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a b s t r a c t 

Biological filaments, such as actin filaments, microtubules, and cilia, are often imaged using different 

light-microscopy techniques. Reconstructing the filament curve from the acquired images constitutes the 

filament segmentation problem. Since filaments have lower dimensionality than the image itself, there is 

an inherent trade-off between tracing the filament with sub-pixel accuracy and avoiding noise artifacts. 

Here, we present a globally optimal filament segmentation method based on B-spline vector level-sets 

and a generalized linear model for the pixel intensity statistics. We show that the resulting optimization 

problem is convex and can hence be solved with global optimality. We introduce a simple and efficient 

algorithm to compute such optimal filament segmentations, and provide an open-source implementa- 

tion as an ImageJ/Fiji plugin. We further derive an information-theoretic lower bound on the filament 

segmentation error, quantifying how well an algorithm could possibly do given the information in the 

image. We show that our algorithm asymptotically reaches this bound in the spline coefficients. We val- 

idate our method in comprehensive benchmarks, compare with other methods, and show applications 

from fluorescence, phase-contrast, and dark-field microscopy. 

© 2016 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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. Introduction 

Filamentous structures are ubiquitous in biology and are rou-

inely imaged using different modalities. Examples range from

ytoskeletal filaments, like microtubules ( Ruhnow et al., 2011 )

nd actin filaments ( Gittes et al., 1993 ), to polymers ( Graham

t al., 2014 ), axonemes ( Mukundan et al., 2014 ), sperm flag-

lla ( Rikmenspoel and Isles, 1985 ), nematodes ( Geng et al., 2004;

amot et al., 2008 ), and rodent whiskers ( Clack et al., 2012 ). From

he acquired images, one often aims to extract quantitative infor-

ation about the filaments, such as their length ( Ruhnow et al.,

011 ), curvature ( Mukundan et al., 2014 ), bending ( Gittes et al.,

993; Graham et al., 2014 ), or motion dynamics ( Rikmenspoel and

sles, 1985 ). Doing so manually is prohibitive for large data vol-

mes. Moreover, manual analysis introduces significant intra- and

nter-rater variability and bias. Image segmentation techniques are
∗ Corresponding author. Tel.: +493512102525. 

E-mail address: ivos@mpi-cbg.de (I.F. Sbalzarini). 
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vailable to automate the process. However, the problem of fila-

ent segmentation is not trivial because the thickness of the im-

ged filaments is often below the resolution limit of the micro-

cop e, and the signal-to-noise ratio (SNR) of the images is routinely

ow. While the former calls for filament localization with sub-pixel

recision, the latter amplifies localization errors. 

Addressing the problem of localization precision and error con-

rol in filament segmentation has been explored in various meth-

ds over the past decades. These methods can generally be classi-

ed into region-segmentation methods (e.g., Paul et al., 2013; Fuller

t al., 2005 ), curve-fitting methods (e.g., Smith et al., 2010; Clack

t al., 2012; Valdman et al., 2012; Xu et al., 2014 ), and combina-

ions of the two (e.g., Ruhnow et al., 2011 ). Region-segmentation

ethods detect a connected region of pixels within which the fila-

ent lies, represented as either a pixel mask ( Fuller et al., 2005;

oldstein et al., 2010; Paul et al., 2013 ), particles ( Florin et al.,

005; Cardinale et al., 2012 ), or a closed active contour ( Kass et al.,

988; Ronfard, 1994; Yezzi et al., 1997; Butenuth and Heipke,

012; Zhang et al., 2012a; 2012b; Bernard et al., 2009 ). Usually, a
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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closed active contour is implicitly represented as the zero-level set

of a higher-dimensional function, which is called level-sets meth-

ods ( Sethian, 1999 ). 

While region-segmentation methods narrow down the localiza-

tion of the filament, they do not segment a filament in the sense of

a curve. Curve-fitting methods account for this by fitting a smooth

open curve to the image in order to represent the filament ( Wong

et al., 1998; Sarry and Boire, 2001; Smith et al., 2010; Clack et al.,

2012; Valdman et al., 2012; Xu et al., 2014 ), because characteriz-

ing a filament as a region of pixels is especially inappropriate if

sub-pixel accuracy or smoothness are required. This is typically the

case when quantifying filament polymerization kinetics by com-

puting time derivatives of the filament length. 

In both paradigms, the segmentation result can either be de-

rived by solving an optimization problem ( Paul et al., 2013; Fuller

et al., 2005; Florin et al., 2005; Cardinale et al., 2009; Smith et al.,

2010 ), or using filters ( Saban et al., 2006; Danuser et al., 20 0 0;

Clack et al., 2012; Rigort et al., 2012 ). Formulating the task as an

optimization problem, e.g. maximizing the Bayesian posterior of

the segmentation to explain the image, provides principled ways

of including prior knowledge about the imaged filaments and the

imaging modality in the form of the object and forward models. 

Solving the resulting optimization problem, however, may be

difficult. For discrete problems over pixel masks or filament

pieces, dynamic programming ( Clack et al., 2012 ) or graph-

cuts ( Kolmogorov and Zabin, 2004; Boykov and Kolmogorov, 2004;

Boykov and Funka-Lea, 2006 ) can find the globally optimal so-

lution. When using continuous filament representations, such as

splines, active contours, or level-sets, however, optimization is

mostly done locally, e.g., using gradient-descent ( Zhang et al.,

2012a; 2012b ) or shape-gradient flow ( Tsai et al., 2003; Law and

Chung, 2009; Paul et al., 2013 ). For level-sets methods, varia-

tional approaches are popular, relaxing the requirement of pre-

viously having to know the number of the filaments to be seg-

mented ( Goldstein et al., 2010; Paul et al., 2013; Bernard et al.,

2009 ). The main limitation of such local approaches is that im-

age noise can cause the result to converge in a sub-optimal local

minimum ( Smith et al., 2010; Xu et al., 2014 ). In addition, curve-

fitting methods usually require prior knowledge of the number of

filaments present in the image ( Wong et al., 1998; Sarry and Boire,

2001; Valdman et al., 2012 ). 

Methods from both paradigms usually assume Gaussian image

noise and the use of a certain type of microscopy, e.g., fluorescence

microscopy. These assumptions may be inappropriate in some

cases, for example when using phase-contrast microscopy, or in

low-light conditions where the noise is Poissonian. 

Despite these shortcomings, both paradigms also have unique

advantages. Specifically, region-segmentation methods can local-

ize multiple filaments automatically and in a computationally effi-

cient way. When using a level-set segmentation method, the num-

ber of filaments present in an image does not need to be previ-

ously known or imposed. While curve-fitting methods require prior

knowledge of the number of filaments to be fitted, they can prop-

erly characterize the geometry of filaments as open curves. 

These observations motivate us to combine the two paradigms

in a novel way. We propose a method that represents filaments as

open curves, hence providing sub-pixel resolution in a geometric

representation of the correct dimensionality, just as existing curve-

fitting methods do. At the same time, however, rather than directly

using a 1D curve representation, we use a level-set representation

of these curves. This means that, unlike in curve-fitting methods,

our method does not require the number of filaments to be previ-

ously known. It automatically handles multi-filament cases, as long

as the filaments do not cross. 

We show how to formulate the resulting optimization prob-

lem in a globally convex way ( Paul et al., 2013 ) by measuring dis-

tances between segmentations and the image using the Bregman
ivergence ( Banerjee et al., 2005; Bregman, 1967 ). We further de-

ive an analytical expression for the gradient of the energy func-

ional, enabling us to efficiently solve the convex problem by an

asy-to-implement gradient-descent optimizer. The segmentation

roduced is the best possible one for the given model and im-

ge data. We also exploit the model-based framework to account

or key physical properties of the microscop e (i.e., image-formation

odel), which are rarely considered in other methods. This renders

ur method fully automatic in the sense that it does not require

rior manual segmentation or image pre-processing (e.g., inversion

r smoothing). 

Technically, this is made possible by representing the filaments

s a vector level-set with level functions represented as B-spline

urfaces ( Bernard et al., 2009 ). The evolution of those surfaces is

riven toward the optimal segmentation by a convex Bregman en-

rgy ( Paul et al., 2013 ), which derives from a generalized linear

odel (GLM) ( McCullagh, 1984; Nelder and Wedderburn, 1972 ) for

he noise in the image (see ( Paul et al., 2013 ) for details). This

llows for any pixel-wise noise distribution from the exponential

amily, which includes the most common cases in microscopy, such

s Gaussian, Poisson, and Bernoulli noise ( Paul et al., 2013 ). This re-

axes the assumption of Gaussian pixel noise, rendering the model

ore flexible. 

In order to confirm the optimality of our solution, we derive

n information-theoretic lower bound for the segmentation error

n filament segmentation. This lower bound defines how well any

nbiased algorithm can possibly perform given the information in

he image. We find that the algorithm presented here asymptoti-

ally reaches the bound in the spline coefficients, showing that the

ound is attainable. 

In summary, our method can (1) automatically detect and op-

imally segment a previously unknown number of filaments as

mooth open curves with sub-pixel resolution, and (2) be adapted

o different types of image data from different microscopy modal-

ties. The method is easy to implement, since it amounts to stan-

ard gradient descent over a convex function. 

The paper is organized as follows: in Section 2 , we present

he optimization framework, mathematically formalizing the fila-

ent segmentation problem. The algorithm design and the theo-

etical lower bound for the segmentation accuracy are introduced

n Sections 3 and 4 , respectively. Results of comprehensive bench-

arks and experiments are shown in Section 5 , and we conclude

his work in Section 6 . 

. Problem formulation 

Before providing the details of our method, we mathematically

ormulate the filament segmentation problem. The first thing we

eed is a mathematical representation of the filaments. 

