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ABSTRACT Viruses spread between cells, tissues, and organisms by cell-free and
cell-cell mechanisms, depending on the cell type, the nature of the virus, or the
phase of the infection cycle. The mode of viral transmission has a large impact on
disease development, the outcome of antiviral therapies or the efficacy of gene ther-
apy protocols. The transmission mode of viruses can be addressed in tissue culture
systems using live-cell imaging. Yet even in relatively simple cell cultures, the mech-
anisms of viral transmission are difficult to distinguish. Here we present a cross-
platform software framework called “Infectio,” which is capable of simulating trans-
mission phenotypes in tissue culture of virtually any virus. Infectio can estimate
interdependent biological parameters, for example for vaccinia virus infection, and
differentiate between cell-cell and cell-free virus spreading. Infectio assists in eluci-
dating virus transmission mechanisms, a feature useful for designing strategies of
perturbing or enhancing viral transmission. The complexity of the Infectio software
is low compared to that of other software commonly used to quantitate features of
cell biological images, which yields stable and relatively error-free output from Infec-
tio. The software is open source (GPLv3 license), and operates on the major plat-
forms (Windows, Mac, and Linux). The complete source code can be downloaded
from http://infectio.github.io/index.html.

IMPORTANCE Infectio presents a generalized platform to analyze virus infection
spread between cells. It allows the simulation of plaque phenotypes from image-
based assays. Viral plaques are the result of virus spreading from primary infected
cells to neighboring cells. This is a complex process and involves neighborhood ef-
fects at cell-cell contact sites or fluid dynamics in the extracellular medium. Infectio
differentiates between two major modes of virus transmission between cells, allow-
ing in silico testing of hypotheses about spreading mechanisms of any virus which
can be grown in cell cultures, based on experimentally measured parameters, such
as infection intensity or cell killing. The results of these tests can be compared with
experimental data and allow interpretations with regard to biophysical mechanisms.
Infectio also facilitates characterizations of the mode of action of therapeutic agents,
such as oncolytic viruses or other infectious or cytotoxic agents.

KEYWORDS: infection spread, numerical simulation, hybrid modeling, multiscale
modeling, cellular automata, particle strength exchange, diffusion, convection,
advection, fluorescence microscopy, cell population, phenotypic properties

Received 30 November 2015 Accepted 4
January 2016 Published 10 February 2016

Citation Yakimovich A, Yakimovich Y, Schmid
M, Mercer J, Sbalzarini IF, Greber UF. 2016.
Infectio: a generic framework for
computational simulation of virus transmission
between cells. mSphere 1(1):e00078-15.
doi:10.1128/mSphere.00078-15.

Editor Michael J. Imperiale, University of
Michigan

Copyright © 2016 Yakimovich et al. This is an
open-access article distributed under the terms
of the Creative Commons Attribution 4.0
International license.

Address correspondence to Urs F. Greber,
urs.greber@imls.uzh.ch.

Software to simulate virus infection
spreading in cell culture

RESOURCE REPORT
Host-Microbe Biology

crossmark

Volume 1 Issue 1 e00078-15 msphere.asm.org 1

http://dx.doi.org/10.1128/mSphere.00078-15
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1128/mSphere.00078-15&domain=pdf&date_stamp=2016-2-10
msphere.asm.org


Viruses are ubiquitous and infect all forms of life by mechanisms which are often
specific for a certain virus type. Therapeutic interventions can target the entire

virus replication cycle to either inhibit virus disease or enhance viral efficacy in
therapeutic settings, such as oncolytic virotherapy (1–6). An area of increasing interest
is virus transmission and spreading between cells. In an organism, this is a highly
complex process involving a cloud of genetically nonidentical agents and polymorphic
viruses, which enter and exit host cells (7–10). In addition, infections in organisms are
tuned by cell autonomous and nonautonomous chemical modulators and many dif-
ferent cell types, immunity processes, or mechanical factors, such as fluid flux and shear
stress (1, 11–15).

