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Abstract

The dynamics of stochastic reaction networks within cells are inevitably modulated by factors considered extrinsic to the
network such as, for instance, the fluctuations in ribosome copy numbers for a gene regulatory network. While several
recent studies demonstrate the importance of accounting for such extrinsic components, the resulting models are typically
hard to analyze. In this work we develop a general mathematical framework that allows to uncouple the network from its
dynamic environment by incorporating only the environment’s effect onto the network into a new model. More technically,
we show how such fluctuating extrinsic components (e.g., chemical species) can be marginalized in order to obtain this
decoupled model. We derive its corresponding process- and master equations and show how stochastic simulations can be
performed. Using several case studies, we demonstrate the significance of the approach.
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Introduction

Biochemical systems involving low-copy molecules demand for

mathematical models that account for the intrinsic stochasticity

[1]. In recent years, however, realization has grown that intrinsic

noise alone cannot account for the observed substantial pheno-

typic variability among isogenic cells. That is, fluctuations in the

intracellular environment, commonly termed extrinsic noise,

represent an additional source of variability [2,3,4].

Several recent studies focus on separating intrinsic and extrinsic

fluctuations through dual-reporter measurements [5,6]. Other

approaches model extrinsic noise through certain parameters (i.e.,

the translation rate) of a kinetic model which is calibrated

subsequently using flow-cytometry [7,8] or time-lapse microscopy

data [9,10]. All of those approaches have in common that they

consider the biochemical process under study – i.e., the expression

of a gene – as a small subpart that is embedded into a larger

dynamical system. Accordingly, they rely on augmenting the

original kinetic model by certain environmental components which

are assumed to be fixed but random [11,10,8,9] or fluctuating over

time [5,12,13]. In fact, such models agree very well with the

variability that is observed experimentally, but on their downside,

suffer from the increased dimensionality - somehow defeating the

original purpose of tractable dedicated models.

A natural question arising in that context is whether we can find

a proper dynamical description of just the system of interest as if it

was still embedded into its stochastically modulating environment.

In other words, we aim to find a ‘‘self-contained’’ stochastic model

that summarizes all system behaviors attainable under all possible

realizations of the extrinsic fluctuations. Such models could then

be used to perform an uncoupled analysis of a reaction network

subject to extrinsic noise. The mathematical correct answer that

we provide in this work is the marginalization of the system

dynamics with respect to those extrinsic fluctuations. Interestingly

it turns out that the resulting model exploits its own stochasticity to

emulate the effect of extrinsic noise, leading to a self-exciting

process. A simple instance of such self-excitation is the Polya urn

scheme: at each draw from the Polya urn with balls of two colors

the drawn ball and a fixed number of new balls of the same color

as the draw are placed in the urn. This scheme is known to be

equivalent to Bernoulli trials marginalized over random (and here

correspondingly extrinsic) success rates [14]. Intuitively, due to its

self-excitation, the number of draws of the same color for a Polya

urn over repeated draws displays a much richer and dispersed

dynamics than the number of successful draws in a Bernoulli trial

with fixed success rate.

For the purpose of inference we recently proposed a first

attempt of such marginalization for the special case of fixed but

random environmental conditions [9]. In this work we develop

a general mathematical framework from which the uncoupled

dynamics can be constructed in a principled manner,

regardless whether the environment is constant or dynamically

changing.
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Results

Mathematical framework
We describe the time-evolution of a stochastic reaction network

by a continous-time Markov chain (CTMC) X with M chemical

species and N reaction channels. The system state at time t is

denoted X (t) and we write its random path on time intervals ½0,a�
as Xa. Throughout we will follow the usual convention to refer to

upper-case and lower-case versions of a symbol as a random

variable and its realization, respectively. Furthermore, we assume

that X depends on another multivariate Markov process Z
through its hazard functions in the form

hi(x,z)~ci(z)gi(x), ð1Þ

with ci some positive function and gi a polynomial determined by

the law of mass-action, for instance. For reactions independent of

Z, we thus have ci(z):ci. Typically, Z is another jump or

diffusion process corresponding to a set of modulating environ-
mental species or conditions that are considered extrinsic to the

system of interest, whereas the species in X represent the actual

system of interest. For example, Z could be the fluctuating

ribosome copy numbers affecting the kinetics of a gene regulatory

network represented by X . Although a more general treatment is

possible, we assume a feed-forward structure between Z and X ,

which means that Z modulates X but not vice-versa. Conse-

quently, the dynamics of the joint system Y (t)~ Z(t),X (t)ð Þ can

be described by a Markov process Z together with a conditional

Markov chain X DZ.