We represent filaments as vector level-sets, because by using a

ingle level function the level set is necessarily a closed curve. In

rder to represent open curves, we use a vector level-set with two

omponents. The zero level set of the first component φ describes

 closed curve that contains the filament (black circle in Fig. 1 a).

he part of that closed curve where the second component ψ is

ositive then is the actual open filament (black arc in Fig. 1 b). The

ector level function is represented as a B-spline surface. This ge-

metric model can represent an arbitrary number of non-crossing

nd non-overlapping filaments. Filaments are overlapping as soon

s they are too close to each other for the microscope optics to

esolve them as two. 

Based on this filament representation, it is possible to predict

he image that one expects to see when imaging those filaments

ith a particular microscop e. This forward model hence simulates

he generative process of image formation. The so-predicted model

mage is then compared with the actually observed image data.

he difference between the two (measured in a suitable metric)
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φ(x) ψ(x)

x y

z

(a) Level functions φ(x) and ψ(x) (b) Filament indicator Hf (x)

Fig. 1. Vector level-set representation of open curves. (a) Two example level functions φ and ψ , each shown as a colored surface. Color is the z value (height). The bold black 

line shows the closed curve defined by { x : φ( x ) = 0 } . The second level function ψ (with meshgrid) is then used to define the open curve { x : φ( x ) = 0 and ψ( x ) > 0 } . 
(b) The so-defined open curve is represented by its indicator function H f ( Eq. (3) ). 
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hen drives the evolution of the filament representation so as to

inimize this difference. A regularizer is used to avoid over-fitting.

he data-fitting term and the regularizer together form the energy

unctional that is to be minimized in order to find the best possible

egmentation. The variables of the optimization problem are the

oefficients of the B-spline vector level-set surfaces. They evolve

uch that the represented filaments lead to an expected image that

s as close as possible to the actually observed image. 

.1. Image model 

The forward model assumes that each filament has a uniform

ntensity along its length, and that the background is uniformly

omogeneous. If these assumptions are not met, the algorithm will

till work, but the result is no longer guaranteed to be globally op-

imal, as we show below. The (unknown) intensities of the filament

nd background are thus represented by a 2-vector β = [ β1 , β2 ] 
T .

et H f ( x ) be an indicator function such that H f ( x ) = 1 means that

he point x lies on a filament, H f ( x ) = 0 is background. Hence, the

ntensity distribution in the model sample before imaging is 

( x , β) = β1 H f ( x ) + β2 (1 − H f ( x )) . (1) 

The indicator function H f ( x ) is represented by the vector level

et. In order to represent non-intersecting filaments, we use two

evel functions φ( x ) and ψ( x ). Open-curve filaments are then rep-

esented by 

( x ) = { x : φ( x ) = 0 ∩ ψ( x ) > 0 , x ∈ �I } , (2) 

here �I is the image domain. The level set φ(·) = 0 describes a

losed contour, while the condition ψ( ·) > 0 cuts the closed con-

our to an open curve since only a subset of x on φ( x ) = 0 can

ield ψ( x ) > 0. The above indicator function H f ( x ) is then given

y 

 f ( x ) = δ(φ( x )) H(ψ( x )) , (3) 

here δ( ·) is a Dirac and H ( ·) a Heaviside distribution. This is

quivalent to condition (2) because if φ(·) = 0 and ψ( ·) > 0,

 f (·) = 1 , meaning that x belongs to a filament. Otherwise H f (·) =
 , meaning the point belongs to the background. 

As an illustrating example explaining the vector level-set rep-

esentation, in Fig. 1 a, a closed contour (shown as a black circle)

s represented by the first level set φ( x ) = 0 . This closed contour

( x ) = 0 is cut so as to satisfy ψ( x ) > 0, which directly interprets

ondition (2) . In Fig. 1 b, the resulting indicator function H f ( x ) in

q. (3) is shown in the 2D image domain. The image of H f ( x ) = 1

red curve) presents an open curve, while H f ( x ) = 0 is the dark
ackground. This forms a solution space for filament segmenta-

ion, since different indicator functions H f ( ·) , represented by the

wo level functions, correspond to different segmentation results. 

The resulting expected model image is then formed by running

he hypothetical scenery μ through the image-formation forward

odel. This predicts what the image would look like in expectation

hen seen through that particular microscop e. 

.2. Representation of level functions 

The two level functions φ( x ) and ψ( x ) can be represented in a

umber of ways. A common choice is to use signed-distance func-

ions. This, however, requires re-initialization (or penalization) dur-

ng contour evolution in order to ensure that the signed-distance

roperty is not lost ( Sethian, 1999 ). In our application, we do not

equire distance information in the filament domain. Following

arlier works, we hence simplify the representation by using B-

pline functions ( Maeland, 1988; Farin, 1996; Bernard et al., 2009 )

or both level-set functions. Representing the level functions as B-

pline surfaces moreover provides an analytical form (polynomial)

f each segmented filament, which provides direct access to geo-

etric features such as gradients, normals, and curvature ( Bernard

t al., 2009 ). Using φ( x ) as an example ( ψ( x ) is analogous), the

unction is 

( x ) = 

∑ 

k ∈ Z 2 + 
c φ[ k ] b n 

(
x 

h + 1 

− k 

)
, (4) 

here Z 

2 + is a 2D mesh grid of positive integers that has the same

ize as the image domain �I , k is an integer 2-index, c φ[ k ] is the

pline coefficient set, and b n ( 
x 

h +1 
− k ) is an n th-order basis func-

ion with the size h controlling the spacing between two consecu-

ive nodes. 

The dimensionality of the resulting optimization problem is

iven by the number of spline coefficients used to represent the

evel functions. This number is controlled by h . We illustrate B-

pline surfaces of different sizes h in Fig. 2 . For h = 0 , the B-spline

unction has one coefficient (node) per image pixel. For h = 1 , one

ixel is left empty between any two consecutive nodes, thus quar-

ering the number of coefficients in 2D. Thus, increasing h reduces

he resolution of the spline, but also reduces the dimensionality of

he resulting optimization problem. 

On the one hand, smaller h allow the segmented filaments to

race smaller undulations. On the other hand, smaller h increases

he computational cost and renders the segmentation more sen-

itive to noise. We investigate the trade-off of the scaling size h
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Fig. 2. A B-spline surface with different scaling sizes h . The scaling size h allows tuning the geometric resolution of the spline, providing regularization against noise. It 

defines the node spacing in units of pixels with h = 0 (a) placing a spline node into every pixel, h = 1 (b) into every other pixel, and so on (c)–(d). 
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in simulation results in Section 5.3 , and provide good parameter

choices. 

2.3. Energy functional 

The energy functional is a criterion that evaluates the quality

of a given segmentation with respect to the image data. If the

model image shows the correct filaments, the energy should be

minimal. Following the standard approach, we use an energy func-

tional composed of two parts: a data-fitting term that measures the

distance between the model image and the data image, and a reg-

ularization term that penalizes over-fitting. 

2.3.1. Data-fitting term 

The data-fitting term measures how closely the image one ex-

pects to see under the current segmentation hypothesis matches

the observed data image. This includes a simulation of the image-

formation process in the given microscop e, and a pixel noise

model. We model image formation as a convolution with a kernel

K , which is known from optics or calibration measurements. The

expected model image hence is K ∗μ( x , β). This simulates how the

imaging system maps the scene to an image. In fluorescence mi-

croscopy, K is the point-spread function (PSF). For phase-contrast

microscopy, K is given by a non-linear imaging model that involves

Bessel functions, as previously described ( Yin et al., 2010 ). 

The second component is the noise process, providing a like-

lihood to compare the model image to the image data. As-
ume that the intensity value u ( x ) at location x is a realization

rom a stochastic process with probability density function (p.d.f.)

 ( u ( x ) | θ) and unknown parameters θ. In our problem, the un-

nown parameters are the mean intensities β1 and β2 of the

orep.f.f and background, respectively. The likelihood of a segmen-

ation given in the image data is � ( μ( x , β) | u ( x )). This likelihood

ncreases as the model (i.e., segmentation) μ( ·, ·) converges to the

orrect solution. 

To estimate the unknown parameters β1 and β2 , we use a lin-

ar predictor for the parameters of any p.d.f. from the exponential

amily (EF) of distributions. A non-linear link function correlates the

inear predictor to the unknown parameters. This is the standard

LM framework in statistics. 

We give a brief example to illustrate the GLM idea. We are

iven a set of pixels sampled from a probability distribution with

nknown mean. We can estimate the mean as the average of the

amples. In this case, the linear predictor of the GLM is an aver-

ging operation, and the link function is the identity function be-

ause we let the mean directly equal the average of the samples.

n the general case, we can specify an arbitrary link function. If we

or example let the log of the parameters equal the sample aver-

ge, we enforce positivity of estimated intensity values. Hence, a

LM generalizes the classical estimation of the mean by the aver-

ge, allowing additional flexibility. 

In our problem, the linear predictor is the model μ( x ,

). We further use the link function g(E (u ( x ))) = K ∗ μ( x , β) ,

r E (u ( x )) = g −1 (K ∗ μ( x , β)) where g −1 (·) is the inverse link
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unction . 1 The likelihood of the model can then be written as 

 (μ( x , β) | u ( x )) = p 
(
u ( x ) | g −1 (K ∗ μ( x , β)) 

)
. (5) 

Though it would be possible to directly maximize the likelihood

n Eq. (5) , likelihoods of some p.d.f.’s from the EF are complicated.

or example, the p.d.f. of a Poisson distribution contains factorials

nd is a discrete function. More importantly, some p.d.f.s are not

lobally convex and, as a result, global optimality cannot be guar-

nteed. Hence, a better data-fitting term is needed. 

