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Abstract

Influenza A virus (IAV) enters host cells by endocytosis followed by acid-activated penetration from late endosomes (LEs).
Using siRNA silencing, we found that histone deacetylase 8 (HDAC8), a cytoplasmic enzyme, efficiently promoted productive
entry of IAV into tissue culture cells, whereas HDAC1 suppressed it. HDAC8 enhanced endocytosis, acidification, and
penetration of the incoming virus. In contrast, HDAC1 inhibited acidification and penetration. The effects were connected
with dramatic alterations in the organization of the microtubule system, and, as a consequence, a change in the behavior of
LEs and lysosomes (LYs). Depletion of HDAC8 caused loss of centrosome-associated microtubules and loss of directed
centripetal movement of LEs, dispersing LE/LYs to the cell periphery. For HDAC1, the picture was the opposite. To explain
these changes, centrosome cohesion emerged as the critical factor. Depletion of HDAC8 caused centrosome splitting, which
could also be induced by depleting a centriole-linker protein, rootletin. In both cases, IAV infection was inhibited. HDAC1
depletion reduced the splitting of centrosomes, and enhanced infection. The longer the distance between centrosomes, the
lower the level of infection. HDAC8 depletion was also found to inhibit infection of Uukuniemi virus (a bunyavirus)
suggesting common requirements among late penetrating enveloped viruses. The results established class I HDACs as
powerful regulators of microtubule organization, centrosome function, endosome maturation, and infection by IAV and
other late penetrating viruses.
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Introduction

To enter their host cells, the majority of animal viruses take

advantage of the cell’s endocytic machinery. After uptake,

penetration of the viruses or their capsids into the cytosol generally

occurs from early or late endosomes (EEs or LEs). Since

endocytosis and endosome maturation are complex and tightly

regulated activities, successful entry and infection relies on

numerous cellular factors and processes. This is clearly illustrated

by recent high-throughput siRNA screens that have identified

hundreds of host cell genes required for infection by different

viruses [1,2]. The starting point for our study was a 7000

druggable-genome RNAi screen performed on the influenza A

X31 strain (A/Aichi/2/68) (H3N2) in A549 cells suggesting that

histone deacetylases (HDACs) are modulators of early infection.

IAVs are enveloped animal viruses with a segmented, negative-

sense RNA genome. Point mutations, reassortment, and interspe-

cies transmission cause recurrent epidemics and global pandemics

in humans, birds, and animals [3]. At the cellular level, infection

begins by virus binding to sialic acid residues on cell surface

glycoproteins and lipids followed by internalization either via

clathrin-mediated endocytosis or a clathrin-independent, macro-

pinocytosis-like uptake process [4,5,6,7]. The virus particles are

transported into the endosome system. Penetration of the genome

into the cytosol is mediated by the hemagglutinin (HA)

glycoprotein, an acid-activated membrane fusion factor [8]. The

low pH threshold for HA activation (pH 5.4-4.9) dictates that

penetration by membrane fusion takes place in LEs or endolyso-

somes usually in the perinuclear region of the cell [9,10]. After

penetration, the matrix protein (M1) dissociates, and the viral

ribonucleoproteins (vRNPs) are imported via nuclear pore

complexes into the nucleus where replication and transcription

take place [11,12].

The centrosome is the major microtubule organizing center

(MTOC) of animal cells. Centrosomes bind more than 100

regulatory proteins, whose identities suggest roles in a multitude of

cellular functions [13]. By nucleating and anchoring microtubules

(MTs), centrosomes influence most MT-dependent processes,

including organelle transport, cell shape, polarity, adhesion,

motility, and division. After duplication of the two centrioles

during S phase [14], the two resulting centriole doublets continue

to function as a single MTOC until they separate at the onset of

the mitosis.

Acetylation is a reversible post-translational modification that

neutralizes the positive charge of lysines, changing protein function

in diverse ways [15]. It plays a central role in the epigenetic

regulation of gene expression through modification of histone tails

by histone acetyltransferases (HATs) and histone deacetylases
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(HDACs) [16]. Acetylated proteins are typically subunits of large

macromolecular complexes involved in processes such as chro-

matin remodeling, cell cycle regulation, splicing, nuclear transport,

MT stability, and actin nucleation. With more than 1700 substrate

proteins identified by proteomic analysis, the regulatory scope of

lysine acetylation is broad [17].

HDACs are classified into three subclasses [18]. In this study,

we focused on class I HDACs (HDAC1, 2, 3, 8) and their role in

infection. We found that some of them increased or decreased

IAV’s productive entry by modulating endocytosis, by affecting the

properties of the MT network, and by influencing the maturation

of endosomes. HDAC8 was found to support infection by

promoting LE/LY motility and MT organization at the

centrosome, and by increasing centrosome cohesion. In contrast,

HDAC1 decreased centrosome cohesion and suppressed IAV

infection. The two enzymes thus displayed opposing effects on

IAV entry by controlling endosome function through changes in

the MT network and the centrosome.

Results

HDAC8 is required for efficient IAV entry
In a high-throughput RNAi screen, HDAC8 emerged as one of

the proteins required for efficient infection of influenza A X31

strain (A/Aichi/2/68) (H3N2) in A549 cells. The readout for this

screen was the expression of newly synthesized viral nucleoprotein

(NP). To validate this finding and expand it to other class I

HDACs, we adopted the siRNA silencing approach and tested

several oligonucleotides against HDACs 1, 2, 3 and 8 for effects on

IAV infection. The specificity and efficacy of the siRNAs were

confirmed at the protein level by Western blotting and at the

mRNA level by real-time PCR (Figure S1A and B). The efficiency

of protein depletion for HDACs 1, 3 and 8 was 90%, 80% and

95%, respectively (Figure S1A). The effects of the siRNAs were

specific in that each of them only induced depletion of the

intended HDAC (Figure S1B).

Seventy-two hours after transfection with these siRNAs, cells

were infected with influenza A X31 strain (A/Aichi/2/68)

(H3N2), and 10 h later, the fraction of infected cells was quantified

by immunofluorescence staining against the newly synthesized NP.

For imaging, automated microscopy was used, and the fraction of

infected cells quantified with a MATLAB program using an

algorithm developed in our lab [19]. To allow detection of an

increase as well as a decrease in the number of infected cells,

conditions were adjusted so that 20% of the cells were infected in

cells transfected with a control oligonucleotide (All*Neg).

Depletion of HDAC3 and HDAC8 was found to reduce IAV

infectivity to 28% and 36% of control, respectively, whereas

depletion of HDAC1 increased infectivity more than two-fold

(Figure 1A). Depletion of HDAC2 had no effect (not shown). In

cells depleted of a subunit of the vATPase (ATP6V1B2)

responsible for acidification of endosomes, and CAS (CSE1L), a

factor required for nuclear import of influenza vRNPs, infection

was almost completely inhibited. In HeLa ATCC cells, HDAC1,

3, and 8 silencing had similar effects on infection as in A549 cells

(Figure S1D).

To determine which steps in the infection cycle were affected,

we used a series of quantitative, microscopy-based assays that

allowed us to follow the progress of incoming virus particles by

monitoring binding to the plasma membrane, internalization by

endocytosis, conversion of the HA to its acid-induced conforma-

tion, and import of vRNPs into the nucleus. The results in

figure 1B–G showed that the increase in infection caused by

HDAC1 depletion correlated with a doubling in the efficiency of

virus exposure to low pH judging by the increased conversion of

HA to the acid-induced conformation detected using a specific

monoclonal anti-HA antibody (Figure 1D, E). The import of

vRNPs to the nucleus was correspondingly increased about 1.3-

fold (Figure 1F). Since virus binding and internalization were

unaffected (Figure 1B, C), this indicated that the fraction of

endocytosed viruses undergoing acidification and productive

penetration was elevated.

In cells depleted of HDAC8 or HDAC3, the loss of infectivity

was explained by a dual effect on endocytosis and acidification.

When measured 30 min after uptake, endocytosis of IAV was

reduced to 48 and 41% (Figure 1C). Total acidification was

reduced to 30% and 17%, compared with controls, respectively,

meaning that roughly half of endocytosed viruses underwent acid

exposure (Figure 1E). Consequently, the nuclear import of vRNPs

was also reduced (Figure 1F). When dynasore, an inhibitor of

dynamin [20] was used, the level of internalization dropped to

29% (Figure 1C). Bafilomycin A (a vATPase inhibitor) blocked

acid conversion and nuclear import almost completely (Figure 1E,

F). The kinetics of the conversion of HA to the acid-induced

conformation was not affected by depletion of any of the HDACs.