Uncoupled dynamics. Mathematical descriptions of the

joint system Y (t) are readily obtained using available techniques

for modeling Markovian dynamics [5,15,12]. For complexity

reasons, however, we aim for models that can properly describe

only the interesting components X (t). In order to see that

marginalization over Z yields the desired model, let us first

consider two dependent random variables A and B described by a

joint probability distribution p(a,b)~p(aDb)p(b). If we are

interested in analyzing A under all possible values of B, we need

to average the probability at A~a over all possible values of B,

i.e.,

p(a)~

ð
p(a,b)db~E p(aDB)½ �:

Note that as a consequence of averaging probabilities, any value

of A possible under the joint distribution p(a,b) is possible under

the marginal p(a), while this does not necessarily apply to p(aDb)
for any choice of B. The resulting marginal distribution p(a) is an

exact mathematical description of A only, or in other words, it

allows to analyze A uncoupled from B.

In case of the coupled processes Z(t) and X (t), we analogously

marginalize the joint Markov chain Y with respect to the

environmental process Z. While such a marginalization involves

several difficulties, the idea remains the same: we try to construct

an uncoupled process X which directly admits the marginal path

distribution p(xt)~E p(xtDZt)½ �. As a result, we obtain a jump

process, which - in contrast to the conditional process X DZ - no

longer depends on the environment Z. We remark that a

straightforward marginalization of the joint master equation of

Z and X generally leads to intractable propensities [16,5]. Based

on the innovation theorem [17] we demonstrate in section S.1 in

S1 Text that the hazard functions of the uncoupled process (later

referred to as the marginal hazard functions) can be generally

written as

li(Xt)~E ci Z(t)ð ÞDXt½ �gi(X (t)), ð2Þ

where the expectation is taken with respect to the conditional

distribution p z,tDXtð Þ. The latter describes the conditional

probability of the environmental process Z(t) given the entire

history (or filtration) of process X until time t. Using the expected

value of that distribution, the feed-forward influence of Z on the

hazard functions of X can be replaced by a deterministic function

of X , which no longer depends on the actual state of Z. Instead,

the uncoupled process X becomes self-exciting, meaning that it

exerts a feedback on itself. Hence, given that we can evaluate Eq.2,

we have a means to simulate X while bypassing the need to draw

realizations of Z. This has for instance been exploited for the exact

simulation of diffusion-driven Poisson processes [18]. Note that the

uncoupled process X is no longer Markovian, since the conditional

expectation - and hence the hazard function - possibly depends on

Z modulates the dynamics of the process under study X , e.g., through
one of its hazard functions. Marginalization with respect to Z yields the
uncoupled dynamics of X , whereas the original dependency on the
environment Z is replaced by its optimal estimator given the history of
X . Consequently, the marginal process X is self-exciting, i.e., it exerts a
feedback on itself.
doi:10.1371/journal.pcbi.1003942.g001

Author Summary

Cellular reaction networks show a substantial degree of
complexity, and many of the regulatory mechanisms are
yet to be discovered. Therefore, building detailed math-
ematical models of complete networks is not only
unrewarding but most often impossible. Instead, focus is
put on small subnetworks such as the transcriptional
circuitry associated with a few genes. Practically, those
subnetworks are still embedded in the cellular environ-
ment and are consequently modulated by it. The math-
ematical framework that we present in this work allows to
build models of such subnetworks only, while still
incorporating the impact of the environment. Such models
are instrumental not only for advancing our biological
understanding through them, but also for the reliable
forward engineering of new subnetworks in synthetic
biology.
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Figure 1. Uncoupled stochastic dynamics. The environmental process



the full process history Xt. A schematic illustration of that

uncoupling is given in Fig. 1.

Associated filtering problem. Although the construction of

the uncoupled dynamics is general, any practical implementation

thereof will depend on an explicit computation of the conditional

expectation in Eq. 2. This expectation estimates the environmental

state Z(t) given the full history of the uncoupled process Xt and

therefore, can be understood as the solution to a stochastic filtering
problem [19]. Filtering techniques deal with the problem of

optimally reconstructing a hidden stochastic process at time t from

noisy observations of that process up to time t. In the situation

considered here, the hidden process corresponds to the environ-

ment Z(t), which gets reconstructed from the ‘‘observed’’ history

Xt through the conditional mean in Eq. 2.