We address these problems by replacing the likelihood with

he Bregman divergence ( Bregman, 1967 ) induced by that specific

.d.f. from the EF. The Bregman divergence generalizes the famil-

ar squared Euclidean distance to a class of distances that all share

imilar properties. The most important property for our purpose

s that a Bregman divergence is globally convex. This guarantees

lobal optimality of the solution. 

The form of the Bregman divergence varies according to the

.d.f. chosen as the noise model. For example, assuming p ( ·) to

e Gaussian, the Bregman divergence is the squared Euclidean

istance ‖ u ( x ) − K ∗ μ( x , β) ‖ 2 
2 
. If p ( ·) is a Poisson distribution,

he corresponding Bregman divergence is the relative entropy

 ( x ) log u ( x ) 
K∗μ( x , β) 

+ K ∗ μ( x , β) − u ( x ) . The Bregman divergences as-

ociated with any p.d.f. from the EF are given in Table 1 of Paul

t al. (2013) . We denote by B p ∗ (·‖·) the Bregman divergence in-

uced by the noise model p.d.f. p ∗. Integrating over the image do-

ain �I , the final data-fitting energy term then reads 

 d ( x , β) = 

∫ 
�I 

B p ∗
(
u ( x ) ‖ g −1 (K ∗ μ( x , β) 

)
d x . (6) 

.3.2. Regularization term 

The regularizer is required to prevent over-fitting the noise in

he image. It is a necessary component of any segmentation en-

rgy function and plays the role of a Bayesian prior in the estima-

ion problem. We here use the popular total variation (TV) regular-

zer: 

 r ( x , β) = 

∫ 
�I 

‖∇μ( x , β) ‖ 2 d x , (7) 

here ∇μ is the gradient of the model image. 

The total energy functional is then given by 

 T ( x , β) = E d ( x , β) + λE r ( x , β) , (8) 

here the scalar regularization coefficient λ > 0 weights the regu-

arizer term. This function is convex, since both E d and E r are con-

ex, multiplying a convex function by a positive constant leaves it

onvex, and the sum of two convex functions is convex. Increasing

increases the penalization of small undulations of the segmented 

laments. Both λ and the scaling size h of the B-spline functions

ffect the robustness against noise and the segmentation precision

f the method. 

Now we can state the filament segmentation problem more

ormally: The goal is to design an algorithm that finds the opti-

al coefficients c ∗
φ

[ k ] and c ∗
ψ 

[ k ] such that the energy in Eq. (8) is

inimized, hence 

(c ∗φ[ k ] , c ∗ψ 

[ k ]) = arg min 

c φ [ k ] ,c ψ [ k ] 
E T ( x , β) . (9)

ince the spline coefficients are normalized to [ −1 , 1] (see

ection 3.2.2 ), the domain of the optimization variables is the hy-

ercube [ −1 , 1] | k | , which is a convex set. Minimizing a convex

unction over a convex domain constitutes a globally convex op-

imization problem. The result will hence be a globally optimal fil-

ment segmentation H 

∗
f 
( x ) . 
1 If g −1 (·) is the identity function, i.e., 1 ( ·), this reduces to the classical method 

f estimating the mean as the average of the samples. 

S  

u  

2

. Algorithm design 

We provide an algorithm that globally optimizes the coefficients

 φ[ k ] and c ψ 

[ k ] of the two B-spline level-set functions and es-

imates the mean intensities β of the fore- and background re-

ions. We use alternating minimization ( Gunawardana and Byrne,

005 ) over the energy functional in Eq. (8) . We first introduce

he method to estimate the intensities β, followed by the pro-

edure used to optimize the level-set coefficients. Since both the

evel-set optimization problem and the intensity estimation prob-

em are convex, the alternating minimization scheme is guaran-

eed to converge ( Gunawardana and Byrne, 2005 ). Note that the

wo problems are likely not jointly convex, but separately convex,

hich is enough for convergence ( Gunawardana and Byrne, 2005 ).

f needed, a jointly convex formulation could possibly be derived

y extending recent works ( Brown et al., 2012 ). A post-processing

tep then extracts parametric polynomial curves for all filaments. 

.1. Photometric estimation 

Photometric estimation aims to estimate the mean intensity

ector β for fixed H f ( x ) . For a perfect imaging process (i.e., if

 = 1 ), estimating β is trivial, as we can directly use the average

ntensity of a region as its mean. With an imaging-distortion kernel

 acting on μ( ·), however, the optimal value for β is not a simple

verage ( Paul et al., 2013 ). 

In this case, we minimize the data-fitting term to find the most

ikely value of β. This convex problem is efficiently solved using

he Fisher scoring algorithm ( McCullagh, 1984; Nelder and Wedder-

urn, 1972 ). We use the freely available solver from Paul et al.

2013) , and refer to it as the region statistics solver . This solver is

alled multiple times in the alternating minimization framework.

fter each call, H f ( x ) is re-optimized using the new photometries,

terating until convergence (which is guaranteed for a separately

onvex problem). For this geometric optimization step, the spline

oefficients are optimized using gradient descent. 

.2. Geometric optimization 

The gradient-descent procedure iteratively evolves the coeffi-

ients for the two B-spline level-set functions φ( ·) and ψ( ·), going

rom iteration i to i + 1 as 

 

(i +1) 
φ

(k ) = c (i ) 
φ

(k ) − αG (i ) 
φ

(k ) 

 

(i +1) 
ψ 

(k ) = c (i ) 
ψ 

(k ) − αG (i ) 
ψ 

(k ) , (10) 

here α is the step-size (automatically adapted as described be-

ow), and G (i ) 
φ

(k ) and G (i ) 
ψ 

(k ) are the energy gradients for the two

evel-set functions, respectively. Instead of numerically approxi-

ating the gradients, we directly compute and use the regularized

nalytical gradients. 

.2.1. Analytical gradients 

The gradient of the energy cannot directly be computed be-

ause of the Dirac and Heaviside distributions in H f . In order to

et a continuously differentiable energy, we hence regularize them

s previously described ( Bernard et al., 2009 ): 

 ε ( x ) = 

1 

1 + e −εH x 

δε( x ) = 

1 

π
(εδ/ ( x 

2 + ε2 
δ )) . (11) 

ince the level function is normalized to [ −1 , 1] , we fix the reg-

larization parameters to εH = 20 and εδ = 0 . 1 ( Bernard et al.,

009 ). 
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The parametric representation of the level-set functions as B-

splines allows us to directly compute the analytical gradients of

the energy with respect to the spline coefficients using the chain

rule for differentiation. For the data-fitting term E d (·) , we have 

G d φ(k ) = 

∂E d ( x , β) 

∂c φ[ k ] 

= (β1 − β2 ) 

∫ 
�I 

B 

′ 
p ∗ (·‖·) K ∗ δ′ 

ε (φ) H ε (ψ) b n 

(
x 

h + 1 

− k 

)
d x , 

G d ψ 

(k ) = 

∂E d ( x , β) 

∂c ψ 

[ k ] 

= (β1 − β2 ) 

∫ 
�I 

B 

′ 
p ∗ (·‖·) K ∗ δε(φ) δε(ψ) b n 

(
x 

h + 1 

− k 

)
d x . 

(12)

For compactness of notation, we omit the arguments of the Breg-

man divergence, hence read B p ∗ (·‖·) as B p ∗ (u ( x ) ‖ g −1 (K ∗ μ( x , β))

and B 

′ 
p ∗ is the derivative with respect to the B-spline coefficients

in μ. For the regularizer term E r (·) , we have 

G r φ(k ) = 

∂E r ( x , β) 

∂c φ[ k ] 

= 

∫ 
�I 

K ∗ ‖∇δ′ 
ε (φ) H ε (ψ) ‖ 2 b n 

(
x 

h + 1 

− k 

)
d x , 

G r ψ 

(k ) = 

∂E r ( x , β) 

∂c ψ 

[ k ] 

= 

∫ 
�I 

K ∗ ‖∇δε(φ) δε(ψ) ‖ 2 b n 

(
x 

h + 1 

− k 

)
d x . (13)

The prime ( ′ ) means derivative with respect to the only variable of

that function. The total gradient is the weighted sum of these two

parts: 

G φ(k ) = G d φ(k ) + λG r φ(k ) , 

G ψ 

(k ) = G d ψ 

(k ) + λG r ψ 

(k ) . (14)

These analytical gradients can be efficiently evaluated numer-

ically. Specifically, Eq. (14) can be rearranged as follows (taking

G φ(k ) as an example): 

G φ(k ) 

= 

∫ 
�I 

K ∗
(
(β1 −β2 ) B 

′ 
p (·‖·) δ′ 

ε (φ) H ε (ψ) + λ‖∇δ′ 
ε (φ) H ε (ψ) ‖ 2 

)
︸ ︷︷ ︸ 

a function ω φ ( x ) 

·b n 
(

x 

h + 1 

− k 

)
d x . (15)

It can hence be interpreted as a convolution of the function ω φ( x )

with the spline basis b n ( ·). This simplifies the gradient calculation

for each coefficient in c φ[ k ] to 

G φ(k ) = ω φ( x ) ∗ b n 

(
x 

h + 1 

− k 

)
, 

G ψ 

(k ) = ω ψ 

( x ) ∗ b n 

(
x 

h + 1 

− k 

)
. (16)

3.2.2. Implementation details 

A first technical issue is that any gradient-descent strategy is

sensitive to the value of the step size α. In our implementation,

we dynamically adapt the step size so as to guarantee that the en-

ergy decreases in each step. For this, we do a simple line search to

find the optimal step size in each iteration. The search uses recur-

sive bisection (binary search) starting from an initial value α0 = 1

(recall that the coefficients are normalized to [ −1 , 1] ). By construc-

tion, the resulting α is guaranteed to decrease the energy. 