The acid HA peaked around 1 hour after warming, followed by a

decline caused most likely by degradation of the HA in

endolysosomes. In HDAC8- and HDAC3-depleted cells, the

amount of acidic HA remained low at all time points (Figure 1D).

The assays indicated that the drop in influenza infectivity after

HDAC depletion involved pre-penetration steps in the endocytic

pathway. This was confirmed for HDAC1 and HDAC8 by

inducing infection without the need for the virus to undergo

endocytosis. Such by-pass was achieved by adding low pH

medium to cells with bound virus, thus inducing fusion of the

viral envelope directly with the plasma membrane [21]. In

HDAC1-depleted cells, no increase in infectivity was observed

compared to control cells, and no loss of infectivity was seen in

HDAC8-depleted cells (Figure 1G). Cells depleted of CAS served

as a post-penetration control: here the block could not be by-

passed. We concluded that the effects of HDAC8 and HDAC1

involved pre-penetration steps in the endocytic pathway. Howev-

Author Summary

Histone deacetylases (HDACs) are generally associated
with the epigenetic regulation of gene expression in the
nucleus, but some have been shown to possess cytoplas-
mic functions. While analyzing the role of cell factors in
influenza A virus entry into host cells, we observed that
depletion of members of the class I HDAC family
dramatically affected the efficiency of infection. Depletion
of HDACs 8 and 3 decreased, and depletion of HDAC1
elevated the efficiency of entry. For HDAC1 and 8, this
could be traced back to opposing effects on the
architecture of centrosomes and consequences on micro-
tubule organization. HDAC8 depletion caused the centro-
somes to split and move away from each other. The
microtubules were disorganized, and endosomes failed to
move to the perinuclear region of the cell. Endocytosed
viruses did not penetrate because the endosomes
dispersed throughout the cytoplasm and did not acidify
properly. In contrast, when HDAC1 was depleted, fewer
centrosomes were split, and endosome transport and
acidification became more efficient. Taken together, our
results showed for the first time that class I HDACs play a
role in the organization of the microtubule network, in
endosome maturation, and in the entry of influenza and
other late penetrating viruses into host cells.

HDAC8 Regulates IAV Entry via Centrosome Function
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er, the by-pass in HDAC3-depleted cells only partially restored

infectivity (55% of control), implying that this enzyme was

involved in both pre- and post-penetration steps (Figure 1G). We

did not study HDAC3 further.

Taken together, the results indicated that class I HDACs

participate in the regulation of the endocytic pathway, especially

the pathway from EEs to LYs. Perturbation of HDACs had major

consequences on the efficiency of IAV entry. Productive entry was

enhanced after HDAC1 depletion and inhibited after HDAC8 or

HDAC3 depletion. In HDAC8- and HDAC3-depleted cells, the

endocytic internalization and acid-conversion of the virus were

inefficient with the outcome that few vRNPs reached the nucleus.

In HDAC1-depleted cells, primary endocytosis was normal but

acid exposure, penetration, and vRNP delivery to the nucleus were

dramatically enhanced.

HDAC8 depletion causes dispersal of Golgi and LE/LYs
When we examined the distribution of organelles positive for

the LE/LY marker LAMP1 in HDAC8-depleted cells by indirect

immunofluorescence microscopy, we observed that instead of

clustering mainly in the juxtanuclear region, the vacuoles were

distributed throughout the cytoplasm (Figure 2A). The Golgi

complex, visualized using giantin as a marker, was also

dispersed. In contrast, HDAC1 depletion induced increased

clustering of these organelles in the perinuclear region. Some of

the vacuoles were larger than in controls. EEs identified by the

presence of EEA1 [22] were larger in HDAC1-depleted cells

than in controls but their intracellular distribution was normal

(not shown).

For quantitation of the dispersion effect, we derived a dispersion

index using an algorithm described in materials and methods.

With a dispersion index of 1.0 for LAMP1-positive vacuoles in

nocodazole-treated cells and zero for unperturbed cells, HDAC8-

depleted cells had a positive index of 0.52 (Figure 2B). The

depletion of two dynactin subunits (ACTR10 and DCTN2,

required for MT- and dynein-dependent retrograde transport of

vesicles) [23] resulted in a dispersed phenotype similar to

nocodazole. Dispersed vesicles were also observed after depletion

of KIFC1 (0.89) and KIFC2 (0.52), which are both minus end-

directed kinesin motors [24]. Finally, cells depleted of HDAC1

had a negative index (20.33) consistent with the increased

perinuclear clustering of the vacuoles.

To determine whether the effects were general and affected

endogenous cargo, we examined the fate of epidermal growth

factor (EGF), which is normally transported to LYs and degraded,

and transferrin (TF), which is recycled from EEs to the plasma

membrane [25,26,27]. We observed that HDAC1 depletion had

no effect on either ligand. HDAC8-depleted cells exhibited a

partial decrease in the degradation of EGF (p = 0.049, Student’s t-

test), and intracellular TF increased by 40% suggesting an increase

in endocytosis or a decrease in recycling (Figure 2C, D).

The dispersal phenotype of LE/LYs in HDAC8-depleted cells

suggested that the HDACs affected the MT system. It was

therefore of interest to determine whether MT disruption and

stabilization would affect infection. Nocodazole had no effect on

IAV endocytosis, but reduced HA acidification by 46% and

infection by roughly 50% (Figure 3A, B). Taxol had no effect.

Thus by dispersing endosomes, nocodazole had an effect on

infection and acidification similar to HDAC8 depletion: it reduced

the infectivity of endocytosed IAV to half.

A change in endosome behavior could also be visualized by

video microscopy in live cells when Alexa Fluor 647 (AF647)-

labeled wheat germ agglutinin (WGA), a lectin that binds to cell

surface sialic acids and glycoproteins, was allowed to be

endocytosed and routed to LEs [28]. The videos showed clearly

that instead of accumulating in the perinuclear region as in control

cells, WGA-positive vesicles in HDAC8-depleted cells continued to

move throughout the cytoplasm (Video S1). When R18-labeled

IAV particles were co-internalized with WGA-AF647, they

colocalized with WGA in endosomes soon after uptake. While in

control cells the virus- and WGA-containing vacuoles moved into

the perinuclear region, they remained peripherally distributed in

HDAC8-depleted cells (Figure 3C).

The endosomal compartment in which IAV was acidified could

be visualized by indirect immunofluorescence microscopy using

the antibody against acidified HA. In cells transiently overex-

pressing EGFP-Rab7 (a marker for LEs) and LAMP1-mCherry (a

marker for LE/LYs), the acidified HA signal was mainly detected

in Rab7/LAMP1-positive vesicles, residing in the perinuclear

region of the cell. In HDAC8-depleted cells, however, the acidified

HA when present was in peripheral, Rab7/LAMP1-positive

organelles corresponding most likely to LEs (Figure 3D).

These results indicated that the distribution of LE/LYs was

regulated by the HDACs. HDAC8 promoted centripetal move-

ment and perinuclear localization of LE/LYs, HDAC1 opposed

the accumulation of LE/LYs in the perinuclear region. It was,

moreover, possible that efficient acidification of the vacuoles was

somehow linked to their location within the cytoplasm.

