φ>

end

Figure 5: The sublinear approximate regular expression matching algorithm.

of layers is 2X −1 = O(m/K). Thus the total number of entries in all the tables is

O((d +2) K +1 m/K) (assuming | Σ| is a constant) and since it takes O(K) time to compute each

entry it takes O((d +2) K +1 m) time to compute these tables. Since (d +2) K +1 = n
1⁄2 by the

choice of K, it follows that the tables occupy O(n
1⁄2 m/ log d +2 n) space and O(n

1⁄2 m) preprocess-

ing time is spent computing them.

Next we show that the time complexity for scanning the text is O(nm/ log d +2 n). For

every character scanned, the time spent in a module is proportional to the number of layers in it.

But we have already shown that the total number of layers is O(m/K) and so this much time is

13

taken scanning each character. Thus O(nm/K) = O(nm/ log d +2 n) time is spent scanning the

text. The only other cost is the O(m) time it takes to produce the decomposition of M. Thus the

scanning time is dominant and the proof is complete. �

References
[ADKF70]

Arlazarov, V. L., E. A. Dinic, M. A. Kronrod, and I. A. Faradzev, ‘‘On economic construc-
tion of the transitive closure of a directed graph,’’ Dokl. Acad. Nauk SSSR, 194 (1970), pp.
487−488 (in Russian). English translation in Soviet Math. Dokl., 11 (1975), pp. 1209−1210.

[Hi75]
Hirschberg, D. S., ‘‘A linear space algorithm for computing longest common subse-
quences,’’ Communications of the ACM, 18 (1975), pp. 341−343.

[HS77]
Hunt, J. W., and T. G. Szymanski, ‘‘A fast algorithm for computing longest common subse-
quences,’’ Communications of the ACM, 20 (1977), pp. 350−353.

[MP80]
Masek, W. J., and M. S. Paterson, ‘‘A faster algorithm for computing string edit distances,’’
Journal of Computer and System Sciences, 20 (1980), pp. 18−31.

[My86]
Myers, E. W., ‘‘An O(ND) difference algorithm and its variations,’’ Algorithmica, 1 (1986),
pp. 251−266.

[My92]
Myers, E. W., ‘‘A four-Russians algorithm for regular expression pattern matching,’’ J. of
ACM 39, 2 (1992), 430-448.

[MM89]
Myers, E. W., and W. Miller, ‘‘Approximate matching of regular expressions,’’ Bull. of
Mathematical Biology, 51 (1989), pp. 5−37.

[NKY82]
Nakatsu, N., Y. Kambayashi, and S. Yajima, ‘‘A longest common subsequence algorithm
suitable for similar text string,’’ Acta Informatica, 18 (1982), pp. 171−179.

[Th68]
Thompson, K., ‘‘Regular expression search algorithm,’’ CACM, 11 (June 1968), pp.
419−422.

[Uk85]
Ukkonen, E., ‘‘Algorithms for approximate string matching,’’ Information and Control, 64,
(1985), pp. 100−118.

[WF74]
Wagner, R. A., and M. J. Fischer, ‘‘The string to string correction problem,’’ Journal of the
ACM, 21 (1974), pp. 168−173.

[WS78]
Wagner, R. A., and J. I. Seiferas, ‘‘Correcting counter-automaton-recognizable languages,’’
SIAM J. on Computing, 7 (1978), pp. 357−375.

14

[WMMM90]
Wu, S., U. Manber, E. W. Myers, and W. Miller, ‘‘An O(NP) sequence comparison algo-
rithm,’’ Information Processing Letters, 35 (1990), pp. 317−323.

[WMM94]
Wu, S., U. Manber, and E. W. Myers, ‘‘A Sub-quadratic Algorithm for Approximate Lim-
ited Expression Matching,’’ Technical Report XXX, submitted for publication.

[WM92]
Wu S., and U. Manber, ‘‘Fast Text Searching Allowing Errors,’’ Communications of the
ACM 35 (October 1992), pp. 83−91.