A second technical issue is the presence of strong local distor-

tions that may be introduced into the level functions by the en-

ergy minimization process. The level-set functions may in principle
evelop arbitrarily steep or flat gradients, challenging the numeri-

al stability of the algorithm. Traditional implementations of level-

et methods address this problem by periodically re-initializing the

evel function to a signed-distance function from the zero level-set.

his, however, comes with two important drawbacks: extra com-

utational costs and insufficient topological flexibility ( Tsai and Os-

er, 2003 ). In our case, we do not require a signed-distance prop-

rty, but simply wish to bound the gradient magnitudes for nu-

erical stability. Thanks to the parametric B-spline representation

f the level functions, this can be done by simple coefficient re-

ormalization. This idea was originally introduced in Gelas et al.

2007) . We hence normalize the coefficients c φ( ·) and c ψ 

( ·) in each

teration by dividing with the � ∞ 

-norm over all coefficients after

ach gradient-descent iteration: 

 

(i ) 
φ

(k ) ← 

c (i ) 
φ

(k ) 

‖ c (i ) 
φ

(k ) ‖ ∞ 

, 

 

(i ) 
ψ 

(k ) ← 

c (i ) 
ψ 

(k ) 

‖ c (i ) 
ψ 

(k ) ‖ ∞ 

. (17)

fter normalization, the norm of the gradient of the level-set func-

ion is bounded, as proven in Bernard et al. (2009) . This normal-

zation has two main advantages: the first is its modest computa-

ional cost, the second is that it does not counteract the creation

f new zero-level components, thereby conserving topological flex-

bility. 

The complete optimization algorithm is summarized in

lgorithm 1 . The algorithm terminates as soon as the energy

lgorithm 1 Optimization Procedure 

Input: Image u ( x ) , Noise type p(·) , imaging kernel K 

Output: Optimal c ∗
φ

[ k ] and c ∗
ψ 

[ k ] 

1: i ← 0 , initialize c (i ) 
φ

(k ) and c (i ) 
ψ 

(k ) and E (i ) 
T 

; 

2: while ( tol > ξ ) do 

3: α ← α0 ; 

4: Line search for α; 

5: c (i +1) 
φ

[ k ] ← c (i ) 
φ

[ k ] − αG (i ) 
φ

; 

6: c (i +1) 
ψ 

[ k ] ← c (i ) 
ψ 

[ k ] − αG (i ) 
ψ 

; 

7: calculating E (i +1) 
T 

(call Region Statistics Solver ); 

8: c (i +1) 
φ

[ k ] ← 

c 
(i +1) 
φ

[ k ] 

‖ c (i +1) 
φ

[ k ] ‖ ∞ 

, c (i +1) 
ψ 

[ k ] ← 

c 
(i +1) 
ψ 

[ k ] 

‖ c (i +1) 
ψ 

[ k ] ‖ ∞ 

; 

9: update tol = E (i +1) 
T 

− E (i ) 
T 

, i ← i + 1 ; 

10: end while 

mprovement achieved in the last iteration is less than a fixed

olerance of ξ = 10 −3 , indicating that the algorithm has converged

t the global optimum. The output of Algorithm 1 are the two

ptimal B-spline level functions φ∗( ·) and ψ 

∗( ·). The following

ost-processing stage then extracts all zero-level curves from these

evel functions and stores them as polynomials. 

.3. Post-processing 

The optimal level functions φ∗( ·) and ψ 

∗( ·) jointly encode all

laments in a single optimal indicator function H 

∗
f 
( x ) . Due to the

egularization in Eq. (11) , this function is smooth and takes values

n the interval [0, 1], rather than being binary. The post-processing

tage serves a double purpose: it determines the total number of

laments detected and then represents each filament as a para-

etric polynomial. 

The total number of filaments is determined by thresholding

he smooth H 

∗
f 
( x ) followed by extracting the foreground regions
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1  
ccording to their topological connectivity. Representing each fila-

ent by a polynomial starts from extracting all local maxima from

he original H 

∗
f 
( x ) . 

.3.1. Filament splitting 

In order to split the global vector level function into individual

laments, we threshold the smooth H 

∗
f 
( x ) according to the opti-

al energy value E ∗
T 

achieved by Algorithm 1 . For this, H 

∗
f 
( x ) is

hresholded with an arbitrary initial threshold ξ . After threshold-

ng, we calculate the resulting energy E ξ
T 

. Performing a line search,

e determine the threshold ξ ∗ that leads to an energy closest to

 

∗
T . Since the set of binary functions is a subset of the set of func-

ions over the interval [0, 1], this threshold is optimal. Thus, the

ptimally thresholded binary indicator function is H̄ f ( x ) . 

All points s i ( x ) with H̄ f ( x ) = 1 that are connected by reachable

aths lie on the same filament. We hence identify regions of dis-

oint filaments (not the filament themselves!) as connected com-

onents in a 10-fold oversampled image of H̄ f ( x ) (i.e., 100 grid

oints per pixel) using the MATLAB routine bwconncomp . 

.3.2. Filament extraction 

After identifying the region of each s i ( x ), the body of the fil-

ment is identified by all local maxima of the original H 

∗
f 
( x ) in

hat region. These are, to sub-pixel accuracy, the points of high-

st localization probability of the filament. Let ˜ s i ( x ) denote the so-

etermined finite set of tip and body points of filament i . 

In order to provide a parametric description of each filament,

e fit ˜ s i ( x ) with a B-spline, which is then converted to a single

olynomial. While this step is not strictly necessary, it facilitates

ater access to geometric features of the filaments, such as normals

nd curvatures. Fitting ˜ s i ( x ) does not degrade the accuracy of the

olution because the fitted positions already minimize the energy

 T . This problem has been studied before, and we solve it using cu-

ic smoothing splines as, e.g., implemented in the MATLAB routine

saps to solve the fitting problem: 

in 

c i ( x ) 

∫ 
x ∈ ̃ s i ( x ) 

p‖ c i ( x ) − ˜ s i ( x ) ‖ 2 d x + (1 − p) 

∫ 1 

0 

‖ ∂c i (t ) ‖ 2 d t , (18) 

hich yields for each filament i a polynomial c i ( ·) that minimizes

he distance to the point set ˜ s i ( x ) , penalizing the total variation of

he curve. The coefficient p balances data-fitting and curve length,

nd t ∈ [0, 1] is the curve parameter. 

The pseudo code of the entire post-processing step is summa-

ized in Algorithm 2 . 

lgorithm 2 Post-Processing 

Input: optimal indicator function H 

∗
f 
( x ) with energy E ∗T 

Output: parametric curve set { c i ( x ) } 
% filament splitting 

1: H̄ 

∗
f 
( x ) ← arg min ξ∈ [0 , 1] ‖E ξT − E ∗T ‖ 2 ; 

2: split { x : x = 1 } into subsets S = { s i ( x ) } ; 
% filament extraction 

3: ˜ s i ( x ) ← local maxima in H 

∗
f 
( x ) along s i ( x ) 

4: for ∀ ˜ s i ( x ) ∈ S do 

5: find c i ( x ) by solving Eq. (18); 

6: end for 

.4. Summary 

We use two B-spline level sets to represent filament objects

ithout restricting their topology. This is neither an open paramet-

ic curve nor a pixel mask. This representation enables our method

o detect and segment previously unknown numbers of filaments,
hile preserving sub-pixel curve resolution for each filament. Ad-

itionally, the B-spline formulation enables analytically computing

he energy gradients for global optimization, and extracting para-

etric polynomials for all detected filaments. 

Our proposed algorithm optimizes the coefficients of the two

evel functions using gradient information. Each iteration consists

f three steps: the gradient-descent procedure, the photometric es-

imation, and the coefficient normalization. A post-processing step

t the end then extracts the parametric polynomial descriptions of

ll detected filaments. Since all problems are convex, the final re-

ult is globally optimal with respect to the imaging model postu-

ated. 

. Theoretical error bound 

A natural question to ask is how closely this globally optimal

econstruction represents the true filaments that were imaged. The

maging process and the pixel noise irreversibly destroy image in-

ormation. In addition, the geometric representation of the fila-

ents as B-spline level sets, as well as the model of the transfer

unction of the microscop e, may not be appropriate. Thus we ask

he question: “What is the theoretical bound of the localization er-

or of the filament, considering the information contained in an

mage, and what is the expected performance of an optimal and

nbiased algorithm?”

This is the question about a theoretical lower bound on the

egmentation error. For point sources, this bound is known: given

 photons that are all emitted from the same point source and

maged with a Gaussian PSF of standard deviation σ , the loca-

ion of the point source can only be estimated with an error of

t least σ/ 
√ 

M ( Ober et al., 2004 ). This is a direct consequence of

he Central Limit Theorem. For non-Gaussian PSFs and more com-

lex noise models, similar bounds have also been derived ( Chao

t al., 2013; Ober et al., 2015 ). No unbiased algorithm could possi-

ly break them. 

Such a theoretical lower bound is not known for filaments,

here the situation is considerably more complex than for point

ources. The photon sources along a filament are correlated

hrough the filament geometry, which is unknown. A theoretical

ound can hence only be derived by assuming something about

he smoothness of the filaments, that is the function space in

hich they live. 