We assume that the environment Z(t) admits a probability

distribution p(z,t) described by a Kolmogorov-forward equation of

the form

L
Lt

p(z,t)~Ap(z,t), ð3Þ

where A represents the temporal change of p(z,t), i.e., is the

infinitesimal generator of Z. For instance, if Z is a diffusion

process, A corresponds to the Fokker-Planck operator, while in

case of a CTMC, A is given by the difference operator of the

chemical master equation (CME). In terms of filtering, Eq. 3

corresponds to the process model of Z. Furthermore, we know

that at a given time t, the solution of X can be written as a sum of

independent but time-transformed Poisson processes [20], each of

them corresponding to a particular reaction channel. Consequent-

ly, the observation model is given by a set of Poisson counting

observations with the hazard functions given in Eq.1. This is

closely related to Markov-modulated Poisson processes [21] and

their corresponding optimal filtering [22].

While a more general treatment is provided in S1 Text, we

assume in the following that a one-dimensional process Z is

modulating X through its k-th reaction of order zero. We further

restrict ourselves to the case where ck is a linear function of z, i.e.,

ck(z)~ckz. Under those assumptions, it can be shown that the

conditional process Z(t)DXt follows a filtering distribution p(z,tDXt)
with

dp(z,t)~

Ap(z,t){ck(z{M1(t))p(z,t)½ �dtz
z{M1(t)

M1(t)
p(z,t)

� �
dRk(t),

ð4Þ

with Rk(t) as the number of reactions of type k up to time t in Xt

and M1(t)~E Z(t)DXt½ � (for a derivation see S.2 in S1 Text). Since

Eq. 4 shows an implicit dependency on its own mean, it is

complicated to handle numerically. A simpler equation can be

obtained for an unnormalized variant ~pp(z,t) of the filtering

distribution [23], i.e.,

d~pp(z,t)~ A~pp(z,t){ckz~pp(z,t)½ �dtz z{1½ �~pp(z,t)dRk(t), ð5Þ

with p(z,tDXt):j(t)~pp(z,t) and j(t) a time-dependent normalizing

factor independent of z. Thus, Eq.5 describes a scaled version of

the normalized filtering distribution from Eq.4. However, once ~pp
has been numerically solved for, it can be easily rescaled such that

it integrates (or sums up) to one for all t.

Note that Eq. 5 is a stochastic partial differential equation

(SPDE) in case Z describes a diffusion process or a stochastic

difference-differential equation (SDDE) if Z is a CTMC. In the

latter case, the solution of Eq.5 can be compactly written as

~PP(t)~e
Q{ckLð Þ t{tRk (t)

� �
P

Rk (t)

l~1
Le(Q{ckL)(tl{tl{1)

 !
P0 ð6Þ

with ~PP(t)~(~pp(0,t), . . . ,~pp(L{1,t))T , L the number of reachable

states of Z, L~diag(0, . . . ,L{1), P0[RL the initial distribution

over Z and Q[RL|L the generator matrix of Z. Note that we

define Q to be a left stochastic matrix, i.e., its rows sum up to zero.

Conditional moment dynamics. In order to evaluate Eq.

2, we only require the mean (i.e., the first moment) of the

filtering distribution, i.e., M1(t). In general, however, the mean

also depends on the second-order moment, which in turn

depends on the third-order moment and so forth. Generally, the

i-th order non-central moment is found by multiplying both

sides of Eq.4 with zi and summing (or integrating) over all z[Z,

i.e.,

X
z[Z

zidp(z,t)~
X
z[Z

zi(Ap(z,t){ck z{M1(t)½ �p(z,t))dt

z
X
z[Z

zi z{M1(t)

M1(t)

� �
p(z,t)dRk(t)

ð7Þ

such that the filtering moment dynamics up to order i can be

generally written as

dM1(t)~

D1(t){ck(M2(t){M1(t)M1(t))½ �dtz
M2(t){M1(t)M1(t)

M1(t)
dRk(t)

..

.

dMi(t)~

Di(t){ck(Miz1(t){M1(t)Mi(t))½ �dtz
Miz1(t){M1(t)Mi (t)

M1(t)
dRk(t),

ð8Þ

with Di(t)~
P

z[Z ziAp(z,t) as the unconditional moment

dynamics. The computation of moments in case of multivariate

environments is performed analogously. Although Eq.8 is

generally infinite-dimensional, there are several relevant sce-

narios, for which the moment dynamics are closed, i.e., only

depend on higher-order moments up to a certain order. This is

for instance the case, if Z(t) is a Cox-Ingersoll-Ross (CIR)

process [24] or any finite state Markov chain. On the other

hand, if the moment dynamics are infinite-dimensional, suitable

assumptions on the filtering distribution p can be imposed to

yield a closed moment-dynamics (see [25] and S.3 in S1 Text).