Viruses spread between cells by cell-free and cell-cell contact-dependent mecha-
nisms. This involves lytic or nonlytic egress, superinfection repulsion, syncytium forma-
tion, or combinations of such mechanisms (16–19). An example of lytic cell-free
spreading is provided by nonenveloped human adenovirus (HAdV), which has an
icosahedral capsid about 90 nm in diameter and a double-stranded-DNA (dsDNA)
genome of 36 kb (20, 21). HAdV plaques can be formed by cell-free virus, which is
subject to passive mass transfer by diffusion and/or convection. However, the velocity
field of the flow that carries viruses has remained difficult to estimate.

An example for complex cell-cell transmission phenotypes is vaccinia virus (VACV),
an enveloped brick-shaped particle 360 by 270 by 250 nm in size with a large
double-stranded DNA of ~200 kbp (22, 23). It replicates in the cytoplasm and forms two
types of infectious particle, single-membrane-containing intracellular mature virions
(IMVs) and double-membrane-containing cell-associated extracellular enveloped viri-
ons (CEVs), which upon detachment from the plasma membrane are termed extracel-
lular enveloped virions (EEVs) (24, 25). VACV transmission is enhanced by actin tails,
which result from CEV-induced back-signaling to the cell (26–29). This results in
superinfection repulsion and enhances virus spreading (19). The number of CEVs that
detach from the host cell is strain dependent. For example, the International health
department-J (IHD-J) strain of VACV is known to produce significantly more EEVs than
the Western Reserve (WR) strain (30). This feature has been measured in plaque assays
under liquid conditions, but contributions from cell-to-cell and cell-free components
have remained unknown (31).

Virus infectivity and transmission are classically measured by plaque assays in
cultured cells (32, 33). However, these assays do not distinguish between different
modes of transmission, such as cell-free and cell-cell transmission. This limitation may
be circumvented by developing computational models and reverse engineering of the
known spreading mechanisms. Here we present Infectio, a generalized software frame-
work for virus transmission modeling. Infectio provides a hybrid multiscale model to
simulate spatial dynamics of virus infections. It is a hybrid of cellular automaton (CA)
and particle strength exchange (PSE) with a fluid mechanics component and a host cell
component. Infectio models cell-free and cell-to-cell transmission features. It is imple-
mented in MATLAB and supplemented with MEX/C for increased performance.

RESULTS
Generalized modeling framework. A generic virus spreading model should be able to
simulate plaque formation by a large variety of viruses. It should simulate different
modes of transmission, including cell-free and cell-to-cell routes. Our previously pub-
lished model for cell-free virus diffusion was a hybrid of CA and partial differential
equations discretized using the PSE method (21, 34). To simulate cell-to-cell spread, we
implemented neighborhood rules in our probabilistic CA (see Materials and Methods).
We modeled the cell-to-cell spread of VACV on a descriptive level using the speed of
plaque growth as an input parameter. In this case, we largely abstracted from all
mechanisms of infectivity on the microscopic level (referred to here as microinfectivity)
and explored if other input parameters besides speed of plaque growth would have to
be considered.
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To implement mechanistic parameters in a black-box abstraction model, we built in
an option to make the speed of virus cell-to-cell spread dependent on the production
of cell-associated virus by an infected cell and on the microinfectivity of the neighbor-
ing cells. Such a detailed model can make predictions about a number of VACV
mechanisms that are currently discussed (see reference 19). The predictions from the
model may then be tested by further experimental assays to validate microinfectivity
properties.

Next, we enhanced the PSE component of our model by adding the possibility for
particles to move along a defined velocity field. This feature allows simulation of not
only homogeneous diffusion but also diffusion-advection of the cell-free virus in a
defined direction. Finally, to enhance the usability of Infectio, we developed a graphical
user interface (GUI) (Fig. 1). This interface allows one to choose specific simulation
conditions, define the output path, or monitor the state of the simulation.