Here, we study this problem and provide a theoretical lower

ound on the filament segmentation error. First, we consider the

eneral case, where we do not assume anything about how the

laments are represented in the computer. This bound is valid

or any unbiased filament segmentation algorithm. Then, we de-

ive the lower bound for the special case where the filaments are

epresented by vector B-spline level sets, as in our framework.

his characterizes the capability of any vector level-set algorithm

o segment filaments and leads to a bound that is actually com-

utable. 

Since we segment filaments, the lower bound is on the error

f the filament geometry. A similar lower bound for the estimated

lament intensity, or even a joint lower bound for geometry plus

ntensity, could possibly be derived in a similar fashion. 

.1. The general case 

Without loss of generality, we only consider the case where a

ingle filament is represented in the image. Since our algorithm

ssumes that filaments never cross, the multi-filament case can al-

ays be reduced to the single-filament case by cropping or decom-

osing the image accordingly. 

Let a curve γ ( s ) denote the true imaged filament, where s ∈ [0,

] is the curve parameter. We assume γ ( s ) ∈ C 2 , i.e., continuous
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and at least twice differentiable. A segmentation algorithm recon-

structs the filament as ˆ γ (s ) from a single image u ( x ) that repre-

sents the intensity values in a 2D image domain �I . 
The posterior p.d.f. of γ ( s ) in a Bayesian sense is 

p 
(
u ( x ) , γ (s ) 

)
∝ p 

(
u ( x ) | γ (s ) 

)
p 
(
γ (s ) 

)
, (19)

where the first term on the right-hand side is the likelihood of u ( x )

given the filament γ ( s ), and the second term is the prior probabil-

ity of γ ( s ). 

The perfect (i.e., noise-free and perfect imaging identity func-

tion) image one would expect to see from γ ( s ) is 

u ( x ) = I(s ) · δ
(
d( x , γ (s )) 

)
, ∀ x ∈ �I , (20)

where I ( s ) is the intensity of the filament, d ( ·) is the closest-point

transform (CPT) yielding the shortest distance from x to the fila-

ment, and δ( ·) is the Dirac delta distribution. If x is on γ ( s ), then

d(·) = 0 and δ(·) = 1 , otherwise δ(·) = 0 . 

As an error metric, we consider the mean squared error (MSE)

between the estimated filament ˆ γ (s ) and the true filament γ ( s ).

Let the operator E denote expectation with respect to its subscript.

The MSE then is 

� = E u,γ

{
[ ̂  γ (s ) − γ (s )] 2 

}
. (21)

The Bayesian Cramér Rao Bound (B-CRB) C ( van Trees, 2004 )

provides a lower bound on the MSE �. It is the inverse of the

Bayesian information J of the posterior in Eq. (19) . Thus, we have 

� ≥ C ≡ J −1 , (22)

indicating that � − C (or equivalently � − J −1 ) is a positive semi-

definite matrix. 

We further elaborate the Bayesian information matrix J . Let �

denote the 2nd-order differential operator (i.e., the Laplacian) with

respect to its subscript. The Bayesian information matrix then is 

J = E u,γ

{
− �γ ln p 

(
u ( x ) , γ (s ) 

)}
. (23)

This can be interpreted as a sum of two terms after the “ln ” oper-

ation: 

J = J � + J p , (24)

where J p is the a-priori information matrix 

J p = E p 

{
− �γ ln p 

(
γ (s ) 

)}
, (25)

and J � is the contribution from the give image data to the infor-

mation. It is the expected value of the standard Fisher information

matrix I � (γ (s )) with respect to the prior p.d.f. p ( γ ( s )): 

J � = E u,γ

{
− �γ ln p 

(
u ( x ) | γ (s ) ) 

)}
= E γ

{
I � (γ (s )) 

}
, (26)

where 

I � (γ (s )) = E u | γ
{

− �γ ln p 
(
u ( x ) | γ (s ) 

)}
. (27)

Given the image data, the lower bound in Eq. (22) generally

characterizes the minimum estimation error any unbiased estima-

tor must make. The decomposition into a-priori and data informa-

tion also nicely illustrates that one can obtain more accurate esti-

mated by either assuming stronger prior knowledge about the true

filament, or by having a more informative (e.g., less noisy) data im-

age. This general lower bound, however, is difficult to concretely

evaluate due to the CPT term in u ( x ). The only way of evaluating

the lower bound in the general case is by applying numerical sim-

ulations. 
.2. The B-Spline level-set case 

If one assumes that γ ( s ) is represented by a B-Spline level set,

hen an analytical expression for the lower bound can be derived.

y definition, this special bound is larger than or equal to the gen-

ral bound above. The model μ( ·) in Eq. (1) is then defined by two

evel functions, each of which is a B-spline as given by Eq. (4) . Ac-

ordingly, the B-CRB in Eq. (23) can be used to bound the mini-

um error in the coefficients of the two B-spline functions, i.e., in

 φ[ k ] and c ψ 

[ k ]: 

 c φ ,c ψ = E u,c φ ,c ψ 

{
− �c φc ψ ln p(u ( x ) | K ∗ μ( x , β)) 

}
= E u,c φ ,c ψ 

{
− �c φc ψ 

∫ 
�I 

p ∗(u ( x ) | K ∗ μ( x , β)) d x 
}
, (28)

here p ∗( ·) is the p.d.f. of the noise model. In our case, it has to

e a member of the EF. 

For any p.d.f. from the EF, this B-CRB is asymptotically attain-

ble ( Wijsman, 1973 ). It is hence tight. We demonstrate this be-

ow, where we experimentally evaluate the segmentation error and

ompare it with the theoretical bound. 

. Experimental results 

We evaluate the applicability and accuracy of the present

ethod on a number of different image types. The tests con-

ider images from phase-contrast, fluorescence, and dark-field mi-

roscopy with varying numbers of filaments in them. For quantita-

ively evaluating the segmentation accuracy, we use synthetic im-

ges, in which the underling shape is known. In the following, we

ill be referring to this true shape as the ground truth . For all tests,

e use the MATLAB implementation of the algorithm. 

To create synthetic benchmark data, we generate random poly-

omial curves of order 3 in a 150 × 150 continuous domain. Based

n these ground truth filament objects, we simulate an expected

mage using the two imaging models, fluorescence and phase con-

rast. The simulated continuous image is then sampled onto a 150

150 discrete pixel grid. The fluorescence imaging model is con-

inuous convolution with a Gaussian PSF of σ = 3 . 32 pixel, cor-

esponding to the experimentally measured PSF FWHM = 500 nm

full width at half maximum) of the microscope used when imag-

ng 25 nm fluorescent microtubules. The phase-contrast imaging

odel from Yin et al. (2010) is used with parameters measured

rom an image of the back focal plane of the microscop e used

ere (phase ring inner diameter 2 mm, outer diameter 2.5 mm,

ack aperture 5.8 mm). After that, we add noise to the image

sing the corresponding noise model (Gaussian or Poisson). We

hoose filament and background intensities β1 and β2 such that

 pre-defined signal-to-noise ratio (SNR) is achieved. In order to

ake the SNR values comparable across different noise models,

e use the distribution-independent definition based on the Bhat-

acharyya distance B between the noise-free image histogram and

he noisy image histogram: SNR = 

√ 

8 B ( Goudail et al., 2004 ). For

he fluorescence model, we keep the background fixed at β2 = 10

nd vary the filament intensity β1 to change the SNR. For the

hase-contrast model, we keep the filament fixed at β1 = 10 and

ary the background intensity β2 . In order to test how the algo-

ithm behaves when the filament intensity is not uniform, we also

enerate complete sets of test images with linearly shaded inten-

ity of 50% and 70% magnitude along the filament axis. For the 50%

hading, the intensity linearly varies along the filament from 1.5 β1 

o 0.5 β1 , such that the average intensity (and hence the average

NR) remains the same. The 70% shading case uses a linear inten-

ity gradient from 1.7 β1 to 0.3 β1 . Even though it is impossible to

xhaustively test all possible spatial intensity distributions, this lin-

ar test assesses how the algorithm behaves when the actual im-

ges strongly depart from the theoretical assumption of uniform
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(a) Fluo, SNR=4.0 (b) Fluo, SNR=10.5 (c) Fluo, SNR=17.0 (d) Fluo, SNR=23.5 (e) Fluo, SNR=30.0

(f) Fluo, 10.5, 50% (g) Fluo, 10.5, 70% (h) PC, SNR=4.0 (i) PC, SNR=10.5 (j) PC, SNR=17.0

Fig. 3. Examples of synthetic ben chmark images showing random filaments with known ground truth. (a)–(e) Five different SNR values using the fluorescence imaging 

model (Gaussian noise, σ = 3 . 32 pixel) with uniform filament intensity. (f)–(g) Images from the fluorescence imaging model (Gaussian noise, σ = 3 . 32 pixel, SNR = 10.5) with 

linearly shaded filaments of 50% and 70% shading, respectively. (h)–(j) Three different SNR values using the phase-contrast imaging model (Poisson noise). The complete set 

of 40 0 0 benchmark images can be downloaded from the MOSAIC Group’s web site mosaic.mpi-cbg.de . 

Fig. 4. Evolution of H f ( x ) during gradient descent. (a) A test image of size 100 × 100 pixel with SNR = 10, Gaussian noise, and Gaussian blur with σ = 3 pixel. (b)–(h) 

Snapshots of H f ( x ) at iterations 1, 5, 10, 15, 20, 40, 60, starting from a random initialization far from ground truth. 
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ntensity. Some examples of synthetic images for different SNR are

hown in Fig. 3 . All images are stored as 8bit TIFF files. The com-

lete set of 40 0 0 benchmark images (10 0 0 per case) can be down-

oaded from the MOSAIC Group’s web site mosaic.mpi-cbg.de .
All segmentations start from the same initialization with the

wo level functions φ( x ) and ψ( x ) being Euclidean distance func-

ions from two uniformly randomly placed points o φ and o ψ 

in

he image domain, respectively. This describes a random filament

ith one bend, illustrating how the topology and geometry of the

egmentation can change during algorithm evolution. However,

ince the problem is convex, the result is independent of the

nitialization. 

