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Activating stimuli for T lymphocytes are transmitted

through plasma membrane domains that form at T-cell

antigen receptor (TCR) signalling foci. Here, we deter-

mined the molecular lipid composition of immunoisolated

TCR activation domains. We observed that they accumu-

late cholesterol, sphingomyelin and saturated phosphati-

dylcholine species as compared with control plasma

membrane fragments. This provides, for the first time,

direct evidence that TCR activation domains comprise a

distinct molecular lipid composition reminiscent of liquid-

ordered raft phases in model membranes. Interestingly,

TCR activation domains were also enriched in plasmenyl

phosphatidylethanolamine and phosphatidylserine.

Modulating the T-cell lipidome with polyunsaturated

fatty acids impaired the plasma membrane condensation

at TCR signalling foci and resulted in a perturbed mole-

cular lipid composition. These results correlate the accu-

mulation of specific molecular lipid species with the

specific plasma membrane condensation at sites of TCR

activation and with early TCR activation responses.
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Introduction

T lymphocytes are activated upon conjugation with cognate

antigen-presenting cells. Multiple receptor–ligand interac-

tions at the contact zone between these cells, the immunolo-

gical synapse, determine the outcome of this encounter

(Huppa and Davis, 2003). The key activation signal is

provided by the T-cell antigen receptor (TCR) upon ligation

with a cognate peptide—major histocompatibility complex

expressed on the surface of the antigen-presenting cell. The

TCR signals are relayed to the T-cell interior by signalling

protein complexes, which assemble in the T-cell plasma

membrane (Harder, 2004).

Numerous proteins have been identified that drive the

formation and sustain TCR signalling assemblies. Cytosolic

signalling enzymes and adaptor proteins, such as PLCg and

Grb2, interact with the transmembrane protein linker for

activation of T cells (LAT), and subunits of the TCR complex

(Chan et al, 1992; Zhang et al, 1998; Harder and Kuhn, 2000).

Single-molecule microscopy showed that activation of the

TCR induces the formation of membrane domains that are

built by a network of protein–protein interactions that ex-

clude or trap specific signalling proteins (Douglass and Vale,

2005; Suzuki et al, 2007a).

Plasma membrane domains engaged in TCR signal trans-

duction have been ascribed the properties of lipid rafts that

entail the functional segregation of cholesterol, sphingolipids

and saturated glycerophospholipids. On the basis of model

membrane studies, lipid rafts are proposed to adopt a con-

densed liquid-ordered (Lo) state that coexist with a non-raft

liquid-disordered bilayer (Brown and London, 1997; Veatch

and Keller, 2003; Simons and Vaz, 2004). In the Lo phase, the

planar cholesterol ring systems align with saturated fatty acid

moieties of phosphatidylcholine (PC) and sphingomyelin

(SM). From this biophysical perspective, the concept of raft

domains at TCR signalling sites has received experimental

support: Laurdan 2-photon fluorescence microscopy showed

that T-cell plasma membrane domains engaged in TCR acti-

vation are more condensed as compared to other plasma

membrane regions (Gaus et al, 2005).

Although the raft concept of membrane organization has

been subject to controversy (Munro, 2003; Shaw, 2006), the

model is now gaining increased acceptance through studies

applying novel methodologies. At present, lipid rafts are

considered to be dynamic, nanometer-sized sterol-, sphingo-

lipid-, saturated glycerophospholipid-enriched membrane

domains (Hancock, 2006). These metastable membrane as-

semblies can be stabilized locally by lipid–lipid and lipid–

protein interactions to coalesce and form functional domains

for cell surface receptor signal transduction (Simons and

Toomre, 2000). Indeed, image analyses and single molecule

tracking showed accumulation or the confinement of cytoso-

lic fatty acid-anchored raft markers at T-cell activation

domains (Ike et al, 2003; Tavano et al, 2006). However,

direct evidence for an accumulation of distinct molecular

lipid species, which support the formation of ordered

membrane phases at TCR signalling plasma membrane

domains is lacking, and thus the issue of lipid raft coales-

cence at TCR activation sites remains disputed (Munro, 2003;

Shaw, 2006).
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Here, we have taken a direct approach to investigate

whether TCR activation domains in the plasma membrane

exhibit a characteristic molecular lipid composition. To this

end, we have performed a global analysis of the molecular

lipid composition of immunoisolated native TCR activation

domains by mass spectrometry and compared it with control

plasma membrane fragments enriched in transferrin recep-

tors (TfRs). We provide, for the first time, direct evidence for

the functional segregation of cholesterol, SM and distinct

glycerophospholipid species at TCR activation domains,

thereby emphasizing the importance of the lipid composition

for defining these plasma membrane domains.

Results

Distinctive plasma membrane fractions prepared

by immunoisolations

We used an established immunoisolation procedure for iso-

lating native T-cell plasma membrane fragments harbouring

the TCR activation machinery (Harder and Kuhn, 2001).