Inference of convective bulk microflow properties from cell-free spreading
patterns of adenovirus. To test the ability of Infectio to simulate phenotypes of both
cell-free and cell-to-cell virus transmission mechanisms, we used published datasets of
spatial dynamics of HAdV and VACV (21, 31). To infer the impact of convective bulk
microflows, we performed spreading simulations of a replicating green fluorescent
protein (GFP)-expressing adenovirus, HAdV-C2_dE3B_GFP, and for this we used differ-
ent values of advection speed and left all other parameters invariant. We color-coded
the infection intensity states of the cells and the virus amounts over time (Fig. 2; also,
see Movies S1 and S2 in the supplemental material). The PSE simulations showed that
advection velocities between 0.1 and 10 �m/s best reproduced the characteristic
HAdV-C2_dE3B_GFP comet patterns (Fig. 2A; also, see Movie S2). Outside this range,
the microflow was either too slow, yielding quasicircular plaques, or too fast, yielding
very thin comets or low infection due to lack of virus binding to cells. An advection
speed of 0.5 �m/s, however, yielded comets very similar to those observed in micros-
copy images for HAdV-C2_dE3B_GFP (Fig. 2B).

Estimation of cell-free virus contribution to spreading of vaccinia virus. To
estimate how cell-free VACV contributes to the spread of infection, we have simulated
a combination of cell-to-cell and cell-free virus transmission conditions of different
VACV strains. The key parameters were either measured, estimated, or inferred from
published datasets of WR and IHD-J strains, and graphical outputs were compared with
phenotypes from microscopy experiments (31). We mimicked the experimental condi-

FIG 1 Graphical user interface for the Infectio software. (A) Selection of a predefined set of
parameters for simulation. (B) Selection of an output folder. (C) Simulation log output.
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tions in liquid or semisolid medium by introducing a directed advection flow of
0.5 �m/s and simulated VACV-WR or IHD-J spreading under three different conditions:
condition A, without cell-free components; condition B, with diffusion and advection
components; condition C, with diffusion but not advection flow (Fig. 3A to C).

Condition A mimicked the situation in semisolid medium under the assumption that
VACV is too large to freely diffuse in the semisolid, and plaque formation occurs
exclusively through cell-to-cell spreading (Fig. 3A; also, see Movie S3 in the supple-
mental material). As expected, both VACV-WR and IHD-J plaques were free of comet
tails or satellite plaques. The diameter of the simulated plaque at 50 h postinfection
(p.i.) was 1,092 �m for both VACV-WR and IHD-J, which is comparable to the diameters
of experimental plaques, 1,098 � 31 �m and 1,047 � 27 �m, respectively. We conclude

FIG 2 Addition of an advection term to the model simulates comet-shaped virus spreading patterns for adenovirus. (A) PSE particles
with color-coded mass representing HAdV amounts reveal the concentration field behavior at different speeds of advection. Note that
the simulation was stopped when the concentration reached the minimal infection threshold for HAdV; dashed lines show the shape
estimate of the comets. (B) Still images from a simulated time-lapse infection with an advection term: cellular patterns of HAdV-infected
cells closely resemble comets observed in microscopy. Here, advection speed was 0.5 �m/s.
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that although the simulation occurs in a simplified geometry, it reproduces the global
spatial behavior of virus infections.

Condition B mimicked the situation where spread occurs in liquid medium, and
cell-free virus is subject to advection-diffusion (Fig. 3B; also, see Movie S4 in the
supplemental material). In the case of VACV-IHD-J, a number of satellite plaques
appeared next to the initial plaque. These satellite plaques fused with the original
plaque at 50 h p.i., and this gave rise to a comet tail phenotype. No satellite plaques
were observed with VACV-WR at a scaling factor of 0.01. However, at a ratio (scaling
factor) of 0.1, satellite plaques were observed at random locations around the original
plaque (see Movie S5). We conclude that the amount of cell-free VACV-WR must be at
least 100-fold lower than the amount of cell-associated virus to account for the absence
of comet-shaped plaques.