We first provide an illustrative example for better under-

tanding. After that, we demonstrate the differences between our

resent method and other state-of-the-art filament segmentation

ethods. We then quantitatively evaluate the segmentation errors

f our proposed method on synthetic images with known ground

ruth. Finally, we show applicability of our proposed method to

eal images. 

.1. An illustrative example 

We start with a simple illustrative example to visualize the

orking of our proposed algorithm. We artificially generate an im-
ge of two straight filaments with an SNR = 10, Gaussian noise,

nd blur with a Gaussian PSF of σ = 3 pixel. The resulting image is

hown in Fig. 4 a. The evolution of the soft indicator function H f ( x )

ver the iterations of the gradient-descent procedure is shown in

ig. 4 b to Fig. 4 h, starting from the random initialization described

bove that is far from ground truth. 

After 60 iterations, the algorithm has converged to the opti-

al H 

∗
f 
( x ) shown in Fig. 4 h. The algorithm converges rapidly and

orrectly detects the not previously specified number of two fil-

ments. The topology of the segmentation changes several times

uring the process. Thresholding H 

∗
f 
( x ) using the post-processing

lgorithm correctly identifies the two filaments. Since we can eval-

ate the continuous B-spline level functions (and hence also H 

∗
f 
( x ) )

o any precision we want, the segmentation results have sub-pixel

esolution. 

Additionally, this example illustrates that the final indicator

unction H 

∗
f 
( x ) is not perfectly binary, but continuous in [0, 1]. The

alue corresponds to a localization “likelihood” of the filaments. 

.2. Qualitative comparison with previous methods 

We illustrate the behavior of our method by comparing it

o existing methods from each of the four classes introduced
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(a) ASB (b) Act. Contour (c) SOAC (d) FIESTA (e) Present

(f) (g) (h) (i) (j)

Fig. 5. Qu alitative comparison of different methods on an example synthetic image (Gaussian noise with SNR = 4, Gaussian PSF with σ = 3 . 3 pixel). (a)–(e): the segmentation 

results produced by ASB ( Paul et al., 2013 ), Active Contours ( Goldstein et al., 2010 ), SOAC ( Smith et al., 2010 ), FIESTA (with threshold manually adjusted to 140 out of 255 

for the present 8bit images) ( Ruhnow et al., 2011 ), and our present method. (f)–(j): Corresponding magnifications of the regions in the yellow boxes above. For FIESTA, the 

following settings were used: FWHM = 1100 nm, relative intensity threshold 160%, smooth after tracking, correct for focus drift, Track especially curved filaments = 30%. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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previously: an optimal pixel mask method (Alternating Split-

Bregman, “ASB”) ( Paul et al., 2013 ), an active contour method

(“Act. Contour”) ( Goldstein et al., 2010 ), an open-curve fitting

method (“SOAC”) (we use the software by Smith et al. (2010) of

which a later extension to 3D is also available ( Xu et al., 2014 )),

and a semi-automatic hybrid method (“FIESTA”) ( Ruhnow et al.,

2011 ). FIESTA ( Ruhnow et al., 2011 ) is a semi-automatic method

that uses manual thresholding to circumvent the segmentation

problem. After thresholding, FIESTA efficiently solves a localiza-

tion/detection problem. We nevertheless show the result here as a

benchmark. We use a synthetic image containing a single filament,

as this is the least common denominator that can be solved by

all compared methods without additional prior knowledge. The

segmentation results are shown in Fig. 5 . 

While both the pixel-mask method ( Paul et al., 2013 ) and the

active contour ( Goldstein et al., 2010 ) correctly identify the fila-

ment, they represent it as a region of finite thickness, rather than

as a curve. Additionally, the pixel mask as in Fig. 5 a can only pro-

vide pixel-level resolution. While the open-curve fitting method

as in Fig. 5 c segments the filament as a curve, it is sensitive to

noise and ends with a non-optimal solution where the curve fails

to trace the entire filament. FIESTA Fig. 5 d provides the best result

from all previous methods, providing a geometric curve with sub-

pixel accuracy. Our method as in Fig. 5 e provides a result that is

qualitatively as good as that from FIESTA, but solves the full seg-

mentation problem without requiring any manual thresholding. It

handles local minima well and is insensitive to noise because the

underlying optimization problem is globally convex. 

After highlighting these qualitative differences, we present a

quantitative comparison of the accuracy of the present method.

High accuracy is often desired when monitoring the tempo-

ral growth dynamics of individual filaments, where already

changes of half a pixel or less can give rise to polymeriza-

tion/depolymerization switches, which are biologically or biophys-

ically relevant. 

5.3. Quantitative evaluation 

We use 40 0 0 synthetic images (described above, 100 images

per case and SNR) with known ground truth to quantitatively
valuate the detection and segmentation accuracy. We first eval-

ate the mean-square error (MSE) in the spline coefficients and

ompare it with the theoretical B-CRB, showing that our method

symptotically approaches the lower error bound. Second, we

uantify how the error grows as the images depart from the the-

retical assumption of uniform intensity along the filaments, us-

ng both the 50% and 70% shading cases. Third, we quantify the

nfluence of the two algorithm parameters (i.e., the scaling size

 and the regularization coefficient λ) on the accuracy of fila-

ent segmentation, and we make recommendations for parameter

hoices. 

While measuring the error in the spline coefficients can di-

ectly be done using the MSE, comparing segmented filaments with

round truth requires more intuitive error metrics: first, we use

he standard Dice coefficient to quantify the detection quality of

he segmentation, i.e., how well the filaments were identified. Sec-

nd, we use the Fréchet distance to quantify how accurately the

orrectly detected filaments were segmented to sub-pixel accuracy.

n addition, we report the percentage of cases where the filament

as been correctly identified and no spurious filaments were seg-

ented (i.e., no under- or over-segmentation). These error metrics

uantify the difference between a segmentation result and ground

ruth, which is not to be confused with the Bregman divergence

sed to quantify differences between the model image and the

ata. 

The Dice coefficient measures the overlap between ground truth

nd the obtained segmentation as 2 T P/ ((F P + T P ) + (T P + F N)) ,

here TP are the true positives, defined here as all pixels in the

egmentation that are within ± 5 pixel from the ground truth fil-

ment. Similarly, FN are the false negatives (pixels missed from

round truth to within ± 5 pixel) and FP the false positives (pixels

f spurious filaments detected farther than 5 pixel from ground

ruth). We use the 5 pixel detection tolerance because the Gaus-

ian PSF has σ ≈ 4 pixel blur. A Dice coefficient of 0 means that

o filament pieces were correctly detected, one of 1 means that

ll filament pieces were correctly detected with no spurious false

ositives. 

For those filaments that were correctly detected within the 5

ixel tolerance, we quantify the worst-case segmentation error using
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Fig. 6. Quantitative evaluation of the mean-square error (MSE, Eq. (21) ) in the 

level-function spline coefficients (mean ± standard deviation) for different SNR and 

different linear intensity gradients along the filaments, in comparison with the the- 

oretical Bayesian Cramér-Rao Bound (B-CRB) of the error. 100 random synthetic fila- 

ment images are processed for each data point with λ = 10 −5 and h = 0 in all cases. 

Only the result for Gaussian noise and the fluorescence imaging model is shown. 

The result for Poisson noise is visually indistinguishable and hence omitted. 
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Fig. 7. Dice coefficient from ground truth for different scaling sizes h ∈ [0, 4] and 

regularizer coefficients λ = [10 −7 , 10 −3 ] , increasing 10-fold at each step, shown for 

the case of fluorescence imaging with Gaussian noise of SNR = 4. 
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he Fréchet distance: 

(c a , c b ) = inf 
ζ ,η

max 
t∈ [0 , 1] 

{ 

‖ c a (ζ (t)) − c b (η(t)) ‖ 2 

} 

, 

here c a and c b are two parametric curves with parameter t ∈ [0,

]. The functions ζ and η range over all monotone reparametriza-

ions. This is a standard metric to measure the similarity between

wo curves. Identical curves have a Fréchet distance of zero. The

réchet distance can be interpreted as the minimum cord length

ufficient to join a point traveling forward along one curve and one

raveling forward along the other, although the speed of travel for

ither point may not necessarily be uniform. The Fréchet distance

s not computable for general continuous curves, but can be effi-

iently computed for curves given by polynomials, as is the case

ere. This discrete Fréchet distance is a metric and is also some-

imes called coupling measure . 

.3.1. Error in the spline coefficients 

We compare the algorithm performance against the B-CRB us-

ng the synthetic benchmark images of the fluorescence case with

oth uniform and shaded filament intensities. We run our algo-

ithm to derive segmentation results for each image. We then com-

are the coefficients of the final spline level functions (i.e., the

oefficients of the two spline level functions minimizing the en-

rgy) with those of the synthetic ground-truth splines. We show

he resulting MSE and the theoretical B-CRB for the Gaussian noise

odel in Fig. 6 . The result for the Poisson noise model is visually

ndistinguishable and hence not shown. 

As shown in Fig. 6 , for low SNR the algorithm performs sub-

ptimally and remains above the theoretical B-CRB lower bound.

his is due to sub-optimal parameter choices. The optimization

roblem is solved optimally, so no error originates from its so-

ution. Also, the imaging model used is the ground-truth model

hat also generated the synthetic data. The sub-optimality for low

NR must hence be due to parameter choices. While the optimal h

ould be 1.7 for example, we restricted ourselves to integer values

n our tests, which may not be optimal. This shows only at low

NR, since both parameters h and λ affect the sensitivity of the

ethod to noise, as shown below. 