An important closure is found by analyzing Eq. 6: especially for

large ck we have that e(Q{ckL)(tl{tl{1)&e{ckL(tl{tl{1) and

furthermore,

~PP(t)& P
Rk(t)

l~1
Le{ckL tl{tl{1ð Þ

 !
P0~LRk (t)e{ckLtP0 ð9Þ

suggesting that Eq. 6 can be well approximated by a Gamma-

distribution. We note that the Gamma-distribution is fully

characterized by two parameters – or equivalently – its first two

moments M1(t) and M2(t). As a consequence, we may express

the third order moment as a function of the first two moments,

i.e., M3(t)~{M1(t)M2(t)z2M2
2 (t)=M1(t), such that the sec-

ond conditional moment closes as

Uncoupled Analysis of Stochastic Reaction Networks
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dM2(t)~

D2(t){2ck
M2(t)

M1(t)
M2(t){M2

1 (t)
� �� �

dtz2
M2

2 (t)

M2
1 (t)

{M2(t)

� �
dRk(t):

Further discussion on moment-closure is provided in section S.3

in S1 Text. In the following, we demonstrate the uncoupled

dynamics using several numerical and analytical case studies.

Uncoupled dynamics for network simulation
The marginal simulation algorithm (MSA). Although the

uncoupled dynamics of X are non-Markovian, the Markov property

can be enforced by virtually extending the state space by the first

moment of Eq. 8, summarizing the history of X . As a result, one can

simulate sample paths of the uncoupled process using standard

methods that can account for the explicit time-dependency of the

hazard functions [26]. In general, such algorithms rely on the

generation of random waiting times for each of the reaction

channels. All reactions that are independent of Z(t) will retain their

exponentially distributed waiting times. In contrast, the time tk that

passes until a reaction of type k happens is distributed according to

Pk(tkvsDXt)~1{e
{ck

Ð s

0
M1(tzT)dT

: ð10Þ

We note that as long as no reaction of type k happens, dRk(t) is

zero and hence, M1(t) is found by solving a set ordinary differential

equations (ODEs). Since that solution is not generally known in

closed form, we cannot directly sample from Eq. 10. However,

several efficient solutions to that problem have been developed in

the context of inhomogeneous Poisson processes, e.g., such as the

method of thinning [27]. Once a reaction has fired, the filtering

moments need to be updated by the terms multiplying the firing

process dRk(t) in Eq. 8 (i.e., they exhibit a discontinuity). The

following lines describe a possible implementation of the MSA.

Algorithm 1 (Marginal simulation algorithm) The algorithm
simulates the uncoupled dynamics of a reaction network with N
reactions associated with stoichiometric change vectors n1, . . . ,nN .
The k-th reaction is assumed to be driven by the environmental
network Z. The algorithm requires a real-valued constant

l̂l§ckM1(t) to be given as an input.

1 Initialize variables t/0 and x/x0.

2 while tvT do
3 for i~1, . . . ,N do
4 if i~k (marginal hazard) then
5 Initialize ti/0 and u/?.

6 while uwckM1(tzti)=l̂l do

7 Simulate t̂t*Exp(l̂l).
8 Set ti/tizt̂t.

9 Simulate u*U(0,1).
10 end while
11 else
12 Simulate exponential waiting-time ti*Exp(cigi(x)).
13 end if
14 end for
15 Choose reaction associated with the minimal waiting-time

j/ argmax
i~1,...,N

ti.

16 Update state x/xznj .

17 Update time t/tztj .

18 if j~k then

19 Update M1(t) by the terms accompanying dRk(t) in Eq. 8.

20 end if

21 Output t and x.

22 end while

Evidently, simulation from Eq. 10 (i.e., through the thinning

method in lines 5-10 of Algorithm 1) comes at higher cost than

simulating from an exponential distribution, since in general, it

relies on the numerical integration of an ODE. However, reactions

associated with the environmental part no longer need to be

simulated, which yields a significant reduction in computational

effort as soon as the environmental network is large and expensive

to simulate due to high propensity reactions, for instance.