A

B

C

FIG 3 Vaccinia virus spreading patterns simulated under various conditions. (A) Cell-free spread of virus
switched off. (B) Cell-free spread by diffusion-advection, where advection is directed north (along the OY axis).
(C) Cell-free spread by diffusion only. Note that the hexagonal shape of the simulated plaque is due the
geometry chosen for the shape of a unit cell. Circular plaques can be obtained with a more isotropic cell lattice
(not shown).
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Condition C mimicked the situation in semisolid medium where cell-free VACV-IHD-J
is subject to diffusion but not advection (Fig. 3C; also, see Movie S6 in the supplemental
material). In contrast to the results obtained with VACV-WR, we observed a significant
number of satellite plaques from the initial infected cell, consistent with the notion that
VACV-IHD-J yields more cell-free virus than VACV-WR. If true, this would suggest that
VACV-IHD-J freely diffuses through agarose and thereby gives rise to satellite plaques.
However, this was never observed in wet-lab experiments (31). We conclude that the
diffusion of cell-free virus released from a VACV-IHD-J plaques is restricted by 0.6%
agarose gel. This shows that simulations by Infectio can predict the formation of viral
plaques and help discriminate between different spreading mechanisms.

Availability and dissemination of Infectio software. The large diversity of
pathogens and the difficulty of growing certain viruses imply that a crowdsourcing
computational effort could improve the models for virus transmission, for example, by
using the most accurate experimental data and the most flexible software implemen-
tations. To enhance accessibility and utilize expertise from other researchers, we have
deposited the Infectio software on the crowdsourcing platform GitHub (35). GitHub is
based on the open-source version control system Git (GNU GPL V3 license), the current
state-of-the-art system used by open-source software projects like Linux and Android.
The source code of our modeling framework is available for download and for forking
on GitHub under the GPLv3 open-source license, allowing freedom for researchers to
work with the code. A community effort may help in building an ever-more-elaborate
model of plaque formation for all known viruses. Placing different viruses in the same
in vitro and in silico settings and comparing mutants, strains, and species in plaque
formation and infection biology will enable novel insights for disease management and
the use of viruses in therapies.

Estimated software quality through software complexity. The quality of
software often negatively correlates with software complexity (36). For example, the
number of defects that an in silico method contains correlates with the cyclomatic
complexity, which is a measure of linearly independent paths through the source code
for a program (37). Our analyses indicate that the complexity of Infectio is within an
acceptable range, for example, lower than the complexity of the widely used Cell-
Profiler software (Fig. S2). We maintained a high quality of the software by minimizing
the complexity of our source code through iterative refactoring following addition of
new features. To measure the complexity of the source code of Infectio, we used
metrics including line count of commentaries (“Commentary”), line count of inline
source documentation (“Help metrics”), and total line count (“Line count”) and com-
bined this with cyclomatic complexity for each file of the source code. If the complexity
increased upon the addition of new features, we performed refactoring of the source
code to reduce it.

We compared the complexity of Infectio in three consecutive development versions
to CellProfiler software (38) (see Fig. S2 in the supplemental material). For this purpose,
the values of the metrics mentioned above were arranged in an array for each file of
each version or software. For each metric, min-max normalization was applied to obtain
values between 0 and 1 within the comparison set. This provided a complexity profile
of the three consecutive versions of the Infectio software and CellProfiler software (see
Fig. S2). For simplicity of the comparison, we computed an integrated measurement of
the normalized metrics by averaging the values of all the metrics per version. The
results showed that the initial version of Infectio (v0.1) had an average complexity of
0.0222. Upon refactoring, the complexity of v0.2 decreased to 0.0190. Upon introduc-
tion of additional features in v0.3, the complexity only slightly increased to 0.0207. For
reference, the complexity of CellProfiler was 0.0268.