For increasing SNR, the algorithm is asymptotically optimal.

ome of the error bars extend below the bound, because the B-CRB

s for the expectation value of the error. Individual cases, however,

an be below the bound. This is not a violation of the theory as

ong as the mean stays above the bound. In both noise cases, we

an observe that the empirical MSEs are tight to the theoretical
-CRB. This shows that our method almost achieves the theoreti-

al minimum of the estimation error. The asymptotic approach to

he bound for higher SNR confirms the attainability of the B-CRB

redicted by our above theoretical analysis. 

If the filament intensity is not uniform along the filament axis,

he SNR is different for different points on the filament and the

NR values are to be interpreted as average SNR over the entire

mage. The result accuracy then decreases, as shown by the 50%

nd 70% shading cases in Fig. 6 . This is expected. For a 50% inten-

ity shading, the MSE is about twice as far from the B-CRB as for

niform filaments. Even for a 70% departure from the theoretical

ssumption of uniformity, the MSE is still acceptable and asymp-

otically optimal. This suggests (albeit a theoretical proof seems

ut of reach) that while uniformity is a necessary mathematical

ssumption in deriving the optimal algorithm, the algorithm’s sen-

itivity to violation of this assumption is bounded in practice. 

.3.2. Influence of scaling size h and regularizer λ
The present algorithm has two parameters: the scale size h

nd the regularization parameter λ. This generates a 2D parameter

pace h × λ. In order to analyze the influence of these parame-

ers, we repeat the above benchmark for many combinations of h

nd λ, performing a grid search. For each parameter set, we mea-

ure the Dice coefficient. The result is shown in Fig. 7 . The imag-

ng model used is that of a fluorescence microscopy (PSF σ = 3 . 32 )

ith Gaussian noise of SNR = 4.0. For different SNR and different

maging models, this surface may look different. It can hence not

irectly be used to fix standard algorithm parameters. The fitted

mooth colored surface is only added for better visualization. 

The figure shows that mainly the parameter h affects the qual-

ty of the segmentation result. For this SNR, h = 1 is optimal for all

ested λ. The performance is robust over a wide range of λ values

panning four orders of magnitude. While no standard parameter

alues can be given, the algorithm performance seems to be in-

ensitive to variations of λ. We next investigate in more detail the

nfluence of h as a function of image SNR. 

.3.3. Influence of scaling size h for different SNRs 

The parameter h is easy to set and useful, as it allows tuning

he pixel resolution required in the result. To give a better feeling

or this, we quantitatively evaluate the influence of h as a function

f SNR. 

We do this using our 20 0 0 synthetic benchmark images with

NR values ranging from 4 → 30. For each image, we try scaling

izes h ∈ [0, 3] for fixed λ = 10 −5 , which provides the best Dice

oefficient at SNR = 4. 
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(a) fluorescence + Gaussian noise: Detection
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(b) fluorescence + Gaussian noise: Accuracy
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(c) fluorescence + Poisson noise: Detection

 4.0 10.5 17.0 23.5 30.0  
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

81

91 91 92 89

SNR

F
re

ch
et

 D
is

ta
nc

e 
(P

ix
el

)

 

 

(d) fluorescence + Poisson noise: Accuracy
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(e) phase-contrast + Gaussian noise: Detection
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(f) phase-contrast + Gaussian noise: Accuracy
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(g) phase-contrast + Poisson noise: Detection
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(h) phase-contrast + Poisson noise: Accuracy

Fig. 8. Detection accuracy (Dice coefficient) and segmentation accuracy (Fréchet distance) for all tested cases. All values are given as mean ± standard deviation vs. SNR 

when using the correct noise and imaging models. The numbers near the symbols are the percentage of cases in which the correct filament was correctly detected to within 

± 5 pixel. Only these cases are taken into account when computing the Fréchet distance. For the present method, we use a constant λ = 2 . 5 · 10 −3 for all cases and vary h 

as indicated in the legends. For FIESTA, we use a manually optimized relative threshold of 160% in all cases, tuned for the lowest SNR and then applied across all SNR. Other 

FIESTA settings were: track filaments only, smooth after, PixelSize = 100 nm/pixel, FWHM = 1100 nm, area = 100 pixel, correct for focus drift, track especially curved filaments 

= 30%. Missing symbols are those cases where no acceptable segmentation within ± 5 pixel from ground truth was found. 
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(a) Present (b) FIESTA (c) ASB (d) Act. Contour (e) SOAC

Fig. 9. Applic ation to a fluorescence image of a demembranated axoneme from a pf2:pf2GFP Chlamydomonas reinhardtii cell. (a) Segmentation result using the present 

method with h = 1 and λ = 10 −5 . (b) Segmentation result using FIESTA ( Ruhnow et al., 2011 ) with threshold 377 (out of 65,535 for the present 16bit image ). (c)–(e) Segmen- 

tation results using the methods from Paul et al. (2013) , Goldstein et al. (2010) , and Smith et al. (2010) with their standard parameters, respectively. 

(a) Present (b) FIESTA (c) ASB (d) Act. Contour (e) SOAC

Fig. 10. Applic ation to a phase-contrast image of a demembranated axoneme from a pf2:pf2GFP Chlamydomonas reinhardtii cell. (a) Segmentation result using the present 

method with λ = 10 −4 and h = 0 . (b) Segmentation result using FIESTA ( Ruhnow et al., 2011 ) on the inverted image with relative threshold = 156%, FWHM = 100, track curved 

filaments = 30%, drift correction on, 64 nm/pixel. (c)–(e) Segmentation results using the methods from Paul et al. (2013) , Goldstein et al. (2010) , and Smith et al. (2010) with 

their standard parameters, respectively. 
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For fluorescence images ( Fig. 8 a to d), h = 1 provides the best

esults for all tested SNR. Theoretically, one would expect that

igher SNR allow lower h , hence providing higher-resolution seg-

entations. This, however, seems to be robust over the SNR range

ested here. For phase-contrast images ( Fig. 8 e to h), segmentation

s generally more accurate, but less reliable (smaller percentage

f perfect detection). An h = 0 is always the best choice for the

hase-contrast images. 

Comparing to FIESTA (solid black line in Fig. 8 a and b), our

ethod generally performs equally well, sometimes even with a

igher accuracy (i.e., lower Fréchet distance). At low SNR, our

ethod shows significantly better detection performance than FI-

STA with 100% of all filaments correctly detected by our method

nd 73% by FIESTA (see numbers in Fig. 8 b). For FIESTA, we man-

ally tuned the threshold to give the best results, which was then

sed to fit the data for different SNRs. For our method, we manu-

lly tune λ and h . 

Looking at the segmentation accuracy, the Fréchet distances are

round 1.5 pixels for the fluorescence images and around 1 pixel

or the phase-contrast images. This may seem like a low accuracy

or a sub-pixel segmentation method. Keeping in mind that the

réchet distance is the maximum distance between the two fila-

ents, it is natural to ask where this maximum error occurs. Visu-

lly inspecting the results suggests that the error is localized to the

lament tips. While the lateral tracing of the filaments is sub-pixel

ccurate, the segmentation often misses the exact filament tip lo-

ation by 1 to 1.5 pixels. Since in biology we are often interested in

omputing the length of a filament from such segmentations, this

s indeed the relevant error. 

.4. Application to microscopy images of biological filaments 

We demonstrate the usefulness of our method, and further il-

ustrate the influence of the parameters λ and h , using real bi-
logical microscopy data from fluorescence, phase-contrast, and

ark-field microscopy. For each case, the same specimen has been

maged on the same microscop e (Nikon Eclipse Ti) with the same

bjective (Nikon Plan Fluor 100x, NA 1.45 for fluorescence and

hase-contrast, NA 0.5 for dark field) and the same camera (Andor

yla 4.2; pixel size 6.4 μm, effective pixel size with the 100x lens

4 nm). This ensures comparability of the results. The specimen

s a demembranated axoneme from a pf2:pf2GFP Chlamydomonas

einhardtii cell ( Alper et al., 2013 ). This particular mutant is res-

ued with a GFP tagged dynein regulation complex (DRC), which

ocalizes along the entire length of the axoneme. Thus, these ax-

nemes can be imaged not only by phase contrast and dark-field,

ut also by fluorescence microscopy. 

.4.1. Application of the present method to fluorescence microscopy 

mages 

Segmentation results for the 16bit fluorescence image are

hown in Fig. 9 . In our method, we use the standard fluores-

ence imaging model with a Gaussian PSF of 500 nm full width at

alf maximum (hence, σ = 3 . 32 pixel) and a Poisson noise model.

ncreasing the scaling size h in the present method for fixed λ
hanges the segmentation. For h = 0 the present method segments

ome of the noise close to the filament. The best result is obtained

or h = 1 (shown). For h = 2 , precision starts to be lost. 

When using FIESTA ( Ruhnow et al., 2011 ), the threshold for the

nitial segmentation was manually adjusted to 377 (out of 65,535

or this 16bit image ). 