Figure 1. HDAC8 is required for IAV X31 infection, endocytosis and HA acidification. (A) IAV X31 infection assay. Infection was quantified
in A549 cells depleted of HDAC1, 3, 8, vATPase subunit ATP6V1B2 and CAS (CSE1L) for 72 h. Cells were infected with X31 at TCID50 = 7.56103/ml in
infection medium (D-MEM, 50 mM HEPES pH 6.8, 0.2% BSA). After fixation, cells were incubated in permeabilization buffer (0.1% saponin, 1% BSA in
PBS) and stained for NP by indirect IFA with monoclonal antibody HB-65. Nuclei were stained with Hoechst. Images were acquired by automated
microscopy and the fraction of cells expressing NP was quantified using a MATLAB-based infection scoring procedure (The MathWorks, Inc.) and
normalized to control (All*Neg) cells. Twenty % of control cells are infected under these conditions. (B–F) IAV X31 entry assays. A549 cells were
depleted of HDAC1, 3, 8, and where indicated, ATP6V1B2 or CAS (CSE1L). For all experiments, cells were first bound with TCID50 = 2.46106/ml virus
for 1 h at 4uC. (B) Binding assay. After binding, cells were washed and fixed. Viral particles bound to the cell surface were stained by indirect IFA with
anti-X31 Pinda antibody. (C) Endocytosis assay. After binding, cells were washed and warmed to 37uC, and fixed after 30 min. After blocking
extracellular hemagglutinin (HA) antigens with the Pinda antibody, endocytosed virus particles were stained by indirect IFA with an HA1-specific
monoclonal antibody. To block dynamin-dependent endocytosis, cells were pretreated with 120 mM dynasore 30 min prior to and during the
endocytosis assay. (D) HA acidification assay. After binding, cells were washed and, or warmed to 37uC and fixed after 30, 60, 120, 210 and 300 min.
Acidified HA was stained by indirect IFA with anti-A1, a monoclonal antibody that recognizes the acid-induced conformation of HA. Bafilomycin A
was added to control cells to block endosome acidification. (E) Cumulative HA acidification up to 5 h was calculated and normalized to control cells.
(F) vRNP nuclear import assay. After binding, cells were washed, warmed to 37uC in the presence of 1 mM cycloheximide and fixed at 5 h. Incoming
NP (vRNP) was stained by indirect IFA with HB-65. Bafilomycin A was added to control cells to block endosome acidification. (G) Acid-mediated by-
pass of endocytosis. Cells were bound with TCID50 = 16106/ml virus for 1 h at 4uC, washed, followed by incubation for 2.5 min at 37uC in low pH
medium (pH 5.0) to induce fusion of the viral envelope and the plasma membrane, thereby releasing vRNPs directly into the cytosol. Cells were
incubated for another 12 h in medium buffered to pH 7.4 containing 20 mM NH4Cl to block acidification of endosomes. Infection was quantified as
in the infection assay. All data are represented as mean 6 SEM.
doi:10.1371/journal.ppat.1002316.g001
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HDAC8 is required for LE/LY motility
To analyze the dynamics of endosome movement in more

detail, we used the particle-tracking ImageJ plugin developed by

Sbalzarini and coworkers and their trajectory segmentation

toolbox [29,30]. The movement of EGF-AF488-containing

vesicles was recorded 15 to 30 min after internalization over

2000 frames (Figure 4A, B). Trajectories were segmented and

classified according to their pattern of movement. The frequency

of MT-dependent directed motion was 4.5% in control cells and

1.06% in HDAC8-depleted cells. Nocodazole treated cells had

only 0.33% directed motion. The velocity of directed motion when

it occurred was similar in all three cases suggesting that motor

proteins were functional (Figure 4A). Of directed movements in

control cells, 10.6% continued for more than 1.5 sec, whereas in

HDAC8-depleted cells the value was 3.67% (Figure 4B). This

meant that either the motors fell off prematurely in cells lacking

HDAC8, or that the MTs were shorter or lacked stability.

HDAC8 is required for centrosome cohesion and MT
organization

Immunofluorescence staining with anti-tubulin antibodies

showed that, unlike nocodazole treatment, HDAC8 depletion

did not eliminate the MTs, but caused disorganization of the MT

system. Instead of radiating from the MTOC, the MTs were

Figure 2. HDAC8 depletion induces dispersal of LE/Lys. (A) Localization of Golgi complex (giantin, red) and LE/LYs (LAMP1, green) in control
(All*Neg), HDAC8-depleted (si HDAC8) and HDAC1-depleted (si HDAC1) A549 cells. Cells were fixed and stained by indirect IFA with anti-giantin and
anti-LAMP1 antibodies. Nuclei were stained with DRAQ5. (B) Determination of LE/LY dispersal index. A549 cells were depleted of HDAC1, 8, KIFC1,
KIFC2, and dynactin subunits ACTR10 and DCTN2. Cells were fixed and stained by indirect IFA with anti-LAMP1 antibody. Actin was stained by
phalloidin, and DNA with Hoechst. Images were acquired automatically using a 206objective and analyzed to derive a dispersal index of LAMP1-
positive endosomes. Dispersal indices were set to zero for control (All*Neg) cells, and to 1.0 for cells treated with 30 mM nocodazole for 1 h
(All*Neg+nocod). Data are represented as mean 6 SEM, except for KIFC1, KIFC2, ACTR10, for which the mean from 4 different siRNAs are shown (2
independent experiments). (C) EGF degradation. A549 cells were depleted of HDAC1, 8 in 96-well Matrix plates, and 48 h after depletion, starved in
serum-free medium for 24 h. EGF-AF647 (200 ng/ml) was bound for 30 min on ice. After washing, the cells were warmed to 37uC in serum-containing
medium to allow internalization of EGF. At 15 min and 4 h post warming, cells were washed in acid buffer (0.1 M Glycine, pH 3) for 2 min on ice to
remove extracellular EGF, washed and fixed, and stained with Hoechst. EGF and nuclei were imaged automatically using a 106objective. EGF signal
intensity was quantified using ImageJ and the percentage of EGF degradation at 4 h (compared to 15 min) per nucleus is shown. Statistical
significance was assessed by Student’s t-test (*) p,0.05. Data are represented as mean 6 SEM. (D) Transferrin (TF) uptake. A549 cells were depleted of
HDAC1, 8 in 12-well plates. On the third day of depletion, cells were starved in serum-free medium for 4 h, after which TF-AF488 (5 mg/ml) was bound
for 30 min on ice. After washing, cells were warmed for 10 min at 37uC, and washed in acid buffer for 2 min on ice to remove extracellular TF. TF
signal per cell was analyzed by FACS and normalized to control (All*Neg) cells. Data are represented as mean 6 SEM.
doi:10.1371/journal.ppat.1002316.g002

HDAC8 Regulates IAV Entry via Centrosome Function

PLoS Pathogens | www.plospathogens.org 5 October 2011 | Volume 7 | Issue 10 | e1002316



randomly oriented, criss-crossing each other in the cytoplasm

(Figure 5A). In many cells, the MT network was denser at the cell

periphery than in the cell center (Figure S2A).

Moreover, the MTOCs were dramatically altered. Staining for

centrosomes with c-tubulin antibodies showed that instead of

exhibiting two closely paired spots in the MTOC, they occurred in

similar spots that were far apart, and occasionally on opposite sides

of the nucleus (Figure 5A). Centrosome splitting was observed in

66.6% of HDAC8-depleted cells compared to 13.6% in the

control cells (n = 500) (Figure 6B). The average distance between

the two centrosomes was 5.4361.30 mm in HDAC8-depleted

cells, compared to 1.5660.25 mm in control cells (n = 250)

(Figure 6C). There was also a defect in MT anchoring to the

split centrosomes; they appeared to be entirely disconnected

(Figure 5A). Judging by the diffuse staining of DNA and the cell

shape, these cells were in interphase, during which centrosomes do

not normally split. Together with the splitting of the centrosomes,

this may explain the gross redistribution and abnormal morphol-

ogy of MTs.

Tubulin acetylation increases the stability of MTs [31]. To

examine whether HDAC8 depletion affected the stability of

tubulin, we determined the acetylation level of a-tubulin in

control, HDAC1-, 6-, and 8-depleted A549 cells (Figure S3).

Depletion of HDAC6, a tubulin deacetylase [32], increased

tubulin acetylation by 60%, whereas HDAC8 depletion reduced it

to 20% (Figure S3A, B). HDAC8 localized diffusely throughout

the cell (Figure S4).