Magnetic beads coated with TCR-activating aCD3 antibodies

were conjugated at 01C to Jurkat cells and activation occurred

upon shift to 371C for 3 and 10 min. The bead–cell conjugates

were mechanically homogenized by nitrogen cavitation. The

plasma membrane fragments bound to the magnetic beads

were isolated and subjected to western blot analysis and

quantitative mass spectrometric lipid analysis. Considering

the specific and time-dependent concentration of TCR signal-

ling protein assemblies in the aCD3 immunoisolates, they can

be taken as surrogates of TCR activation plasma membrane

domains (Harder and Kuhn, 2000, 2001). As a comparative

control, we established a similar aTfR immunoisolation of

Jurkat plasma membrane fragments that are enriched in TfRs

but devoid of TCR signalling machinery (Harder and Kuhn,

2000).

To establish the use of the immunoisolation methodology

for the characterization and comparison of the molecular

lipid composition of the distinct immunoisolated plasma

membrane domains, we sought to determine the relative

contamination with intracellular compartments: The

amounts of different membrane markers in aCD3 and aTfR

immunoisolates were measured using the LICOR OdyseeTM

western blot system, which allows quantification of the signal

strength of the immunoreactive bands. Immunoisolates were

prepared from 5�107 Jurkat cells and the western blot signal

strengths were related to those of a lysate of 1.25�105 Jurkat

cells corresponding to 0.25% of the Jurkat starting material

(Figure 1A). As reported earlier, LAT plasma membrane

adaptor protein was concentrated in aCD3 immunoisolated

Jurkat plasma membrane domains—reflecting the assembly

of TCR signalling machinery—and TfRs were accumulated in

the aTfR immunoisolates (Harder and Kuhn, 2000).

In line with this previous analysis, LAT was also recovered

in aTfR immunoisolates following 371C incubation at ap-

proximately 10- to 15-fold higher amounts than in 0.25% of

Jurkat cell starting material (Figure 1A). Inactive LAT resides

in the plasma membrane of resting Jurkat cells. Therefore,

this value indicated a slightly higher plasma membrane

recovery in aTfR immunoisolates than the previously esti-

mated 1–2% recovery of Jurkat cell surface in both immu-

noisolates (Harder and Kuhn, 2000). Vice versa, TfR was

recovered in aCD3 immunoisolates, even though this oc-

curred at a lower fraction relative to the total cellular pool

than for the LAT in aTfR immunoisolates (Figure 1A). This

may reflect the loss of the intracellular endosomal TfR pool in

the aCD3 immunoisolates and a depletion of TfRs from

plasma membrane domains engaged in TCR signalling.

We next verified that aCD3 and aTfR immunoisolates

indeed contained minor and similar amounts of intracellular

membranes. We determined the recovery of ER membrane

and mitochondria in the immunoisolates by these western

blots using the respective calnexin and MTCO1 markers. The

results allowed us to conclude that upon 371C incubations the

amount of ER and mitochondrial markers recovered in the

immunoisolates was less than 0.04% of the total (Figure 1A).

The immunoisolates thus strongly depleted these intracellu-

lar membrane compartments relative to plasma membrane

that was recovered in the range of 1–2% of the whole plasma

membrane (Harder and Kuhn, 2000). This analysis also

showed that the contents of these minor contaminations

were similar in both immunoisolates. Additional western

blot analyses showed a strong signal for the ER marker

sec61 and the endosomal GTPase Rab7 in the Jurkat cell

lysate, although they were barely detectable in the aTfR

and aCD3 immunoisolates prepared from 200-fold higher

number of Jurkat cells (Supplementary Figure S1). The TCR

signalling machinery accumulation, TfR concentration and

the relative homogeneity of plasma membrane fragments in

the immunoisolates were routinely verified by such western

blots before they were subjected to an analysis of their

lipidome.

We monitored the recovery of membrane lipids in the

aCD3 and aTfR immunoisolates. We quantified the amount

of PC and SM recovered in lipid extracts of the immunoiso-

lates by precursor ion scanning (PIS) for the characteristic

phosphorylcholine fragment ion with m/z 184.1 (Figure 1B).

Both aCD3 and aTfR immunoisolates showed a time-depen-

dent increase in the yield of PC and SM that after 3 to 10 min

was equal to 0.1–0.3% of the PC extracted from an equivalent

number of Jurkat cells (Figure 1B). The highest amount of PC

recovered in control experiments, in which magnetic beads

were coated with an IgG antibody and incubated with Jurkat

cells for 10 min, never exceeded 20% of the PC recovered in

aCD3 immunoisolates (data not shown).

In summary, the immunoisolation procedure produced

two distinct plasma membrane fragments with different

protein composition, similarly depleted of proteins and lipids

from intracellular compartments, and with similar kinetics of

lipid recovery. It should be noted that aCD3 immunoisolates

contained a fraction of non-signalling plasma membrane as

indicated by the presence of some TfR (Figure 1A).

To characterize the molecular lipid composition of the

immunoisolated plasma membrane fragments, we used

mass spectrometric methodology developed for comprehen-

sive and quantitative characterization of membrane lipi-

domes (Ejsing et al, 2006). The aCD3, aTfR immunoisolates

and Jurkat cells were spiked with internal lipid standards and

subjected to lipid extraction. PC and SM species were deter-

mined by PIS m/z 184.1 analysis (Ekroos et al, 2002; Liebisch

et al, 2004). Molecular diacylglycerol (DAG), phosphatidic

acid (PA), phosphatidylglycerol (PG), phosphatidylethanola-

mine (PE), phosphatidylserine (PS) and phosphatidylinositol

(PI) species were determined by quantitative multiple PIS

(Ejsing et al, 2006). Multiple reaction monitoring was used
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for the analysis of ceramide (Cer), hexosylceramide

(HexCer), diosylceramide (Hex2Cer) species and cholesterol

(Ejsing et al, 2006; Liebisch et al, 2006).