An illustrative example. We will now instantiate the

proposed framework using a simple telegraph model of transcrip-

tion, i.e.,

Z0KI
c1

c2

Z1

Z1 c3I
Z1zX

with propensities given by the law of mass action. The two-state

promoter Z stochastically switches between its inactive state Z0

and its active state Z1, whereas only the latter allows transcription

of mRNA (denoted by X ). For the sake of illustration, this model is

now understood as a process X which is driven by an

environmental perturbation Z. We thus aim to find the uncoupled

dynamics of X , where fluctuations in Z have been marginalized.

In order to evaluate the marginal hazard function, we need

to compute the conditional expectation M1(t)~p(0,t)0z

p(1,t)1~p(1,t). It is straightforward to show that the uncondi-

tional probability distribution over the promoter states satisfies the

CME

d
dt

P(t)~QP(t)~
{c1 c2

c1 {c2

� 	
P(t), ð11Þ

with P(t)~½P(0,t),P(1,t)�T . From equation Eq. 5 we further

know that the unnormalized conditional probability ~PP(t)~

½~pp(0,t),~pp(1,t)�T admits the linear stochastic differential equation

d ~PP(t)~ Q{c3Lð Þ ~PP(t)dtz L{Ið Þ ~PP(t)dR3(t)

~
{c1 c2

c1 {(c2zc3)

� 	
~PP(t)dtz

{1 0

0 0

� 	
~PP(t)dR3(t):

ð12Þ

As long as no transcription event takes place (i.e., dR3(t)~0), the

conditional distribution from Eq.12 is just given by a linear

homogeneous ODE, whose solution is known in closed form. We

refer to this distribution as ~PP{(t). In case a reaction happens at

time t, the distribution will be updated according to

~PPz(t)~ ~PP{(t)z
{1 0

0 0

� 	
~PP{(t)~

0

~pp{(0,t)

� 	
: ð13Þ

Upon normalization of the distribution ~PP{(t) we may express

its expectation between two consecutive firing times t1 and t0 with

Uncoupled Analysis of Stochastic Reaction Networks
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t1wt0 as

M{
1 (t)~

(c1{c2{c3) sinh 1
2

(t{t0)r
� �

zr cosh 1
2

(t{t0)r
� �

(c1zc2{c3) sinh 1
2

(t{t0)r
� �

zr cosh 1
2

(t{t0)r
� � , ð14Þ

with t[½t0,t1) and r~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(c1zc2zc3)2{4c1c3

q
. Furthermore,

normalization of ~PPz(t) shows that when the next reaction at

time t1 fires, the conditional expectation instantaneously changes

to one. This is consistent with the fact that for a transcription event

to happen at t1, the promoter must be in its active state at least

until t1. Fig. 2 illustrates the computation of the marginal hazard

function used during MSA.

Another important quantity to describe the uncoupled model is

its Kolmogorov-forward- (or master-) equation. We remark that

since the uncoupled dynamics are non-Markovian, they do not

satisfy a conventional master equation. Instead, such processes are

described by generalized master equations (GME) that can account

for memory effects in the dynamics (see S.5 in S1 Text for further

discussion). In particular, there exists a fundamental relation

between a GME’s memory and the corresponding network’s

waiting-time distributions [28]. For the uncoupled telegraph

model, the waiting-time distribution f3(t) of the transcription

events is fully tractable using Eq. 10 (for an explicit expression see

S1 Mathematica Notebook). It is therefore straightforward to

develop a Chapman-Kolmogorov type of equation for the

transcriptional dynamics X (t)~R3(t), i.e.,

P(x,t)~

ðt

0

f3(t)P(x{1,t{t)dt ð15Þ

for xw0 and P(0,t)~1{F3(t) with F3(t)~
Ð t

0
f3(t)dt as the

cumulative waiting-time distribution. Following [28], Eq. 15 can

be transformed into a gain-loss-type of master equation, i.e.,

d

dt
P(x,t)~

ðt

0

w3(t)½P(x{1,t{t){P(x,t{t)�dt, ð16Þ

where the memory kernel w3(t) is related to f3(t) through the

Montroll-Weiss equation (see S.5 in S1 Text). Eq. 16 represents the

desired marginal master equation, from which further analysis

could be deduced.