When MTs were depolymerized in the cold in HDAC8-

depleted cells and allowed to regrow at 37uC, they were found to

polymerize at random sites in the cytoplasm (Figure 5B). Thus,

Figure 3. Intact MTs are required for efficient IAV X31 infection. (A) Effect of nocodazole on IAV X31 entry. A549 cells were pretreated with
30 mM nocodazole or dmso for 30 min. Virus endocytosis assay (30 min post uptake) and HA acidification assay (1 h) was performed in the presence
of drug. Data are represented as mean 6 SEM. (B) Washout assay of MT perturbants. A549 cells were pretreated with 30 mM nocodazole, 50 nM taxol
or dmso for 30 min. Cells were bound with virus for 30 min at 4uC, washed, and warmed in the presence of the drug for 15, 30, 45 min and 1, 2, 3,
4 h, after which the medium was replaced with medium buffered to pH 7.4 containing 20 mM NH4Cl to block endosome acidification. Infection was
analyzed at 12 h. Data are shown as mean 6 SEM. (C) Live imaging of IAV X31 particles. WGA-AF647 (5 mg/ml) (shown in green pseudocolor) and R18-
labeled virus (red) were bound to control (All*Neg), HDAC8-depleted (si HDAC8) A549 cells for 30 min at 4uC. After washing, cells were warmed and
imaged 3 h later with a 206objective (see also Video S1). Individual and clustered X31 particles are shown as black circles. Cell border and nucleus
are indicated by dotted white lines. (D) HA acidification occurs in Rab7/LAMP1-positive LEs. Control (All*Neg), HDAC8-depleted (si HDAC8) A549 cells
were transfected at 48 h after depletion with plasmids expressing Rab7-EGFP and LAMP1-mCherry. HA acidification assay was performed 24 h after
the plasmid transfection. Insets are magnified and shown on the right. Blue (All*Neg) and yellow arrowheads (si HDAC8) indicate LEs positive for
acidified HA.
doi:10.1371/journal.ppat.1002316.g003
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formation of MT asters after 90 sec of regrowth could be observed

in only 11–29% of HDAC8-depleted cells compared to 83% of the

control cells (Figure 5C). MT nucleation can be affected by the

displacement of ninein, a protein normally present in both

centrioles with higher affinity to the mother centriole [33]. Ninein

localized to centrosomes in HDAC8-depleted cells (Figure 5D)

with an efficiency of 92%, compared to control cells (Figure 5E).

HDAC8 and rootletin are required for infection of late
penetrating viruses

Was centrosome splitting the underlying reason for the

inhibition of IAV infection? To test this possibility, we used

siRNAs to deplete cells of rootletin, a protein present in centriole-

associated fibers, the depletion of which causes centrosome

splitting [34]. In rootletin-depleted cells, we observed centrosome

splitting in 75.3% compared to 13.6% of control cells (n = 500)

(Figure 6B). The average distance between the two centrosomes

was 4.2760.37 mm compared to 1.5660.25 mm in control cells

(n = 250) (Figure 6C). The only major difference compared with

HDAC8-depleted cells was that the effects on MT organization

were less dramatic under rootletin depletion (Figure 5A, S2A).

LE/LYs gave an intermediately dispersed phenotype (Figure S2B).

The formation of MT asters after 90 sec of regrowth was

unaffected (Figure 5C). In other words, the split centrosomes

were apparently able to connect with MTs.

When the effect of rootletin depletion on IAV infection was

tested, we found that infection was reduced to 20% of controls

(Figure 6A). Virus endocytosis was unaffected, but HA acidifica-

tion was reduced to 40% of normal (not shown). Thus, by causing

centrosome splitting by an independent mechanism, it was possible

to induce a block in infection similar, but not identical, to that

caused by HDAC8 depletion. It was apparent that by inducing the

separation of centrosomes, the loss of either HDAC8 or rootletin

caused changes in the MT system of the cell that resulted in

incomplete endosome maturation and reduced entry of IAV.

The results observed after HDAC1 depletion seemed to support

a correlation between centrosome architecture and infection.

HDAC1 depletion reduced centrosome splitting to 9.3% com-

pared to 13.6% in control cells (n = 500) (Figure 6B), and

shortened the average distance between centrosomes to

1.360.09 mm (n = 200) (Figure 6C).

Interestingly, the centrosome splitting caused by HDAC8

depletion could be reduced to 25.6% and the inter-centrosomal

distance to 2.460.1 mm by co-depletion of HDAC1 (n = 200)

(Figure 6B, C). Depletion of both HDAC1 and HDAC8 was

sufficient under both single and co-depletion conditions (Figure

S5). Co-depletion of HDAC1 with rootletin also reduced splitting

of centrosomes from 75.3% to 44.7%, and the average centrosome

distance to a mere 2.6 mm (n = 100) (Figure 6B, C). The pan-

HDAC inhibitor trychostatin A (TSA) preferentially blocks

HDAC1 but does not affect HDAC8 [35]. Of HDAC8-depleted

cells that were treated with 5 mM TSA for 12 h, only 28% showed

centrosome splitting, compared to 65% of dmso treated cells

(Figure 6D). That HDAC8 and HDAC1 had opposing effects on

centrosome distance and infection was further supported by

double transfection experiments where the two were silenced

simultaneously. When the siRNAs were mixed, a linear conversion

from inhibition to activation was observed depending on the ratio

of siRNAs used (Figure 6E). Finally, compared to control cells,

HDAC1 depletion increased the G1 phase population from 57%

to 72%, while HDAC8 depletion increased the G2/M phase

population from 18% to 25% (Figure 6F). Therefore, a specific

block in the cell cycle was unlikely to be the reason for MT

disorganization in HDAC8-depleted cells.

Figure 4. HDAC8 is required for LE/LY motility. Particle tracking analysis of endocytosed EGF. (A) Occurrence of MT-dependent directed motion
(DM) and their velocity (mm/s), and (B) duration (sec) in control (All*Neg), HDAC8-depleted (si HDAC8) A549 cells and cells treated with 30 mM
nocodazole for 45 min (All*Neg+nocod). (A) Videos were acquired with a Visitech Spinning Disk Confocal microscope using a 1006Objective (2000
frames, Dt = 30.53 msec), within a window of 15–30 min following uptake of EGF-AF594 (1 ng/ml). Cells were transfected with a plasmid encoding
NES-26EGFP 20 h before imaging, in order to identify the cytoplasm. EGF trajectories were extracted and classified into MT-dependent DM (red) and
other types of motility (blue), as shown in the insets of panel A. DM was detected in 322 segments (comprising of 11578 steps: 4.5% of total of
259821 steps), 109 segments (3235 steps: 1.06% of 305842), 37 segments (1070 steps: 0.33% of 325241) in All*Neg (n = 6 videos), HDAC8-depleted
(n = 8 videos), and nocodazole treated (n = 8 videos) samples, respectively. A total of 30–50 cells were analyzed for each condition.
doi:10.1371/journal.ppat.1002316.g004

HDAC8 Regulates IAV Entry via Centrosome Function

PLoS Pathogens | www.plospathogens.org 7 October 2011 | Volume 7 | Issue 10 | e1002316



We concluded that the effects of HDAC depletion on IAV infection

correlated with the architecture of centrosomes. When centrosome

splitting was induced, MT organization was disturbed, with the result

that endosomes failed to be transported properly into the perinuclear

region. Endosome acidification was not properly activated, and virus

particles failed to release their vRNPs into the cytosol. In contrast,

when the average centrosome distance decreased, as it did in

HDAC1-depleted cells, the efficiency of acidification and infection

increased. It is of interest to note that infection did not correlate with

MT anchoring to centrosomes; whereas the split centrosomes in

HDAC8-depleted cells were not anchored, the centrosomes in

rootletin-depleted cells remained anchored to MT (Figure 5A, S2A).

Effects on other viruses
Since viruses use different endocytic strategies and different

pathways to enter cells [36], it was of interest to test whether

HDAC8 or HDAC1 depletion affected other viruses. We tested

vesicular stomatitis virus (VSV, a rhabdovirus), Uukuniemi virus

(UUKV, a bunyavirus), and mature virions (MVs) of vaccinia virus

(VACV, a poxvirus). VSV enters cells by clathrin-mediated

endocytosis and the pH threshold for fusion of the viral envelope

with endosomal membranes is pH 6.2 [37,38]. UUKV uses

clathrin-independent mechanisms for infectious entry and its

threshold for membrane fusion is pH 5.4 [39]. VACV MVs enter

cells by macropinocytosis [40].