Accumulation of SM, cholesterol and saturated

PC species in aCD3 immunoisolates

The analysis for PC and SM species provided the first

evidence that TCR activation domains comprise a distinctive

molecular lipid composition (Supplementary Figure S2).

aCD3 immunoisolates obtained after 3 and 10 minutes

showed a pronounced enrichment of SM species (SM

34:1;2, m/z 703.6, being the most abundant species) in

comparison with aTfR immunoisolated plasma membrane

fragments and Jurkat cells (Figure 2A and Supplementary

Figure S3). Furthermore, quantitative profiling showed that

the aCD3 immunoisolates were systematically enriched in PC

species with saturated fatty acid moieties and depleted in PC

species having multiple double bonds (Figure 2B). In com-

parison, the proportion of saturated PC species decreased

from 30% in the aCD3 immunoisolates to 20% in the aTfR

immunoisolates and to 15% in Jurkat cells. The distinctive

PC and SM species composition of the aCD3 immunoisolates

was achieved following 3 min incubation of the bead–cell

conjugates (Supplementary Figure S2A and B). In compar-

ison with aTfR immunoisolates and Jurkat cells, the amount

of PC species having 36 or more carbon atoms was reduced in

the aCD3 immunoisolates, whereas the amount of PC species

having 32 carbon atoms was concomitantly increased

(Figure 2C).

We further characterized the lipidome of TCR activation

plasma membrane domain by comparing the lipid class

composition of aCD3 and aTfR immunoisolates (Figure 3).

Figure 1 (A) Relative recovery of LAT, TfR, the ER membrane marker calnexin and the mitochondrial marker cytochrome c oxidase complex 1
(MTCO1) in aCD3 and aTfR immunoisolated plasma membrane fragments. The proteins of the respective Jurkat cell fractions were analysed
using the LICOR OdyseeTM western blot system, which allows an assessment of the relative strengths of western blot signals. The signals from
the same immunoisolate preparations using 5�107 Jurkat cells were related to the signal strength from cell lysates from 1.25�105 Jurkat cells
(JCL, corresponding to 0.25% of the number of cells used for the immunoisolations). These blots showed that in both immunoisolates the ER
and mitochondrial markers were depleted at least 5-fold over the plasma membrane-associated LATand TfR following 3 min and 10 min of 371C
incubation of the bead–cell conjugates. There is no selective contamination of ER and mitochondria in the immunoisolates. (B) Recovery of
Jurkat lipid membrane estimated by the total amount of PC and SM extracted from immunoisolates. PC and SM species were quantified by a PIS
m/z 184.1 analysis using internal standards as outlined in Materials and methods. The total amount of PC and SM was calculated as the sum of
individual species from the respective lipid class. The recovery of PC and SM increased progressively with the time of incubation of the bead–
cell conjugates at 371C. On the right ordinate, the lipid yields are depicted as molar percentage of the PC in total Jurkat cells (n¼ 3 independent
experiments, average estimate ±s.d.).
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Following 3 and 10 min, both aCD3 and aTfR immunoisolates

were enriched in cholesterol and SM as compared with Jurkat

cells (Figure 3). In comparison, the cholesterol content was

B1.3-fold higher in aCD3 immunoisolates as compared with

aTfR immunoisolates. These results show that the compo-

sition of TCR activation domains is distinctive and character-

ized by increased content of cholesterol (Figure 3), SM and

saturated PC species, although PC species having multiple

double bonds are depleted (Figure 2).

A characteristic composition of PS, PI and PE species

in aCD3-immunoisolated TCR signalling domains

Next we evaluated the composition of glycerophospholipid

PS, PI and PE species believed to predominantly reside in the

cytoplasmic membrane leaflet (Figure 4A) (Zachowski, 1993;

van Meer et al, 2008). We observed that in aCD3 immuno-

isolates, the content of PS was B1.5-fold higher, whereas the

content of PI was B3-fold lower as compared with aTfR

immunoisolates. The abundance of PE was similar in both

immunoisolates (Figures 3 and 4A); however, the aCD3

immunoisolates exhibited an increased fraction of plasmenyl

PE species having a vinyl-ether-linked hydrocarbon moiety at

the sn-1 position (Figure 4B, Supplementary Figure S4A).

The fatty-acid composition of PS, PE and PI species of

Jurkat cells, aCD3 and aTfR immunoisolates was markedly

different as compared with that of the PC species. Whereas a

sizable fraction of PC species comprised only saturated fatty-

acid moieties (e.g., PC 32:0; Figure 2), we only detected PE,

PS and PI species having at least one double bond

(Figure 4A). Furthermore, we did not observe an enrichment

of PE, PS and PI species having more saturated fatty acid

moieties in the aCD3 immunoisolates as compared with aTfR

immunoisolates and Jurkat cells. We note, however, that the

enrichment of PS in aCD3 immunoisolates was primarily

attributed to the mono-unsaturated species PS 18:0–18:1.