DISCUSSION

Computational models have been used to identify infection contributions from viruses
transmitted via cell-cell and cell-free mechanisms. This involved modeling of spatial
dynamics of viral spread (39–42) and spatial behavior of the agents (43, 44). In
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particular, hybrid models involving CA, ordinary differential equations (ODE), or
reaction-diffusion have been developed to simulate bacterial infections, conditionally
replicating adenovirus in tumors or lytic virus replication in cell cultures (21, 45, 46). Our
software Infectio implements a two-component spatiotemporal model and thereby
reproduces the spreading phenotypes of three different viruses (HAdV, VACV-WR, and
VACV-IHD-J). This represents a generic model of plaque formation applicable to any
virus that has a known size and is able to form plaque phenotypes on cells grown in
two-dimensional monolayers.

MATERIALS AND METHODS
Toward a hybrid model— cellular automaton. Initially infected virus-spreading cells have received one
plaque forming unit (PFU) and undergo a time- and PFU-dependent process of cell-free and cell-
associated virus production according to the mathematical model with a ratio of cell-free to cell-
associated virus (scaling factor) as discussed below (see equation 1; also, see Fig. S1 in the supplemental
material). The amount of neighboring cells infected near an initially infected cell is determined by the
plaque growth speed, measured in micrometers per hour. Each cell is represented by a hexagonal object,
and in a monolayer, a hexagonal lattice represents biological cells, similar to the model described earlier
(21). CA cells can be in a noninfected state (default), infected, dead, or lysed, where infected cells emerge
from noninfected and dead cells or are lysed from infected cells. A single infected cell located at the
center of the grid represents an initial infection, and adjacent noninfected cells may become infected by
cell-free or cell-associated viruses (secondary infections). The probability of infection was measured
experimentally and designated Pcell-free infection, which attributes probabilistic cell infection values to the
cellular automata. In this setting, we chose the cell-to-cell infection spread to be dependent on
cell-associated virus and the microinfectivity of the neighboring cells.

Particle strength exchange representing diffusive behavior of infectious agents in the extra-
cellular medium. Analyses of experimentally determined parameters of viral spreading in plaque assay
indicated a contribution of cell-free adenovirus to infection (21, 31). It is, however, not known whether
other viruses also freely diffuse through the agarose gel medium, as diffusion is dependent on virus size.
We hence simulated free and limited diffusion conditions by coupling the advection-diffusion systems to
our probabilistic CA representing the host cell population. The probability of cell-free infection is
proportional to the amount of virus a cell receives from the PSE module. We introduced deterministic PSE
methods mimicking diffusion-advection of extracellular virus (34). This is a continuum particle method
discretizing the advection-diffusion PDE and is suitable for simulating the mass transfer of large numbers
of virus particles typically present in the extracellular medium during cell-free spread. PSE was considered
in a rectangular volume with an area equal to the dimensions of the CA cell, located above the cell and
filled with equally spaced computational particles representing extracellular virus. The state of a CA cell
is influenced by the amount of virus within the element above the cell, the movement of virus elements
by advection under free-space boundary conditions allowing virus mass to exchange with neighboring
PSE elements by diffusion. The method thus represents both bulk currents and local diffusion and
accounts for the formation of comet-shaped and circular plaques, respectively (21).

Algorithmic implementation of Infectio. The algorithmic hybrid implementation of the cellular
automaton and particle strength exchange (CA-PSE) methods is largely identical to the one published
before (21). Here, we simulated the cellular monolayer using probabilistic CA (47, 48) on a hexagonal
lattice. The latter is implemented in a spatiotemporal hybrid with PSE, a particle-based advection-
diffusion numerical approximation method (34). PSE is based on replacing the Laplace operator with an
integral operator that is subsequently discretized using particle locations as quadrature points (49). In the
current implementation, an additional feature was implemented: the infection state is switched from
“uninfected” to “infected” based on the parameter “speed of plaque growth,” allowing simulation of the
cell-to-cell spreading mechansim. Further details can be obtained and discussed on the GitHub page
under http://infectio.github.io or in the project help under http://infectio.github.io/help.html.