Figure 5. HDAC8 is required for centrosome cohesion and MT nucleation/anchorage at the centrosome. (A) Steady-state localization of
a-tubulin (green) and c-tubulin (red) in control (All*Neg), HDAC8- (si HDAC8), and rootletin-depleted (si rootletin) A549 cells. Cells were fixed in cold
methanol and stained by indirect IFA. Nuclei were stained with DRAQ5. Insets at the bottom: arrowheads indicate centrosomes. Insets at the top:
magnification of MT anchorage at centrosomes. (B)(C) MT regrowth assay. Control (All*Neg) and HDAC8- (si HDAC8), and rootletin-depleted (si
rootletin) A549 cells were incubated on ice for 30 min to depolymerize MTs, warmed for 90 sec at 37uC to induce repolymerization and fixed
immediately in cold methanol. HDAC8 was depleted using two individual oligos targeting the coding sequence (HDAC8) and the 59UTR
(HDAC8_5UTR). (B) The MT plus-end binding protein 1 (EB1) was stained by indirect IFA with the anti-EB1 antibody, and nuclei with DRAQ5. Arrows
indicate MT asters. (C) Quantification of cells exhibiting MT asters. Data are represented as mean 6 SEM. (D) MT anchoring protein ninein remains at
centrosomes following HDAC8 depletion. Control (All*Neg) and HDAC8-depleted (si HDAC8) A549 cells were fixed in cold methanol and stained by
indirect IFA with antibodies against centrosomal markers ninein and c-tubulin. Ninein localizes with higher affinity to the mother centriole, which is
indicated by an arrowhead. (E) Intensity of ninein signal at centrosomes in control and HDAC8-depleted cells. Confocal images were acquired and
analyzed by ImageJ.
doi:10.1371/journal.ppat.1002316.g005
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Figure 6. Centrosome splitting blocks IAV X31 infection and is counteracted by depletion of HDAC1. (A) Centrosome splitting per se
blocks IAV X31 infection. A549 cells were depleted of HDAC8, rootletin, ATP6V1B2 and infected for 10 h. Data are represented as mean 6 SEM. (B)
Quantification of centrosome splitting. A549 cells were depleted of HDAC1, 8, rootletin, HDAC8/1, and rootletin/HDAC1, fixed and stained by indirect
IFA with anti-c-tubulin antibody. Maximal projections from confocal z-stack images were analyzed by ImageJ, and centrosomes that were greater
than 2 mm apart were counted as split. Data are represented as mean 6 SEM. (C) Quantification of centrosome distance. A549 cells were depleted of
HDAC1, 8, rootletin, HDAC8/1, and rootletin/HDAC1. Centrosome distance was measured using ImageJ as in panel B. Data are represented as mean 6
SEM. (D) Trychostatin A (TSA) counteracts centrosome splitting induced by HDAC8 depletion. A549 cells depleted of HDAC8 for 60 h were incubated
with dmso or 5 mM TSA for 12 h, fixed and analyzed for centrosome splitting as above. Control cells were incubated with dmso for 12 h. Data are
represented as mean 6 SEM. (E) HDAC1 counteracts HDAC8. A549 cells were depleted of HDAC1, HDAC8 with different ratio of siRNAs
(HDAC1:HDAC8 = 0:20, 10:10, 15:5, 17.5:2.5, 20:0; total 20 nM), and infected for 10 h. Data are represented as mean 6 SEM. (F) Cell cycle analysis. A549
cells were depleted of HDAC1, 8, and trypsinized, fixed in cold EtOH, stained with 2.5 mm DRAQ5, and analyzed by FACS. The percentage of cells in
G1, S or G2/M phase was quantified by FlowJo. Data are represented as mean 6 SEM.
doi:10.1371/journal.ppat.1002316.g006
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Depletion of HDAC1 had no effect on any of the viruses tested

except IAV. Results were similar when cells were treated with

5 mM TSA for 4 h prior to infection (Figure S6). HDAC8

depletion reduced IAV and UUKV infection to 30% and 52%,

respectively (Figure 7). VACV was unaffected. VSV infection

increased by 48% confirming once again that there was no defect

in clathrin-mediated uptake [37] (Figure 7). Consistent with the

increase in TF accumulation, the increase in VSV infection could

be due to an expansion of the EE compartment caused by the

perturbation of the LE maturation program. Rootletin depletion

reduced UUKV infection to 23% (Figure S7). Thus, HDAC8,

rootletin and the functionality of centrosomes is critical for the

infection of late penetrating viruses.

Discussion

The most important new insights from our study were that

HDAC8 and HDAC1 regulate the properties of the MT system

and architecture of centrosomes in interphase cells, and that this

influences the motility, distribution, and maturation of LEs and

LYs. One consequence is that the infectious entry of IAV and

other late penetrating viruses that require acidification to a pH of

about 5.5 or lower and penetrate from LEs [41,42,43], are affected

by the expression of class I HDACs. A role of HDAC1 or 8 in the

regulation of the MT cytoskeleton in interphase cells and the

maturation of endosomes has not been previously described.

Depletion of HDAC8 and HDAC3 resulted in decreased

infection by IAV. HDAC8, which we analyzed more extensively of

the two, is localized in the nucleus and in the cytoplasm (Figure

S4). Although it is well-characterized at the molecular level, its

cellular functions have remained elusive [44,45,46,47]. Unlike

other class I HDACs, HDAC8 does not form high-molecular

weight multi-molecular complexes [15]. We found that HDAC8

depletion resulted in a two-step reduction in IAV entry. First,

endocytic internalization was reduced to less than half compared

to control cells. Second, of the internalized viruses only half were

acidified and therefore capable of membrane fusion and

penetration. Thus, the overall infection rate amounted to 15–

30% of controls. That VSV infection and the internalization of TF

were not inhibited, ruled out a general defect in clathrin-mediated

endocytosis and the cellular translational machinery. Since IAV

endocytosis occurs by two parallel pathways, a clathrin-mediated

and a recently described macropinocytosis-like mechanism [7], it is

possible that it is the latter pathway that is affected. The link

between class I HDACs and endosome maturation may be of

significance in the differentiation of cells as well as during

oncogenesis, which is often associated with elevated HDAC

activity. HDACs are also likely to affect the tropism and

Figure 7. HDAC8 is required for infection of late-penetrating viruses. A549 cells were depleted of HDAC1, 8, and infected with VSV (fuses at
EEs at pH 6.2), UUKV (fuses at LEs at pH 5.4), IAV (fuses at LEs at pH 5.1) and VACV MVs (fuses at macropinosomes). Infected cells were detected either
by indirect IFA against a viral protein (for VSV, UUKV, IAV) or by EGFP-expression (VACV). Percentage of infected cells was quantified using a MATLAB
program algorithm and normalized to control (All*Neg) cells. Virus amounts were adjusted so that 20% of cells were infected in the controls. Data are
represented as mean 6 SEM.
doi:10.1371/journal.ppat.1002316.g007
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pathogenesis of influenza and other viruses that use endocytosis for

entry. When HDAC inhibitors are deployed in cancer treatment,

it will be of importance to consider changes in influenza virus

susceptibility.

The second effect of HDAC8 depletion on IAV - the decreased

exposure to pH of 5.1 or below - occurred late in the endocytic

pathway. A decrease in the degradation of EGF indicated that

cargo was not reaching the lysosomal compartments with normal

efficiency. In HDAC8-depleted cells, internalized viruses were

trapped in Rab7/LAMP1-positive vacuoles, which instead of

moving along MTs to the MTOC remained dispersed in the

cytoplasm. Particle tracking showed that LEs and LYs were less

motile and less tightly connected to MTs, and failed to undergo

sustained directional movement. The few vacuoles that contained

acidified viruses had a peripheral location.

In normal cells, organized movement and acidification are part

of a complex maturation program that prepares LEs for fusion

with LYs. Maturation involves conversion of Rab GTPases, a

switch in phosphatidylinositides, acidification, formation of

intraluminal vesicles, association with dynein and dynactin, and

MT-mediated transport to the perinuclear region [36,48,49].

These changes are coordinated and interdependent in complex

ways, so that when one function is perturbed the whole program

may be disrupted. Therefore it is possible that proper acidification

failed to occur because the LEs did not move to the MTOC [50].

A similar situation was created when endosome movement was

inhibited by disrupting MTs with nocodazole; acidification of the

virus and productive infection by internalized viruses also dropped

by half. The location of endosomes is determined by many factors

including the presence of adaptor proteins that provide a link to

the cytoskeleton, and various motors, the size and shape of the

organelles, etc. [51]. Our data suggest that the properties of an

endosome are affected by their location such that if they cannot

move to the perinuclear region of the cell their maturation is not

completed.