Some lipids were detected at less than 1 mol% (Figure 3).

Of these lipids, PA and DAG are generated by cytoplasmic

signalling reactions that have been shown to occur at T-cell

activation sites (Figure 3 (Spitaler et al, 2006; Mor et al,

2007)). The relative abundance of these low abundant lipids

did not show major differences between the immunoisolates,

and minor fluctuations observed were omitted from a de-

tailed interpretation.

Impairment of membrane condensation at TCR

activation domains after incorporation of

polyunsaturated fatty acids

It was shown previously that polyunsaturated fatty acids

attenuate T-cell responses and promote immunosuppressive

effects when provided with the diet (Stulnig et al, 1998;

Shaikh and Edidin, 2006). Thus, to gain further insights

into the functional importance of the distinct molecular

lipid composition of TCR activation domains, we modulated

the Jurkat cell lipidome by incorporating the polyunsaturated

eicasopentanoic fatty acid (C20:5). Using Laurdan 2-photon

fluorescence microscopy (Gaus et al, 2005, 2006), we found

that C20:5 treatment impaired membrane condensation at

TCR activation sites (Figure 5). The TCR activation sites of

C20:5-treated Jurkat cells showed a shift in Laurdan fluores-

cence emission yielding a lower generalised polarization (GP)

Figure 3 Lipid class composition of 3 and 10 min 371C immunoisolates, and Jurkat cells. The 3 and 10 min aCD3 immunoisolates show a
distinct lipid class composition with a higher concentration of cholesterol and PS, and a notable reduction of PI and PC in comparison with the
aTfR immunoisolates. No conclusions were made on differences between low abundant lipid classes (o1 mol%, inset). The mass spectro-
metric lipid analysis allowed the identification and quantification of 101 distinct lipid species. The mol% of lipid classes was calculated as the
sum of the mol% of all detected lipid species of the respective lipid class. The inset shows the composition of low abundant lipid classes. PA,
DAG, PG, Cer, HexCer and Hex2Cer species were detected at low levels in all repetitions of the experiment (n¼ 3 independent experiments,
average estimate ±s.d.).
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values as compared with non-treated control cells (Figure 5A

and B) and aTfR antibody-coated beads did not show a

significant difference in membrane condensation following

incorporation of C20:5 (Figure 5D). The impairment of

membrane condensation at TCR activation sites after the

incorporation of C20:5 is in line with previous findings

(Stulnig et al, 1998).

Alterations in the lipidome of Jurkat cells

after incorporation of C20:5

Next we determined how the incorporation of C20:5 modu-

lated the molecular lipid composition of the Jurkat cells,

aCD3 and aTfR immunoisolates. First, the lipidome of

C20:5-treated Jurkat cells exhibited an increased content of

glycerophospholipid species, including PC species, having

polyunsaturated (dbX5) fatty-acid moieties (Figure 5E,

Supplementary Figure S5). We observed that the increased

abundance of polyunsaturated PC species was offset by a

reduction of PC species with one, two or three double bonds,

but not by fully saturated PC species. In addition, we noticed

that C20:5-treated Jurkat cells synthesised more SM, in

particular the fully saturated species SM 34:0;2 that interact

more favourably with cholesterol as compared with SM

34:1;2 (Kuikka et al, 2001). We also observed that Jurkat

cells mediated a pronounced elongation of C20:5 to C22:5 for

subsequent incorporation into PS, PI and PE species. Thus,

Jurkat cells modulate their lipidome in response to incorpora-

tion of polyunsaturated fatty acids.

The comparative lipidomics analysis of aCD3 and aTfR

immunoisolates from Jurkat cells treated with and without

C20:5 showed a conserved propensity to segregate cholester-

ol, SM and saturated PC species at sites of TCR activation

(Figure 5E, Supplementary Figure S5). We observed that the

lipid class composition of aCD3 immunoisolates from C20:5-

treated Jurkat cells resembled that of aCD3 immunoisolates

from untreated cells, although with 1.9-fold higher abundance

of SM offset by a 1.5-fold reduction of PS. Detailed analysis of

the molecular lipid composition of aCD3 immunoisolates

from C20:5-treated Jurkat cells showed consistent enrichment

of fully saturated PC species, and a pronounced elevation of

polyunsaturated PC species offset by the reduction of PC

species having one and two double bonds. In addition, we

also uncovered that PS and PE species in aCD3 immunoiso-

lates from C20:5-treated Jurkat cells comprised predominantly

polyunsaturated (dbX5) fatty-acid moieties. Thus, we con-

cluded that the overall increase in polyunsaturated lipid

species and the perturbations of lipid class composition

produced a suboptimal plasma membrane environment that

seems to impair the capacity to support membrane condensa-

tion, which in turn retards TCR activation.