Software implementation of Infectio. The proposed method has been implemented as a software
framework in the form of a stand-alone package. The main programming language was MATLAB with a
well-structured modular design using MATLAB name spaces, which is reflected, for example, in the folder
structures of the source code. Following this approach, it is easy to extend the framework by adding,
setting files, or enumerating the model parameter space, each of which is different from a default
scenario. Introduction of further model parameters or changes in the logics can be made using setting
files. Additionally, to ensure user-friendliness of the software, we implemented a MATLAB GUID-based
graphical user interface (GUI). Performance-critical parts were implemented as cross-platform C code,
which is integrated using the MATLAB MEX technology. Application performance was further enhanced
using parallel computing techniques through the shared memory model based on OpenMP 4.0 exten-
sions. To ensure sufficient performance, the recommended hardware requirements include a high-end
multicore workstation, or a multipurpose high-performance computer cluster.

The Infectio software is designed to take in a number of custom parameters defined by the end-user
based on, e.g., experimental measurements as discussed below. An overview of input parameters, flags,
and their default values are provided in Table 1. As a default output Infectio software provides frames
of a time-lapse graphic representation of cells and final values of all the variables in the workspace saved
as a .mat file. Additionally, one may save a graphical rendering of the PSE particles with color-coded
particle strength (see the flags in Table 1). For experimental and troubleshooting purposes, one may save
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the state of any variable at any point of the simulation using “sensor” variables, which is deactivated by
default but may be activated through a specific flag (see the flags in Table 1).

Experimentally measured cell-free virus infection probability and average cell size. To measure
the probability of infection by cell-free VACV strains WR and IHD-J, we used the time-lapse titration data
from a published data set (31). From these data, we estimated the fractions of infected cells depending
on the amount of input virus at 12.3 h p.i., i.e., before the observable occurrence of the second round
of infection. Both VACV-WR and IHD-J showed a dose-dependent increase of the fraction of infected cells.
Fractions of infected cells were used as a look-up table, which allowed us to compute the probability of
infection as a function of virus concentration using linear interpolation. We averaged the diameters of 40
BSC40 cells based on transmission light microscopy images (31) and found the average to be 22 � 8 �m.

Experimentally determined speed of cell-to-cell spread. The speed of cell-to-cell spread was
measured from the speed of radial growth (in micrometers per hour), detected by the emergence of the
GFP signal around the initially infected cell. Although this measurement is probably less than the speed
of virus transition between cells, we took it as an approximation of virus transmission from the originally
infected cell to the neighboring cells.

Experimentally determined cell-free and estimated cell-associated virus production. VACV-WR
produces 10 to 100 times less cell-free virus than IHD-J and 100 to 1000 times less cell-free than
cell-associated virus (26, 31). Both strains produce comparable amounts of total infectious virus, and
IHD-J produces about 10 times less cell-free virus than cell-associated virus. The amount of cell-free virus
for VACV-WR is negligible within the time frame of our experiments, and hence we estimated the
VACV-WR spreads between cells by cell-cell route only. To simulate the production of cell-free VACV-
IHD-J progeny, we fitted the data from the supernatant titration experiment with a mathematical model
of virus production. VACV growth curves have a sigmoidal shape, similar to the widely used one-step
growth curves for other viruses (50). We hence fitted our experimental data with a sigmoidal model (see
equation 1) using the least-squares fitting method. Since a negative concentration is nonphysiological,
we constrained the parameter Bottom to be larger than or equal to 0. The fitting results and the residual
plot are shown in Fig. S1A and B in the supplemental material. The best parameters obtained and the
goodness of the fit are shown in Table 1.