HDAC8 depletion had a dramatic effect on the MT system. It

caused centrosome splitting, loss of tubulin acetylation and MT

nucleation/anchoring. In contrast to nocodazole treatment, most

MTs were still present, but since the MTOC was disrupted they

were disorganized. Disruption of the MTOC may account for the

loss of acetylation of tubulin. Long-term displacement of MTs

from the mother centrosome may have been the reason why the

centrosomes drifted apart, reminiscent of the splitting that can be

induced by nocodazole treatment [52]. Aside from being split and

unable to support MT anchoring, the centrosomes appeared

normal after HDAC8 depletion. Important factors such as c-

tubulin and ninein were present.

The underlying reason for the reduction of IAV infection and

infection with another late penetrating virus, UUKV, was most

likely the loss of centrosome cohesion. The best evidence was that

the induction of centrosome splitting by an independent

mechanism, i.e. by the depletion of rootletin, caused dramatic

reductions in infection. Rootletin depletion induced an interme-

diate level of LE/LY dispersal. It is possible that close centrosomes

provide a more focused MT network compared to split

centrosomes. It has been shown that fewer MTs radiate from

centrosomes when they are apart [53].

The effects of HDAC1 depletion also supported centrosome

distance as an important factor in IAV infection. HDAC1 is a class

I HDAC almost exclusively localized in the nucleus, with

important functions in epigenetic regulation of cell fate and

cellular processes [15]. When HDAC1 was depleted, infection by

IAV more than doubled. The percentage of split centrosomes

decreased. Inhibition of HDAC1 function by TSA also increased

IAV infection. In fact, we repeatedly observed that the shorter the

distance between centrosomes in a cell population, the higher the

level of infection. LEs, LYs, and the Golgi complex were tightly

bundled around the MTOC, and acidification of HA was twice as

efficient as in control levels.

That centrosome splitting was suppressed when HDAC8 was

co-depleted with HDAC1, suggested that HDAC1 may have a

role in diminishing centrosome cohesion and that HDAC8’s role

could be to promote MT organization by enhancing the

association of MTs with the centrosome. It remains to be proven

whether these HDACs work directly on centrosomes, MTs or

other factors. It is possible that one or more regulators of

centrosome cohesion are acetylated and serve as substrates for

deacetylases. C-Nap1, a centriolar linker protein, is an interesting

candidate, since it is known to be acetylated [17], and is a well

known regulator of centrosome cohesion [54]. Our results show

that class I HDACs are important regulators of MT organization,

as well as, centrosome architecture and function, and IAV entry.

Materials and Methods

Cells and viruses
A549 ATCC and HeLa ATCC cells were propagated according

to the ATCC guidelines. Purified influenza A X31 strain (A/

Aichi/2/68) (H3N2) was purchased from Virapur (CA, USA).

UUKV S23, VSV (wtVSV) (Indiana serotype) and VACV WR-

GFP were used as previously described [37,40,55].

Virus preparation
Purified influenza A X31 strain (A/Aichi/2/68) (H3N2) was

purchased from Virapur (CA, USA). Briefly, 60 pathogen-free

chicken eggs were inoculated with the virus and incubated for 2

days at 33–37uC. Harvested allantoic fluid was clarified by low

speed centrifugation, and concentrated by high-speed centrifuga-

tion. The virus was further concentrated by two rounds of 10–40%

sucrose gradient centrifugation. Virus bands were harvested,

pooled and resuspended in formulation buffer (40% sucrose,

0.02% BSA, 20 mM HEPES pH 7.4, 100 mM NaCl, 2 mM

MgCl2), frozen and stored at 280uC until usage (TCID50 in

MDCK cells = 3.06108/ml virus).

siRNA transfection
Cells were reverse-transfected (final 10 nM) with siRNAs

(QIAGEN) in 96-well flat-bottom Matrix plates (Thermo Scien-

tific). siRNAs were mixed with Lipofectamine RNAiMax (Invitro-

gen) in 30 ml OPTI-MEM (Invitrogen) for 30 min. Cells were

trypsinized, counted and plated directly onto the lipofectamine

mixture in 70 ml of growth medium.

IAV X31 infection assay
A549 cells in 96-well Matrix plates were infected with

TCID50 = 7500/ml virus in infection medium (D-MEM,

50 mM HEPES pH 6.8, 0.2% BSA) and fixed at 10 h in 4%

formaldehyde (FA) in PBS. Cells were permeabilized in permea-

bilization buffer (0.1% saponin, 1% BSA in PBS) and stained for

viral NP by indirect immunofluorescence with monoclonal

antibody HB-65 (ATCC) (1:10 dilution) and secondary anti-

mouse antibody labeled with Alexa Fluor 488 (AF488). Nuclei

were stained with Hoechst (1:10000 dilution). Typically, 9 (363) or

16 (464) images per well were automatically acquired (see

Microscopy). Cell numbers and raw infection indices for each

well were determined using a MATLAB-based infection scoring

procedure (The MathWorks, Inc.). With this method, cells
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expressing NP were counted as infected. Control cells transfected

with All*Neg siRNA exhibited 15–20% infection.

IAV X31 entry assays
Microscopy-based assays for step-wise dissection of the IAV

X31 strain entry pathway were developed in our laboratory. The

assays use indirect immunofluorescence for detection and are

optimized for high-throughput analyses in a 96-well format

(Banerjee I., Horvath P. and Helenius A., manuscript in

preparation. Programs used for quantification can be downloaded

at www.highcontentanalysis.org). Here we use both confocal and

automated fluorescence microscopy to acquire the images and

ImageJ to quantify the results.

X31 virus binding to the cell surface
A549 cells were bound with TCID50 = 2.46106/ml virus for

1 h at 4uC, washed three times in PBS, fixed in 4% FA in PBS for

20 min, blocked in blocking buffer (1% BSA in PBS), and

processed for indirect immunofluorescence with anti-X31 Pinda

antibody [56] (1:2000 dilution), phalloidin-Alexa Fluor 594

(AF594) and DRAQ5 (Biostatus Limited) to stain nuclei. Images

were acquired by confocal immunofluorescence microscopy using

a 406 objective and quantified using ImageJ. First, a threshold

value for the Pinda signal was determined for each experiment in

order to eliminate background fluorescence. The area covered by

fluorescence signal above this threshold was calculated. Second,

phalloidin staining was used to determine cell area. Finally, the

total Pinda signal per cell area was quantified for each siRNA

treatment and normalized to control (All*Neg) cells.

X31 virus endocytosis
A549 cells were bound with TCID50 = 2.46106/ml virus for

1 h at 4uC, washed twice in infection medium (D-MEM, 50 mM

HEPES pH 6.8, 0.2% BSA), and warmed to 37uC to allow virus

uptake. After 30 min, cells were fixed in 4% FA for 20 min. After

blocking, extracellular HA antigens were blocked overnight at 4uC
with Pinda antibody (1:500) and fixed again in 4% FA in PBS for

20 min. The cells were then permeabilized (0.1% saponin, 1%

BSA in PBS) and incubated with a monoclonal antibody specific

for X31 HA1 [57] (1:100) for 2 h at room temperature. HA1 was

visualized by an AF488-labeled, and Pinda by an AF594-labeled

secondary antibody, actin with phalloidin-AF647. This method

enables to distinguish between extracellular virus particles and

internalized particles. Images were acquired by confocal micros-

copy and total HA1 signal per cell area was quantified and

normalized as in the virus binding assay.

To block dynamin-dependent endocytosis, control (All*Neg)

cells were pretreated for 30 min in either dmso or 120 mM

dynasore, followed by virus binding and uptake for 30 min in the

presence of drug. Cells were fixed, stained and analyzed as above.

X31 HA acidification
A549 cells were bound with TCID50 = 2.46106/ml virus for 1 h

at 4uC, washed twice in infection medium, and warmed to 37uC
under the presence of 1 mM cycloheximide to block new protein

synthesis. For time course experiments, cells were washed in PBS

and fixed in 4% FA in PBS. For a single time point analysis, cells

were washed and fixed at 1 h, where the acidification signal peaked.

For detection of HA that has undergone acid-induced conforma-

tional change, cells were blocked, permeabilized and incubated with

anti-A1 monoclonal antibody [58] (1:2000) for 2 h at room

temperature. Acidified HA was visualized by an AF488-labeled

secondary antibody and nuclei were stained with DRAQ5. Images

were acquired by confocal microscopy or automated microscopy

and total signal per nucleus was quantified as above. Cumulative A1

signal over a time course of up to 5 h (t0 = 0, t1 = 30, t2 = 60,

t3 = 120, t4 = 210, t5 = 300 min), was obtained by calculating the

area under the curve, from the equation {(t1)(y1)+(y1+y2)(t2-

t1)+…+(y4+y5)(t52t4)}60.5.