Figure 4 (A) Relative abundance of molecular PE, PS, PG, PI, PA and DAG species detected by quantitative multiple PIS analysis of lipid extract
of aCD3 and aTfR immunoisolates, and Jurkat cells. (B) Profile of diacyl and plasmenyl PE species in immunoisolates and Jurkat cells. The
proportion of diacyl and plasmenyl PE species was calculated as the sum of the mol% of PE species of the respective lipid subclass (n¼ 3
independent experiments, average estimate ±s.d.).
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Figure 5 Structure and molecular lipid composition of the plasma membrane at TCR activation domains upon treatment of Jurkat cells with
polyunsaturated eicasopentanoic fatty acid. Inhibition of plasma membrane condensation at the TCR activation sites. Laurdan-labelled Jurkat
cells (A) with and (B) without 20:5 polyunsaturated fatty acid eicasopentanoic acid (C20:5) treatment were conjugated with aCD3-coated
polystyrene beads for 10 min at 371C. Cells were adhered and fixed, and Laurdan intensity was imaged simultaneously in two channels (400–
460 and 470–530 nm). Intensity images were converted to GP images as described in Materials and methods. For A-B, GP images were pseudo-
coloured (GP�0.5 1) and the left panels show corresponding DIC images. Bar¼ 5mm. GP values at the bead–cell contact area are
plotted for individual conjugates of the Jurkat cells with (C) aCD3- and (D) aTfR-coated polystyrene beads at 10 min and 371C. Means are
indicated by horizontal lines. For aCD3 bead–Jurkat contact region, the C20:5-treated exhibited significantly lower GP value (E, n¼ 92) than
control conjugates (B, n¼ 98) (Po0.001). No significant difference was detectable for aTfR bead–Jurkat contact zones between C20:5-treated
(E, n¼ 69) and control (B, n¼ 52) conjugates (P40.05). Asterisks in C indicate a significant difference (Po0.05) of the mean GP values at
the contact zones between aCD3- and aTfR-coated beads. Systemic changes in the lipidome: (E) comparing the double bond (db) composition
of the PC species of 10 min, 371C aCD3 and aTfR-immunoisolates and total lipids of Jurkat cells treated with 20:5 polyunsaturated fatty acid
eicasopentanoic acid (C20:5) and untreated controls. Note in all membrane fractions the dramatically altered fatty-acid saturation profile
of PC following C20:5 treatment; the enrichment of polyunsaturated (db X5) PC species and the relative depletion in all membrane fractions of
PC species with 1–4 unsaturations. Panel (F) depicts lipid class composition of membrane fractions prepared from C20:5-treated and
control Jurkat cells. The mol% of the lipid classes was calculated as the sum of the mol% of all detected lipid species of the respective lipid
class (n¼ 3 independent experiments, average estimate ±s.d.). No conclusions were made on differences between low abundant lipid classes
(o1 mol%, inset).

The lipidome of TCR signalling domains
T Zech et al

The EMBO Journal VOL 28 | NO 5 | 2009 &2009 European Molecular Biology Organization472



Discussion

In this study, we have performed a global analysis of the

molecular lipid composition of TCR activation domains in the

T-cell plasma membrane. This analysis provides, for the first

time, direct evidence for the lateral segregation of distinct

lipid species into membrane domains during TCR activation.

Accumulation of Lo membrane-phase lipids at TCR

signalling domains

A key feature of the aCD3 immunoisolated plasma membrane

fragments, enriched in TCR signalling domains, is the accu-

mulation of cholesterol, SM and saturated PC species. These

lipid species support the formation of condensed Lo mem-

brane phase in model membranes, and raft domains in cell

membranes have been proposed to adopt properties akin to

this Lo-phase (Brown and London, 1998; Veatch and Keller,

2003; Mukherjee and Maxfield, 2004; Simons and Vaz, 2004).

Accumulation of lipid rafts at TCR activation plasma mem-

brane domains is supported by biophysical data showing

the condensation of the plasma membrane at these sites

(Figure 5) (Gaus et al, 2005). Whether these phenomena

reflect the coalescence of dynamic nanoscale resting state

rafts or a de novo formation of raft-domains at TCR signalling

sites cannot be ascertained with the methods used here.

aCD3 immunoisolated plasma membrane domains contain

a significant amount of plasma membrane proteins not en-

gaged in TCR signalling (Figure 1A). Thus, the characteristic

lipid composition of the aCD3 immunoisolates is probably an

underestimation of the enrichment of raft-forming molecular

lipid species in situ at TCR signalling domain in the plasma

membrane.

Stulnig et al (1998) reported that treatment of Jurkat cells

with C20:5 fatty acids leads to inhibition of TCR activation

and proposed that polyunsaturated lipid species disrupted

the condensation of raft domains at TCR activation sites. Our

lipidomic and the Laurdan data support this model. In a

related approach, the incorporation of the oxysterol 7-keto-

cholesterol (7KC) into T cells was shown to impair the

condensation of TCR activation sites. Indeed, 7KC is known

to disturb the formation of liquid-ordered domains in model

membranes (Massey and Pownall, 2005). As for the treatment

with polyunsaturated C20:5, the 7KC incorporation resulted

in an inhibition of T-cell activation (Rentero et al, 2008).

These results suggest a functional link between TCR activa-

tion and plasma membrane lipid ordering at TCR activation

sites. The coalescence of membrane rafts at TCR signalling

sites could control signal transduction by modulating the rate

and specificity of interacting signalling proteins, and/or by

exclusion of unwanted interactors. However, this remains a

model for future experiments. An alternative explanation

involving the thickness of the membrane being defined by

the transmembrane proteins occupying the different mem-

brane domains should also be considered (Munro, 2003).