TABLE 1 Main input parameters of Infectio

Parameter Type Default Description

cells_x Integer 5 Model size defined by the number of the horizontal cells in the
hexagonal lattice (y size is computed automatically to
maintain the lattice)

pauseOnCAIterations Flag (0 or 1) 0 Wait for key stroke or user input after every iteration

virus Flags. Flag (0 or 1) 0 Should the images be displayed with or without PSE particles
plotImagesWithParts

virusFlags. Flag (0 or 1) 0 Advection: true, apply flow; false, do not
isAdvectionEnabled

TotalTimeStepsHPI Integer 10 Total time steps for the model to run in hours postinfection

virusFlags. Flag (0 or 1) 1 Switches the cell-to-cell spread on and off
isSpreadCell2CellLimitedByTime

virusFlags. Flag (0 or 1) 0 Switches the cell-free spread on and off
isCellFreeSpreadEnabled

initialC2cInfection Integer 1 Number of initially infected cells

Sensor Flag (0 or 1) 0 Save all workspace variable at certain hours p.i. during the
simulation

CellDeathFlag Flag (0 or 1) 0 Allow death of uninfected cells

CellLysDistFlag String “unif” Cell lysis probability distribution flag for lytic cell-free spread:
unif, norm, exp

SavePrticlesPlotFlag Flag (0 or 1) 0 Saves the PSE particle plots

virusType String “VACV-WR” Select one of the preset viruses; new presets for viruses with
experimentally measured parameters can be definied in
capse/src/matlab/�caps/�config/parameters.m and
capse/src/matlab/�caps/�config/flags.m

PrimaryLysisFlag Flag (0 or 1) 0 Defines whether the initially infected cell lyses to initiate spread
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Y � Bottom �
(Top � Bottom)

1 � 10(log EC50 � t) � Slope (1)

where Y is the virus amount, t is time after infection, and “Bottom,” “Top,” “EC50,” and “Slope” are the
fitting parameters.

We compared the output of the model with infection spread of different viruses and obtained closely
matching results. Next, we estimated the production rate of cell-associated viruses by conjecturing that
VACV-IHD-J produces cell-free virus according to the model we fitted (see Fig. S1 in the supplemental
material) using the best-fit parameters (see Fig. S1C). We also assumed that the production rate of other
infectious forms follows the same model in either a scaled-up or scaled-down manner. The scaling factor
for VACV IHD-J cell-associated virus production was 10. For VACV-WR, we assumed and used scaling
factors of 0.1 and 0.01 (both conditions were tested) for cell-free virus and 10 for cell-associated virus. We
assumed that both viruses produce the same amount of cell-associated virus (scale factor, 10).

Estimated virus diffusion coefficient. To estimate the diffusion coefficient we used the Einstein-
Stokes relation (equation 2)

D �
kBT

6��r
(2)

where kB is Boltzmann’s constant, T is temperature in kelvin, � is the dynamic viscosity of the medium,
and r is the spherical radius of the diffusing particle.

As previously shown (21), the Reynolds number for our experimental setting is much less than 1,
which justifies the use of the Einstein-Stokes relation under the conditions of our experiment. For the
calculations with VACV, we took a spherical diameter of 270 nm, which corresponds to the longest
dimension of a VACV particle. The computed diffusion constant for a spherical particle of this size is
1.218 �m2/s. Although VACV particles are barrel shaped and not spherical (23), we assumed in a first
approximation that this difference in shape does not significantly influence the value of the diffusion
coefficient.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://dx.doi.org/10.1128/
mSphere.00078-15.

Figure S1, TIF file, 0.9 MB.
Figure S2, PDF file, 6.4 MB.
Movie S1, MOV file, 10.7 MB.
Movie S2, MOV file, 3.2 MB.
Movie S3, MOV file, 4.4 MB.
Movie S4, MOV file, 4.5 MB.
Movie S5, MOV file, 4.5 MB.
Movie S6, MOV file, 4.6 MB.
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