X31 nuclear import of vRNPs
Binding and uptake of virus was performed as in the HA

acidification assay, and the cells were washed and fixed 5 h post

warming. Medium containing 1 mM cycloheximide was freshly

replaced at 2.5 h post-internalization. Cells were fixed in 4% FA

in PBS, blocked, permeabilized and stained for viral NP with the

HB-65 monoclonal antibody (1:10) for 2 h at room temperature.

NP (incoming vRNPs) was visualized by an AF488-labeled

secondary antibody and nuclei were stained with DRAQ5. Images

were acquired by confocal microscopy, and the percentage of cells

with nuclear NP signal was counted and normalized to control

(All*Neg) cells.

Acid-mediated by-pass of X31 endocytosis
A549 cells were bound with TCID50 = 16106/ml virus for

30 min at 4uC and washed three times in infection medium. The

virus was allowed to fuse in low pH medium (pH 5.0) for 2.5 min

on a custom-cut metal plate warmed to 37uC in a water bath.

After incubation, the cells were placed on ice, washed three times

before incubation at 37uC in Stop medium (D-MEM, 50 mM

HEPES pH 7.4, 20 mM NH4Cl) to block acidification of

endosomes. The cells were washed and fixed at 12 h, permeabi-

lized, and stained with HB-65 to detect NP. The fraction of

infected cells were quantified as in the infection assay.

Drug washout assay
Cells grown in 96-well Matrix plates were pretreated for 30 min

with 30 mM nocodazole, 50 nM taxol or dmso alone, followed by

binding TCID50 = 66105/ml virus for 30 min on ice. The cells

were washed to remove unbound virus and warmed to 37uC in the

presence of the drug. At given time points, drug-containing

medium was washed out and replaced with Stop medium (D-

MEM, 50 mM HEPES pH 7.4, 20 mM NH4Cl) to block

acidification of endosomes. Cells were fixed at 12 h and analyzed

as in the infection assay.

HDAC inhibitor treatment
Cells were incubated with dmso or 5 mM trychostatin A (TSA)

in normal growth medium for 4 h. The drugs were removed by

washing three times in infection medium, followed by an infection

assay.

Labeling of X31 virus particles
Labeling with R18 was performed as described previously [59].

X31 virus stocks were diluted to TCID50 = 1.56107/ml in PBS

and incubated in the dark with 20 mM R18 (Invitrogen) at room

temperature for 1 h with continuous rocking. The mixture was

filtered through a 0.2 mm filter to remove aggregated dye.

Microscopy
Confocal fluorescence microscopy was performed with a Zeiss

LSM 510 Meta system setup. Cells were either fixed for 20 min in

4% FA in PBS at room temperature for 5 min in 220uC
methanol. For indirect immunofluorescence, cells were blocked in

blocking buffer (1% BSA in PBS) and permeablized in

permeabilization buffer (0.1% saponin, 1% BSA in PBS), followed
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by incubation with antibodies in permeabilization buffer. Live

imaging was done with the Zeiss LSM 510 or Visitech Spinning

Disk confocal microscope, using 8-well chamber-slides (Nunc). For

imaging, phenol red-free D-MEM (Invitrogen) was used. Image

analysis was done with ImageJ or LSM Image Browser.

Automated image acquisition of 96-well Matrix plates was

performed with a 106 or 206 objective using a BD Pathway

855 Bioimager (BD Biosciences) or a MD Assay Development 2

(Molecular Devices).

Determination of LE/LY dispersal index
A549 cells seeded in 96-well Matrix plates were fixed 72 h after

depletion of host cell factors and fixed in 4% FA in PBS for

20 min. After blocking and permeabilization, cells were stained for

LAMP1, actin (phalloidin-AF594) and DNA (Hoechst). Sixteen

images (464) per well were acquired automatically for all three

channels using a 206objective. First, the images were segmented

to identify individual cells and to determine their phenotypic

properties using the CellProfiler program [60] with custom

modifications. Second, supervised machine learning was used to

automatically classify cell phenotypes and a regression model was

applied to automatically predict the scattering index of the

phenotypes. Finally, the effects of different siRNAs or drugs were

determined. The scattering index of LAMP1-positive vesicles was

set to zero for control (All*Neg) cells, and to 1.0 for control cells

treated with 30 mM nocodazole for 1 h. In addition to the cell

types described earlier, mitotic cells and segmentation errors were

distinguished using a multi-parametric non-linear analysis with the

Advanced Cell Classifier program (www.cellclassifier.org). For

supervised machine learning, a mixed model of combining neural

networks, support vector machines, and logistic classifiers was

used.

Video and trajectory analysis
EGF-AF555 (1 ng/ml) was added to control (All*Neg) A549

cells, HDAC8-depleted (siHDAC8), or control cells treated with

30 mM nocodazole for 45 min (All*Neg+nocod). Live imaging of

endocytosed EGF was performed during 15–30 min after its

addition with a Visitech Spinning Disk Confocal microscope using

a 10061.4NA Oil DIC Plan-Apochromat objective. To detect cell

boundaries and the nucleus, cells were transiently transfected with

NES-26EGFP 15 h before. For a single video, 2000 frames

(Dt = 30.53 msec) of one z-slice were acquired. Endocytosed EGF

trajectories were extracted from the recorded videos using the

ImageJ implementation of the particle-tracking algorithm [30]

with radius = 3 pixel, cutoff = 0, percentile = 0.2, max_displace-

ment = 10 pixel, and linkrange = 1. Only trajectories longer than 50

frames were retained for analysis. Segments of directed motion

where identified in the trajectories using the MATLAB trajectory

segmentation toolbox as described [29]. Speeds of directed motion

were computed by dividing their total length (sum of the lengths of

all trajectory segments belonging to the same directed motion) by

their duration. Due to noise in the images, this rather over-

estimates the true speed of motion. All post-processing was done in

MATLAB R2010b (The MathWorks, Inc.).

Quantitative Real-time PCR
SYBR green quantitative real-time PCR (qRT-PCR) was

performed using the LightCycler 480 SYBR Green I Master Mix

(Roche) and the RotorGeneQ thermocycler (QIAGEN). Serial

dilutions of the control sample cDNA were also submitted to real-

time PCR to generate a standard curve, in order to calculate the

efficiency of the primers. The samples were run in triplicates,

whereas –RT samples, which do not contain cDNA, due to lack

of reverse transcriptase (-RT) at the cDNA synthesis step were

run in duplicates. A non-template control was added to assure

contamination free PCR reagents. The threshold cycle was

assigned by the rotor-gene Q serial software. Quantification of

the results was done with the Pfaffl method [61] and the mRNA

amounts of target genes were determined relative to the Ct-values

of the control sample, and normalized to the reference gene

(GAPDH).

The following primers were used; GAPDH (fwd, CTGT-

TGCTGTAGCCAAATTCGT; rev ACCCACTCCTCCACCT-

TTGA), HDAC1 (fwd, GGAAATCTATCGCCCTCACA; rev,

AACAGGCCATCGAATACTGG), HDAC3 (fwd, ACGTGGG-

CAACTTCCACTAC; rev, GACTCTTGGTGAAGCCTTGC),

HDAC8 (fwd, GGTGACGTGTCTGATGTTGG; rev, AGCTC-

CCAGCTGTAAGACCA).

EGF degradation
A549 cells were depleted of HDACs in 96-well Matrix plates,

and 48 h after depletion starved in serum-free medium for 24 h.

EGF-AF647 (200 ng/ml) was bound for 30 min on ice. After

washing, the cells were warmed in serum-containing medium at

37uC to allow internalization. At 15 min and 4 h post warming,

cells were washed in acid buffer (0.1 M Glycine, pH 3) for 2 min

on ice to remove non-internalized EGF, washed and fixed in 4%

FA in PBS, followed by Hoechst staining. EGF and nuclei were

imaged with the BD Pathway 855 Bioimager using a 106
objective. Intensity of EGF signal above background was

quantified using ImageJ and the percentage of EGF degradation

per nucleus at 4 h (compared to 15 min) was calculated.