Direct loading of Jurkat cells with C20:5 polyunsaturated

fatty acid altered the fatty acyl profile of all main glyceropho-

spholipid species (Supplementary Figure S5) and disrupted

the plasma membrane condensation at TCR activation site

(Figure 5). This stands in contrast to the biochemical and

biophysical alterations of T-cell plasma membranes from a

dietary n-3 PUFA-exposed mouse (Fan et al, 2003; Kim et al,

2008). The T cells of PUFA-fed mice exhibited altered acyl

chain saturation of PS and PE, whereas the saturation profile

of PC and PI acyl chains were unaltered. As a further

difference to the reduced membrane condensation following

the acute PUFA-loading, a experimental regime mimicking a

dietary PUFA exposure retained the specific condensation at

T-cell activation sites (Kim et al, 2008). It is possible that

these different outcomes of PUFA loading on T-cell rafts

reflect the compensatory mechanisms that preserve the func-

tions of T-cell membranes following the presentation of PUFA-

rich diets.

The lipid bilayer of TCR signalling plasma membrane

domains

Patches of antibody-cross-linked outer leaflet GPI-anchored

proteins confine the movement/distribution of inner leaflet

fatty acid-anchored raft proteins (Harder et al, 1998; Suzuki

et al, 2007b). These observations indicate an interrelationship

between the organization of lipids in the exoplasmic and the

cytoplasmic leaflet at clustered raft domains in the plasma

membrane. The nature of this connection represents an

important open issue in membrane biology.

Analysis of PE, PS and PI species in Jurkat cells that are

enriched in the inner plasma membrane leaflet (Zachowski,

1993; van Meer et al, 2008) showed that these lipid species in

aCD3 immunoisolates (Figure 4) were predominantly unsa-

turated. However, the distinctive molecular composition of

aCD3 immunoisolated plasma membrane fragments in com-

parison with the aTfR immunoisolated plasma membrane

fragments is also reflected in these glycerophospholipids. We

observed an enrichment of plasmenyl PE species (having a

vinyl-ether-linked hydrocarbon moiety) as compared with

total PE, and an enrichment of all PS species. We also

detected a 3-fold reduction of the PI in the aCD3 immunoi-

solates. The causes for the PI depletion and the enrichment of

plasmenyl PE species in the aCD3 isolates are currently

unknown. Plasmenyl PE accumulation and PI depletion

have been observed previously in a raft fraction separated

from a crude plasma membrane fraction by a detergent-free

method (Pike et al, 2002).

The molecular abundance of PS was significantly higher in

aCD3 immunoisolates as compared with aTfR immuno-

isolates. It is interesting to note that the C20:5 treatment

resulted in a reduction of the PS fraction in the aCD3

immunoisolates. The specific interactions of PS-rich mem-

branes with the TCR–CD3 complex and the TCR signalling

machinery have been reported in several studies. The TCR z-
chain subunit changes its conformation upon binding to PS-

rich membranes, possibly representing a regulatory event in

the T-cell activation cascade (Aivazian and Stern, 2000). A

similar charge-based interaction with anionic phospholipids

was recently shown to determine a close contact and the

conformation of cytoplasmic segment CD3e with the inner

leaflet of the T-cell plasma membrane (Xu et al, 2008).

Phosphotyrosine-dependent reconstitution of LAT-nucleated

signalling complexes on artificial lipid membranes in vitro

readily occurred on membranes composed of PS but did not

occur on phosphoLAT, which was anchored into liposomes

composed of PC or PE (Sangani et al, 2009). Moreover, a

specific recruitment of the protein kinase C isoform PKC y
and its activation at membrane surfaces enriched in PS was

shown (Melowic et al, 2007). PKC y is recruited to the

immunological synapse and there it has an essential function
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in the T-cell activation process (Altman and Villalba, 2003).

These reports indicate that the PS accumulation at TCR

signalling domains is most likely to represent a crucial

element in the T-cell activation cascade.

The specific accumulation of distinct lipid species in TCR

activation domains observed herein shows that it will be

possible to directly analyse the lipidome of other signalling

domains. Similar features as described for the molecular lipid

composition of aCD3 isolates were reported for the HIV

lipidome. Relative to the MT-4 host cell lipidome, HIV parti-

cles exhibited an increased concentration of SM, saturated

PC, plasmenyl PE and PS species (Brugger et al, 2006).

However, this study compared the HIV lipidome with the

lipidome of the MT-4 host cell. Thus, this approach failed to

resolve how the virus differed from the host cell plasma

membrane from where it buds. A recent study by Chan

et al (2008) confirmed the enrichment of Lo phase-forming

lipids in the membrane of HIV, but additionally allowed

relating the HIV lipidome to that of the plasma membrane

isolated from host cells. This lipid analysis showed that

cholesterol, ceramide and the ganglioside GM3 were higher

in the virus as compared with the membrane from which the

HIV envelope is derived. These studies represent the begin-

ning of a new phase in lipid research. Until recently, it was

not possible to perform lipidome-wide quantification of in-

dividual molecular lipid species from minute sample

amounts. With new mass spectrometric methodology at

hand, we can start to ascertain the functional implications

of lipid complexity in biological membranes and their sub-

domains.