The three previous model-based methods perform as expected.

pecifically, the method from Paul et al. (2013) successfully lo-

ates the region containing the filament to pixel-size resolution.

he closed active contour from Goldstein et al. (2010) provides

ood outline of the filament. The curve-fitting method from Smith

t al. (2010) converges in a local minimum. All methods are used

ith their standard parameter settings as provided by the original

ublications. 
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(a) Present (b) FIESTA (c) ASB (d) Act. Contour (e) SOAC

Fig. 11. Ap plication to a dark-field microscopy image of a demembranated axoneme from a pf2:pf2GFP Chlamydomonas reinhardtii cell. (a) Segmentation result using the 

present method with h = 2 and λ = 10 −4 . (b) Segmentation results using FIESTA ( Ruhnow et al., 2011 ) with threshold 40 0 0 (out of 65,535 for this 16bit image ). (c)–(e) 

Segmentation results using the methods from Paul et al. (2013) , Goldstein et al. (2010) , and Smith et al. (2010) with their standard parameters, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. A pplication of the present method to two fluorescence microscopy images 

containing multiple filaments: (a) two purified pf2:pf2GFP axonemes ( Alper et al., 

2013 ); (b) six GMPCPP-stabilized microtubules, in vitro polymerized from a mixture 

of Rodamine-labeled and unlabeled pig brain Tubulin (1:3) imaged by fluorescence 

microscopy ( Gell et al., 2010 ). We use the default parameters h = 1 and λ = 10 −5 . 
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m  

a  

b  
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5.4.2. Application of the present method to phase-contrast 

microscopy images 

Segmentation results for 16bit phase-contrast images are shown

in Fig. 10 . Since FIESTA ( Ruhnow et al., 2011 ) does not include a

phase-contrast imaging model, we first inverted the images before

processing them with FIESTA. In our method, we use the imaging

model for phase-contrast images from Yin et al. (2010) with pa-

rameters measured from an image of the back focal plane of the

microscop e and the Phase-3 oil condenser used (phase ring inner

diameter 2 mm, outer diameter 2.5 mm, back aperture 5.8 mm). In

addition, we use a Poisson noise model. 

Fig. 10 shows the result using the present method with λ =
10 −4 and h = 0 . Some of the background speckles are spuriously

detected as short filaments and would have to be filtered based

on their length in a post-processing step. The FIESTA ( Ruhnow

et al., 2011 ) result is free from false positives and correctly traces

the length of the filament. The results obtained with the other

methods used the respective standard parameter settings as pro-

vided by the original publications. The method from Paul et al.

(2013) correctly identifies the pixel mask containing the filament,

but also detects a false positive in the background. Also the

method from Goldstein et al. (2010) generates artifacts in the back-

ground while correctly tracing the outline of the filament. The

SOAC curve fitting methods from Smith et al. (2010) fails to trace

the filament, getting trapped in a local energy minimum on the

inverted image. 

5.4.3. Application of the present method to dark-field microscopy 

images 

We repeat the same evaluation and comparison using 16bit

dark-field microscopy images of the same specimen. While an

imaging model for dark-field microscopy exists ( Mehta and Olden-

bourg, 2014 ), it strongly depends on the geometry of the imaged

object. It can hence not be formulated as a convolution kernel K ,

which is why we resort to using the imaging model for fluores-

cence microscopy here with σ = 4 and a Gaussian noise model. 

Our present method successfully identifies the filament for all

scaling sizes tested ( h = 1 , 2 , 3 ). The best result is obtained for h =
2 (shown) and λ = 10 −4 , as shown in Fig. 11 . The result from FI-

ESTA ( Ruhnow et al., 2011 ) used a threshold of 40 0 0 (out of 65,535

for the 16bit images). The method from Paul et al. (2013) success-

fully identifies the region containing the filament to pixel-size res-

olution. The closed active contour from Goldstein et al. (2010) also

successfully traces the filament boundary with sub-pixel resolu-

tion. The curve-fitting method from Smith et al. (2010) converges

in a local minimum. All methods are used with their standard pa-

rameter settings as provided by the original publications. 

5.4.4. Application to images containing multiple filaments 

Often images contain an unknown number of filaments. We

show the application of our method to 16bit fluorescence images
ontaining a number of fluorescently labeled filaments. We use

he same fluorescence imaging model as above and do not pre-

iously specify the number of filaments in the image. Our present

ethod detects them automatically and without manual tuning of

ny threshold parameter. We start from the same initialization as

efore, i.e., a single curved filament. The segmentation results are

hown in Fig. 12 . 
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We test two images that contain two and six filaments, respec-

ively. We show the results for the default parameters h = 1 and

= 10 −5 . The first image (a) contains two purified pf2:pf2GFP ax-

nemes ( Alper et al., 2013 ). The second image (b) shows six flu-

rescently labeled microtubules ( Gell et al., 2010 ). This image has

uch lower SNR, yet the microtubules are correctly segmented. 

This demonstrates that our method combines the benefits of

ultiple existing methods. It provides sub-pixel geometric curve

escriptions of the filaments, automatically detects the number

f filaments in an image, does not rely on manual thresholding,

orks for different imaging models and microscopy modalities,

nd provides globally optimal results under the postulated model

hat asymptotically achieve the Bayesian Cramér-Rao lower bound

n the spline coefficients. 

. Conclusions 

We have presented a new algorithm to solve the filament seg-

entation problem for curved one-dimensional filaments in two-

imensional digital images. The presented method has only two

arameters and does not require prior knowledge about the num-

er of filaments in the image. It provides segmentation results with

ub-pixel accuracy as open polynomial curves. This enables high-

esolution studies of filament dynamics and provides access to spa-

ial and temporal derivatives of the curve and its time evolution.

pen curves are represented by a vector level-set, which enables

opological changes during contour evolution. The method is flexi-

le to accommodate different noise models and image-acquisition

odels. The segmentation result is guaranteed to be optimal for

he given model. This is the result of a convex formulation of the

nderlying optimization problem, using Bregman divergences to

easure the similarity between images, and a GLM model for the

mage pixel statistics. In other words, our method exploits prior

nowledge about the physical properties of the imaging system

n order to improve segmentation quality. Note that the geomet-

ic and photometric problems are likely not jointly convex, but

eparately convex, which is enough for convergence. If needed, a

ointly convex formulation could possibly be derived extending re-

ent works ( Brown et al., 2012 ). 

We provided an efficient algorithm to compute the optimal fil-

ment segmentation under the postulated models. The algorithm

ombines the analytical energy gradients with a fast convolution-

ased gradient evaluation. We have also for the first time shown

n information-theoretic lower bound on the segmentation error

n filament segmentation. No algorithm can possibly do better than

his bound given the information in the image. We have shown

hat for the specific bound of B-spline level sets, the presented al-

orithm is asymptotically optimal for high SNR. For low SNR, the

resented algorithm is not the best one could do, as it remains

lightly above the theoretical bound. This, however, is due to pa-

ameter choices, as discussed. Quantifying the residual fitting un-

ertainty could, for example, be done using particle filters in an

uter loop, as previously described ( Cardinale et al., 2009 ). 

Comprehensive simulations were conducted to illustrate the

ajor differences with prior works, show main features of our

ethod, quantitatively evaluate the performance on synthetic im-

ges, and demonstrate applications on real biological images. The

enchmarks have also identified recommended choices for the al-

orithm parameters h and λ: for fluorescence images with SNR

etween 4 and 30, one should set h to 1, for phase-contrast im-

ge h = 0 . The λ value is largely inconsequential. A default value

f 10 −5 should yield good results. 

The time required by the algorithm to segment an image de-

ends on the image size and on how far the initialization is form

he final segmentation. It does not depend on the number of fil-

ments in the image. The current MATLAB implementation pro-
esses a 512 × 512 pixel 8bit image in about 30 seconds using

ATLAB 2013b on a single core of an Intel Core i7 2.2 GHz pro-

essor. 

In its current form, the method has a number of limitations.

robably the most restrictive one is that filament crossings and

verlaps are not allowed. This is an inherent limitation of the

wo-component vector level-set description of filaments. Handling

rossing filaments would require using more than two level func-

ions (three to allow single crossings, four for tripple points, etc.).

urrently, the method is also limited to 2D images. Segmenting fil-

ments in 3D images would require the use of three level func-

ions. A limitation of the current theoretical derivation is that the

ntensities of the filaments and the background are assumed to

e uniform. As we have shown, however, the segmentation is still

symptotically optimal even when these assumptions are not ful-

lled, with a bounded increase in the error. Intensity variations

long a filament could then be read out during post processing and

sed as biological readouts, but the tips of the filaments may be

naccurately estimated, especially when the filaments get dimmer

owards the tips. 

There are a number of directions along which future work could

mprove on the present framework. An obvious thing to do would

e to extend to more than two level functions in order to handle

rossing filaments and higher-dimensional images. Extending the

ethod to allow for shaded fore- and background intensities in a

heoretically optimal way is less straightforward and requires more

esearch in convex relaxation theory. A more short-term goal could

e to include a line search over h in a scale-space pyramid (i.e., au-

omatically repeating the segmentation for successively lower h ) to

nd the optimal h that leads to the lowest global energy minimum

n each case. Together with a default value for λ, this would effec-

ively render the algorithm parameter-free. 

We provide an open Matlab implementation of the presented

lgorithm as a reference. In addition, the algorithm has also

een implemented in Java, as part of the open-source MOSAIC-

uite plugin for the user-friendly image-analysis environments Im-

geJ ( Schneider et al., 2012 ) and Fiji ( Schindelin et al., 2012 ). Both

mplementations are freely available from the MOSAIC Group’s web

ite mosaic.mpi-cbg.de . The main contributions of the present

aper were to: (1) show an information-theoretic lower bound on

he segmentation error for filaments, providing a baseline against

hich algorithms can be compared; (2) introduce the vector level-

et idea for filament segmentation, uniting the advantages of both

egion-segmentation and curve-fitting methods; (3) showing that

he resulting optimization problem can be solved efficiently and in

 globally optimal way; (4) providing a practical framework for fil-

ment segmentation across different imaging modalities and noise

odels. 
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