Comparison of MSA to existing approaches. The impact

of environmental fluctuations on a dynamical system of interest is

as diverse as the timescale on which they operate. For instance,

extrinsic noise in the context of gene expression might be slowly

varying (e.g., correlates well with the cell-cycle [29,30]), while

fluctuations in transcription factor abundance might be signifi-

cantly faster than the expression kinetics downstream. From a

technical point of view, timescales range from constant environ-

mental conditions that are random but fixed [31] to regimes where

the fluctuations are very fast, such that quasi-steady-state (QSS)

assumptions become applicable [16,32]. A QSS-based approach

for simulating a system X in the presence of extrinsic noise Z
corresponds to simulating the conditional CTMC X DZ, where Z is

replaced by the mean of Z. Alternatively, one may try to replace a

fluctuating environment Z through a random but fixed environ-

ment of same variance but this leads to an overestimation of the

process variance in X [5], as discussed in a later section. To

investigate the two above simplifying assumptions and compare

them to the exact solution obtained via SSA and MSA, we

performed a simulation study on a linear three-stage birth-death

model given in Fig. 3a. In this case only species C is considered of

interest whose uncoupled dynamics are obtained by marginalizing

A and B. The results from Fig. 3b and Fig. 3c show that MSA

facilitates accurate and fast approximations also under interme-

diate environmental time-scales where QSS- and static environ-

mental assumptions break down.

Varying environmental time-scales. Simulation of the

joint system (X ,Z) becomes particularly challenging if the

environmental fluctuations are fast, while with Eq. 8 the

complexity of the marginal process simulation is invariant with

respect to the time-scale of the environment. To demonstrate this

effect, we performed a simulation study using a ten-dimensional,

non-linear environmental network (Fig. 3d). Different time-scales

were realized by multiplying the vector of environmental rate

constants by a constant factor q[f1,10,20g, effectively changing

the number of reactions that have to be simulated on average. The

results from Fig. 3e demonstrate that the computation time of the

SSA simulation strongly increases with q. In contrast, the MSA’s

efficiency appears largely invariant with respect to the environ-

mental time-scale, possibly leading to a substantial reduction in

computational effort. We remark that for all three time-scales, the

MSA algorithm achieved very high accuracies (i.e., estimated

Kolmogorov distances below 3:5%). However, If the environmen-

tal time-scale is comparably slow (i.e., if q~1), the extra effort

needed for computing the marginal hazard function dominates, in

which case SSA appears favorable.

Bistable environmental fluctuations. We further analyzed

the case where the environmental network exhibits a more

complex dynamics. In particular, we considered a bistable

M1(t) of the telegraph model (i.e., using Eq.14). The blue dots indicate the corresponding transcription events. Also shown is a possible
corresponding realization of the promoter state (gray bars indicate the time the promoter has been active). The figure illustrates that using the MSA
algorithm, only the events associated with X need to be simulated (in this case the transcription of mRNA). In contrast, SSA requires explicit
simulation of all environmental states, which – depending on the time-scale – may become computationally prohibitive.
doi:10.1371/journal.pcbi.1003942.g002
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Figure 2. Schematic illustration of the marginal simulation algorithm. The red line shows the computation of the marginal hazard function



Schloegl system Z [33] modulating the production rate of a birth-

death process X (Fig. 3f). Here the most efficient way to compute

the marginal hazard functions was to directly integrate Eq. 5

under a suitable state space truncation (see caption of Fig. 3g for

fuller details). The results shown in Fig. 3g indicate that also in this

case, the MSA algorithm achieves high accuracies but at the same

time finishes around 18:5 times faster than the corresponding SSA

algorithm. These results underpin the significance of MSA in cases

where the environmental network is costly to simulate (i.e., many

reactions take place) but at the same time, a QSS-based approach

is unable to capture the correct dynamics (e.g., a bistable

production rate).

Uncoupled dynamics for network analysis
Propagation of environmental fluctuations and the

effective noise. Several recent studies [34,5,6,4] are centered

around the separation of different noise contributions in

biochemical networks. Typically, the law of total variance is

employed to decompose the fluctuations of X (t) into parts that are

intrinsic to X and parts that come from Z (i.e., are extrinsic to X ).

Here we found that performing such an analysis on Z instead of X
– in conjunction with our decoupling approach – provides a novel

way to study how stochasticity is propagated through biochemical

networks. Using the law of total variance, we can decompose the

total (or unconditional) variance of Z(t) as

Var Z(t)½ �~E Var Z(t)DXt½ �½ �zVar E Z(t)DXt½ �½ �: ð17Þ

The two terms on the r.h.s. can be interpreted as follows.