Materials and methods

Cell culture
Jurkat cells were maintained in RPMI medium with 10% FCS
(BioSera), penicillin (100 mg/ml), streptomycin (100 U/ml) and
2 mM glutamax (all Gibco/BRL). Incorporation of the C20:5
polyunsaturated fatty acid at 50 mM in serum-free medium was
described previously (Stulnig et al, 1998).

Antibodies and reagents
All common chemicals were purchased from Sigma Chemicals (St
Louis, MO) and were of the best analytical grade. Solvents: water,
methanol (both LiChrosolvs grade) and chloroform (LC grade)
were from Merck (Darmstadt, Germany). Synthetic lipid standards
were purchased from Avanti Polar Lipids, Inc. (Alabaster, AL). PI
17:0/17:0 was provided by Christoph Thiele (Max Planck Institute
of Molecular Cell Biology and Genetics).

Mouse monoclonal antibodies against CD3 (OKT-3) and TfR (B3/
25) were purified from tissue culture supernatant. We also used
OKT-3 Ab and OKT-9 clone against CD71 (TfR) from eBioscience.
Antibodies and reagents for western blotting were purchased from
the following sources: LAT rabbit polyclonal antibody was obtained
from Upstate Biotechnology; Calnexin polyclonal rabbit antibody
was obtained from Sigma; MTCO1 mitochondrial marker antibody
[1D6] was obtained from Abcam; TfR mouse monoclonal antibody
was obtained from Zymed. Conjugated a-mouse IgG and a-rabbit
IgG secondary antibodies and conjugated streptavidin were
obtained from Bio-Rad or from LICOR Bioscience. M450 goat
a-mouse Dynabeads were obtained from Invitrogen (London).

Western blotting
Precast 4–12% NuPAGE SDS gels were purchased from Invitrogen,
and following electrophoresis the proteins were transferred to
HybondCþ membranes (Amersham Bioscience) by semidry blot-
ting using a Bio-Rad Trans-blot apparatus. Immunoreactive bands
were visualized either by ECL chemiluminescence (Amersham

Bioscience) or with infrared fluorescence detection using a LICOR
Odysee detection system.

Immunoisolation
The immunoisolation of T-cell signalling domains was performed
with minor alteration from the protocol reported previously (Harder
and Kuhn, 2001). Goat a mouse dynabeads (M450) were coated
with OKT-3 (aCD3) and B3/25 (aTfR) mAbs. Immunoisolates were
prepared by incubating 5�107 Jurkat cells with 2.5�107 Dyna-
beads at 371C for the indicated times and subsequent nitrogen
cavitation at 50 bar for 10 min (Harder and Kuhn, 2001). Immuno-
isolates were washed three times in PBS and resuspended in 110 ml
Millipore water. A quantity of 10ml sample was removed for western
blot analysis and the remaining sample was immediately frozen
at �801C.

Mass spectrometric lipid analysis
Total lipid extraction of Jurkat cells and immunoisolates was
performed by a modified Bligh and Dyer method (Bligh and Dyer,
1959). The entire lipid extraction procedure was performed in
15 min at 41C because the polystyrene beads are not resistant to
chloroform. Samples (in 100ml water) were thawed and 10 ml
internal standard mixture was added, providing a total spike
amount of 15 pmol DAG 17:0–17:0, 36 pmol PA 17:0–17:0, 78 pmol
PE 17:0–17:0, 11 pmol PG 17:0–17:0, 64 pmol PS 17:0–17:0, 67 pmol
PC 18:3–18:3, 82 pmol PI 17:0–17:0, 45 pmol SM 18:1;2/17:0;0,
15 pmol Cer 18:1;2/17:0;0, 30 pmol GalCer 18:1;2/12:0;0, 30 pmol
LacCer 18:1;2/12:0;0, 61 pmol cholesterol-d7. Subsequently, 495 ml
chloroform/methanol (2.5:1, v/v) was added and the samples were
vigorously shaken for 15 min at 1400 r.p.m. on an Eppendorf
ThermoMixer (Eppendorf, Hamburg, Germany). Samples were
centrifuged for 2 min at 500 g to promote phase separation. The
lower organic phase (total lipid extract) was isolated and
evaporated in a vacuum exicator at 41C. Total lipid extracts were
dissolved in 50ml chloroform/methanol (1:2, v/v) and subjected to
quantitative lipid analysis on a hybrid QSTAR Pulsar i quadrupole
time-of-flight mass spectrometer (MDS Sciex, Concord, Ontario,
Canada) equipped with a robotic nanoflow ion source NanoMate
HD System using a 4.1mm nozzle diameter ESI-Chip (Advion
Biosciences Inc., Ithaca, NJ). DAG, PA, PE, PS, PG and PI species
were quantified by negative ion mode multiple PIS analysis (Ejsing
et al, 2006): 15ml total lipid extract was loaded in a polypropylene
96-well plate (Eppendorf, Hamburg, Germany) on top of 15 ml
0.01% (v/v) methylamine (in methanol), the 96-well plate was
covered with aluminium foil and samples were infused in negative
ion mode with ionization parameters of 0.5 psi and 0.9 kV. PC and
SM were quantified by positive ion mode PIS m/z 184.1 analysis
(Ekroos et al, 2002, 2003): 15ml total lipid extract was loaded on top
of 19.3ml 13.3 mM ammonium acetate dissolved in 2-propanol, and
samples were infused in positive ion mode with ionization
parameters of 1.25 psi and 0.95 kV. Neutral sphingolipids were
analysed after the PIS m/z 184.1 analysis using an additional period
of multiple reaction monitoring with the target list: m/z 538.5 (Cer
18:1;2/16:0;0), m/z 552.5 (internal standard Cer 18:1;2/17:0;0),
m/z 648.6 (Cer 18:1;2/24:1;0), m/z 650.6 (Cer 18:1;2/24:0;0), m/z
644.5 (internal standard GalCer¼HexCer 18:1;2/12:0;0), m/z 700.6
(HexCer 18:1;2/16:0;0), m/z 810.7 (HexCer 18:1;2/24:1;0), m/z
812.7 (HexCer 18:1;2/24:0;0), m/z 806.6 (internal standard Lac-
Cer¼Hex2Cer 18:1;2/12:0;0), m/z 862.6 (Hex2Cer 18:1;2/16:0;0),
972.7 (Hex2Cer 18:1;2/24:1;0), 974.7 (Hex2Cer 18:1;2/24:0;0).
Cholesterol was quantified after chemical acetylation using multiple
reaction monitoring as described previously (Liebisch et al, 2006).
Automated processing of acquired spectra, identification and
quantification of detected molecular lipid species was performed
by Lipid Profiler software (MDS Sciex) as described previously
(Ejsing et al, 2006).