Transferrin uptake
16105 A549 cells were seeded in 12-well plates and depleted of

HDAC1 or 8. On the third day of depletion, cells were starved in

serum-free medium for 4 h followed by binding transferrin-AF488

(5 mg/ml) for 30 min on ice. Zero and 10 min post warming to

37uC, cells were washed in acid buffer for 2 min on ice.

Transferrin signal per cell was analyzed by FACS analysis. In

brief, cells were washed with PBS, detached with 200 ml trypsin

per well, and collected in 1 ml PBS. The cells were centrifuged at

1,500 rpm for 5 min at 4uC to remove trypsin and re-suspended

and fixed in 200 ml 4% FA in PBS for 20 min. After removal of FA

by centrifugation, cells were resuspended in 300 ml FACS buffer

for analysis with a BD FACSCalibur flow cytometer.

Cell cycle analysis
A549 cells in 24-well plates were depleted of HDAC1, 8 for

72 h. The cells were washed in PBS, trypsinized and fixed in cold

EtOH for 30 min at 4uC. After centrifugation of cells at 1,500 rpm

for 5 min at 4uC, the supernatant was removed and the cells were

stained with FACS buffer (PBS, 5 mM EDTA, 2% FCS, 0.02%

NaN3) containing 2.5 mM DRAQ5 for 15 min at room temper-

ature. The cells were washed by centrifugation, resuspended in

250 ml FACS buffer for analysis with BD FACSCanto II flow

cytometer. Cell cycle analysis was performed with FlowJo.

MT regrowth assay
MTs were depolymerized by incubating A549 cells grown on a

24-well plate on a custom-cut metal plate for 30 min on ice. MTs

were repolymerized for 90 sec by incubating in 37uC medium.

The cells were fixed immediately in cold methanol for 5 min. Cells

were detected for MT asters by indirect immunofluorescence with

anti-a-tubulin or anti-EB1 (microtubule plus-end binding protein

1) antibodies.
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Centrosome splitting analysis
A549 cells were fixed in cold methanol for 5 min and stained for

c-tubulin by indirect immunofluorescence and nuclei with

DRAQ5. Confocal z-stack images were acquired with a 406
objective. The distance between c-tubulin foci was measured on a

maximal projection using ImageJ. Centrosomes were counted as

split when the distance was more than 2 mm [52].

Intensity measurements
Signal intensity of centrosomal ninein was measured from

confocal images using ImageJ. Centrosomes were also identified

by costaining with c-tubulin.

Plasmids
Constructs for EGFP-Rab7 and LAMP1-EGFP were provided

by J. Gruenberg (University of Geneva, Geneva, Switzerland),

NES-26EGFP was provided by U. Greber (University of Zurich,

Zurich, Switzerland) [62], HDAC8-Flag by Ed Seto (H. Lee

Moffitt Cancer Center & Research Institute, Tampa, USA).

LAMP1-mCherry plasmid was constructed by excising the EGFP

cds of the LAMP1-EGFP plasmid with sites AgeI/BsrGI and

replacing it with mCherry.

Antibodies, chemicals and reagents
HB-65 was purchased from ATCC. The following antibodies

were purchased: HDAC1, HDAC2, HDAC3 (obtained from

BioVision), HDAC8, LAMP-1, C-Nap1, EB1 (Santa Cruz),

giantin (Covance), EEA1 (Cell Signalling), c-tubulin, Flag M2

(Sigma), acetylated a-tubulin, a-tubulin, ninein (Abcam). Stocks of

nocodazole, taxol, dynasore, trychostatin A (obtained from Sigma),

bafilomycin A (Calbiochem) were prepared in dmso (Calbiochem)

and stored at 220uC. DRAQ5 was purchased from Biostatus

Limited. Hoechst, R18, AF-labeled EGF, TF, WGA, and

secondary antibodies were obtained from Invitrogen.

Accession numbers for genes and proteins mentioned in
text (NCBI Entrez Gene ID number)

ATP6V1B2 (526); C-Nap1 (11190); EEA1 (8411); Giantin (2804);

HDAC1 (3065); HDAC2 (3066); HDAC3 (8841); HDAC6 (10013);

HDAC8 (55869); LAMP1 (3916); Ninein (51199); Rab7 (7879);

Rootletin (9696); a-tubulin (7846); c-tubulin (7283).

Supporting Information

Figure S1 Efficiency of HDAC depletion and its effect on
IAV X31 infection. (A) Efficiency of HDAC depletion 72 h after

transfection of siRNAs (HDAC1_6, HDAC1_1, HDAC1_3,

HDAC3_1, HDAC3_2, HDAC3_4, HDAC8_2, HDAC8_4,

obtained from Qiagen) in A549 cells. Protein levels were

normalized to a-tubulin and quantified using ImageJ. (B) Specific

depletion of a class I HDAC. Cellular mRNA levels of HDAC1, 3

and 8 following depletion with siRNAs HDAC1_6, HDAC3_4,

HDAC8_2 were quantified. These 3 siRNAs were used for further

experiments. Data are represented as mean 6 SEM. (C)(D) Effect

of depleting class I HDACs, vATPase subunit ATP6V1B2, on

X31 infection in A549 (C) and HeLa ATCC (D) cells. Data are

represented as mean 6 SEM.

(TIF)

Figure S2 MT orientation and Golgi localization follow-
ing HDAC8 and rootletin depletion. (A) Control (All*Neg),

HDAC8-depleted (si HDAC8), rootletin-depleted (si rootletin)

A549 cells, and control cells treated with 30 mM nocodazole for

30 min (All*Neg+nocodazole) were fixed for 5 min in cold

methanol. Cells were stained for a-tubulin by IFA and nuclei

with DRAQ5. Confocal z-stack images were acquired and

maximally projected. Arrows indicate the MTOC. (B) Control

(All*Neg), rootletin-depleted (si rootletin), HDAC8-depleted (si

HDAC8) A549 cells were fixed for 5 min in cold methanol and

stained by IFA with anti-LAMP1 antibody. Confocal z-stack

images were acquired and maximally projected.

(TIF)

Figure S3 Tubulin acetylation is decreased in HDAC8-
depleted cells. (A) A549 cells were depleted of HDAC1, 6, and

8 for 72 h. Cell lysates were subjected to Western blotting and

detected for acetylated a-tubulin and a-tubulin. Acetylated a-

tubulin protein levels were normalized to a-tubulin using ImageJ.

(B) Control (All*Neg) and HDAC8-depleted (si HDAC8) A549

cells were fixed for 5 min in cold methanol and stained by IFA

with anti-acetylated a-tubulin and anti-a-tubulin antibodies.

Confocal z-stack images were acquired and maximally projected.

The arrow indicates an MTOC.

(TIF)

Figure S4 Localization of HDAC8. A549 cells were trans-

fected with a plasmid encoding HDAC8-Flag. The cells were fixed

20 h later and stained by indirect IFA with anti-HDAC8 (green)

and anti-Flag M2 (red) antibodies. Confocal z-stacks were

acquired and maximally projected.

(TIF)

Figure S5 Co-depletion of HDAC1, 8 is efficient. A549

cells were depleted of HDAC1, 8, and HDAC1/8, and subjected

to Western blotting and detected for HDAC1, 8 and a-tubulin.

HDAC1 and HDAC8 protein levels were normalized to a-tubulin

using ImageJ.

(TIF)

Figure S6 Trychostatin A specifically increases IAV X31
infection. (A) A549 cells were treated with dmso or 5 mM TSA

for 4 h, followed by X31 infection assay. Drugs were absent during

infection. Data are represented as mean 6 SEM. (B) A549 cells

were treated with dmso or 5 mM TSA for 4 h, followed by

infection assay with VSV, UUKV or X31. Data are represented as

mean 6 SEM.

(TIF)

Figure S7 Rootletin is required for UUKV infection.
A549 cells were depleted of rootletin, ATP6V1B2, followed by

UUKV infection assay. Data are represented as mean 6 SEM.

(TIF)

Video S1 HDAC8 promotes centripetal movement of
endosomes containing internalized WGA. Control (All*-

Neg) and HDAC8-depleted (si HDAC8) A549 cells grown in 96-

well Matrix plates were incubated with imaging medium

containing WGA-AF647 (5 mg/ml). After addition of WGA

(t = zero), time-lapse images were acquired with the MD Assay

Development 2 microscope at 15 min intervals up to 6 h, using a

206 objective. The video plays at 15 fps.

(MOV)
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