Assume we can observe Z only through X . Since X is intrinsically

stochastic, a part of the variability of Z is not carried over to X . In

Eq. 17, this part (i.e., the suppressed noise) corresponds to the first

term on the r.h.s. since it quantifies the uncertainty about Z(t) that

remains after observing Xt. The second term determines how

accurate Z can be reconstructed from trajectories Xt. Alterna-

tively, it can be understood as the amount of noise in Z that

effectively impacts X (i.e., the effective noise). For instance, the

environmental process could be characterized by a large variance,

but still have only marginal impact on X (t) – depending on the

timescale of Z and X .

In order to quantify those terms, we note that the conditional

variance within the first term coincides with the second-order

central moment of the filtering distribution from Eq.5. This

further implies that it can be computed ‘‘on-the-fly’’ when

simulating X (t) using the marginal simulation algorithm which

allows an efficient estimation of its expectation. However, in some

biologically relevant cases, the effective noise can be determined

even analytically, which we demonstrate in the following.

We derive in section S.4 in S1 Text that the expected central

moments are generally given by

d
dt

E M1(t)½ � ~E D1(t)½ �

d
dt

E S2(t)½ � ~E ~DD2(t)
� �

{ckE
S2

2
(t)

M1(t)

� �
:

ð18Þ

death processes. Filled arrows correspond to mass-action reactions, whereas empty arrows connecting species S and reaction i indicate that S linearly
modulates the rate of that reaction, i .e. , hi(S,X )~ciSgi(X ). The rate constants were chosen to be c1~0:003,c2~0:001,
c3~0:05,c4~5e{4,c5~1e{5,c6~1e{4. The uncoupled marginal dynamics of C are obtained under a second-order zero-cumulants closure. (b,
c) Evaluation of the marginal simulation algorithm. Simulations based on the QSS-approximation neglect a significant portion of variability as
opposed to assuming a constant environment (CE) in which case the variability is overestimated. In contrast, the uncoupled dynamics correctly
predict the fluctuations on the protein level, while yielding a reduction in computational effort when compared to standard SSA (i.e., a simulation
time of approximately 20 min instead of 46 min). For each of the schemes, 7000 sample paths have been used to compute the respective histograms
(and moments). (d) Nonlinear reaction network. A ten-dimensional reaction network consisting of species (A, B,…, J) modulates the production rate
of a birth-death process X (rate constants c1~0:1,c2~0:01,c3~0:01,c4~0:005,c5~0:001). (e) The uncoupled dynamics of X were computed under a
second-order zero-cumulants closure. Different environmental time-scales were realized by multiplying the vector of rate constants by a constant
factor q[f1,10,20g. For each q, 2000 samples paths were simulated to assess the performance of MSA and SSA, respectively. In all cases, the estimated
Kolmogorov distance between the SSA and MSA distributions was below 3:5%. (f) Bistable reaction network. The environmental part was modeled as
a one-dimensional Schloegl system [33] modulating the production rate of a birth-death process X (rate constants
c1~1:05,c2~0:075,c3~3:5,c4~3,c5~0:06,c6~0:04). (g) The uncoupled dynamics were computed by integrating Eq.5 on a truncated state space
(i.e., feasible states Z[f0, . . . ,70g). The distribution over X was computed at t~5 minutes using 50000 MSA and SSA samples (estimated Kolmogorov
distance of 1:23%). The computation of 50 MSA and SSA samples took 13.79 and 255.05 seconds, respectively.
doi:10.1371/journal.pcbi.1003942.g003
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Figure 3. Evaluation of the marginal simulation algorithm. (a) Simple three-stage model. Species A, B and C are modeled as coupled linear birth-



The mean in Eq.18 is just the unconditional mean of Z(t), while

the derivative of the expected variance shows an additional

negative term, causing it to be smaller than the unconditional

variance. Let us for instance consider the case where Z(t) follows a

Cox-Ingersoll-Ross process governed by the SDE

dZ(t)~h(m{Z(t))dtzsZ

ffiffiffiffiffiffiffiffiffi
Z(t)

p
dW (t), ð19Þ

with h, m and sZ as real process parameters and W (t) as a

standard Wiener process. Note that in this case, Eq. 18 reduces to

an autonomous ODE, which for large t yields the relative effective

noise g~Var E Z(t)DXt½ �½ �=Var Z(t)½ � at stationarity, i.e.,

g~1z2
u2

ck

1{

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ck

u2
z1

r� 	
, ð20Þ

where u~h=sZ can be considered a normalized timescale of Z(t)
(see section S.4 in S1 Text). The computation of the effective noise

and its dependency on the environmental timescale is illustrated in

Fig. 4.