Annotation of lipid species
Lipid species were annotated by their molecular composition or by
their sum formula, depending on the mode of analysis. For sum
formula annotations, the following convention was applied: /lipid
classS /total number of carbon atoms in the FA moietiesS:/total
number of double bonds in the FA moietiesS (e.g., PC 36:2). The
molecular composition of glycerophospholipid species detected by
multiple PIS was annotated as: /lipid classS /number of carbon
atoms in the first FA moietyS:/number of double bonds in the first
FA moietyS�/number of carbon atoms in the second FA
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moietyS:/number of double bonds in the second FA moietyS (e.g.,
PE 18:0–18:2). Ether species were annotated with the prefix O- (e.g.,
PC O-34:2 or PE O-16:1p–18:1).

Neutral sphingolipids were annotated by molecular composition:
/lipid classS /number of carbon atoms in the long-chain base
moietyS:/number of double bonds in the long-chain base
moietyS;/number of hydroxyl groups in the long-chain base
moietyS//number of carbon atoms in the fatty acid moietyS:
/number of double bonds in the fatty acid moietyS;/number of
hydroxyl groups in the fatty acid moietyS. For example, the
precursor ion at m/z 538.5 was identified as Cer 18:1;2/16:0;0, that
is, a Cer species containing a C18 sphingosine (having two hydroxyl
groups) and an C16 amide-linked fatty acid moiety with no double
bonds or hydroxyl groups. Detected SM species were annotated by
sum formula, as the PIS m/z 184.1 analysis does not provide
structural information on the molecular composition of the long-
chain base and amide-linked fatty-acid moiety. Detected SM species
were annotated with the sum formula: SM /number of carbon
atoms in the ceramide backboneS:/number of double bonds in the
ceramide backboneS;/number of hydroxyl groups in the ceramide
backboneS. For example, the precursor ion at m/z 703.6 was
identified as SM 34:1;2, that is, the SM species containing a total of
34 carbon atoms, one double bond and two hydroxyl groups in its
ceramide backbone.

Microscopy
Jurkat cells were labelled with Laurdan (Gaus et al, 2005) by adding
the dye (5 mM final concentration) to the serum-free media of C20:5
enrichment and incubating the cells for 30 min at 371C. Cells were
conjugated to beads and activates as for immunoisolation using
polystyrene beads (SpheroTech). Cell–bead conjugates were
allowed to settle on poly-L-lysine-coated glass coverslips and fixed
in 4% paraformaldehyde. Laurdan fluorescence was excited at
800 nm with a Verdi/Mira 900 multi-photon laser system. Laurdan
intensity images (Leica IRE3 microscope and software) were
recorded simultaneously with emission in the range of 400–460
and 470–530 nm for the two channels, respectively. The relative
sensitivity of the two channels was calibrated with 5 mM Laurdan in
DMSO for each experiment. All images were recorded with a � 100
oil objective, NA¼ 1.4 at RT.

Image analysis
Laurdan intensity images were converted to GP images by
calculating the normalized ratio of the two intensity channels,
defined as

GP ¼
Ið400�460Þ � Ið470�530Þ

Ið400�460Þ þ Ið470�530Þ
:

GP images were pseudo-coloured in Adobe Photoshop. To
determine GP values at the contact sites, the mean GP area of the
region of interest adjacent to the bead was determined. Each data
point (or symbol) in the scatter plots represents one contact site. GP
values were corrected using G-factor obtained for Laurdan in DMSO
for each experiment (Gaus et al, 2003). Statistical comparisons were
performed using one-way ANOVA with Tukey’s multiple compa-
rison test.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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