The slow noise approximation (SNA). The effective noise

can be understood as a measure of how strong Z impacts X . Only

in the special case of a very slow or constant environment, i.e.,

Di&0, it turns out that for large t, Var E Z(t)DXt½ �½ �?Var Z(t)½ �,
i.e., all variability in Z is transferred to X . Hence, a more noisy

but fluctuating environment may induce a similar (or even the

same) effective noise in X as a random but fixed environment of

the same variance. Consequently, when looking at only snapshot

data for X one can generally not infer whether the environment is

constant or fluctuating. On the other hand, this implies that we

may well approximate the impact of a complicated and

dynamically changing environment by a simple random varia-

ble of appropriate variance. More specifically, we demand for an

equivalent constant environment �ZZ such that Var �ZZ½ �:
Var E Z(t)DXt½ �½ �, where Var E Z(t)DXt½ �½ �~s2 is the effective noise

of the original, fluctuating environment Z at stationarity. Let us

again consider the birth-death process of Fig. 4a and set the birth

rate to one such that any scaling is subsumed in the environmental

process Z. With X0~0, the abundance of the birth death process

at any time is given by X (t)~Rb(t){Rd (t) with Rb(t) and Rd (t)
as counting processes for the birth and death reaction, respectively.

We show in section S.5.1 in S1 Text that the marginal birth

hazard is approximately given by

lb(Xt)~lb(Rb(t),t)&
m2zs2Rb(t)

mzs2t
, ð21Þ

with m~E Z(t)½ � the unconditional mean and s2 the effective noise

of Z, whereas the expression becomes exact for constant and

infinitely fast environments. Note that the marginal hazard does

not depend on the full history, but only the number of birth-

reactions Rb(t) up to time t. That is, Rb(t) is a sufficient statistic for

evaluating the conditional expectation E Z(t)DXt½ �. In relation to

QSS, which assumes that no fluctuations of Z are propagated to

X , the found equivalent constant environment with the proper

effective noise provides a better approximation for a decoupled

simulation of environment and process of interest than QSS.

Using the effective noise, we now aim to find a master equation,

which describes the time-evolution of the marginal probability

distribution P(x,t). Since lb depends on Rb(t) rather than X (t), it

appears natural to formulate the master equation in Rb(t) and

Rd (t) as well. For the example considered here, one can show that

the probability distribution P(rb,rd ,t) satisfies a GME of the form

d
dt

P(rb,rd ,t)~
m2zs2(rb{1)

mzs2t
P(rb{1,rd ,t)zcd rb{rdz1½ �P(rb,rd{1,t)

{
m2zs2rb

mzs2t
zcd rb{rd½ �

� 	
P(rb,rd ,t),

ð22Þ

that can be solved analytically using generating functions (see S.5.1

in S1 Text). From P(rb,rd ,t) we compute the distribution of X as

P(x,t) ~
P?

rb~x

P(rb,rb{x,t)

~NB x; m2

s2 ,
cd me

cd t

cd me
cd t

z e
cd t

{1ð Þs2

� 	
,

ð23Þ

i.e., a negative binomial distribution. Eq. 23 provides a surpris-

ingly simple approximate solution for the transient probability

distribution of birth death processes in a fluctuating environment.

In order to check its validity, we compared the analytical

approximate distributions to the ones obtained through SSA for

a gene expression model, where the environmental fluctuations are

assumed to be due to the mRNA dynamics (see Fig. 5). More

specifically, we computed the Kolmogorov distance between the

ations. (a) Linear birth-death process in a fluctuation environment. The
birth-rate is assumed to be linearly modulated by its environment Z
modeled as a CIR process (see Eq. 19). (b) Calculation of suppressed and
effective noise. Individual components were computed analytically by
solving an ordinary differential equation (see Eq. 22 in S1 Text) with
m~0:1, sZ~0:003, h~1e{4 and ck~0:05. For orientation, we also
show the information gain between Z(t) and Z(t)DXt , computed using
the marginal simulation algorithm (green); it can be understood as the
gain in information about Z through observing X and it exhibits a
monotone relationship with the effective noise. (c) Relation between
the effective noise and the speed of the environmental fluctuations.
Noise contributions were computed by numerically solving Eq. 22 in S1
Text for m~0:1, sz~0:003, cb~0:1 and different values of
h[f5:00e{5,1:19e{4,2:81e{4,6:67e{4,0:0016g. Note that the results
are independent of the death rate cd . Also shown are realizations of Z
and X for the case for two different time-scales. If Z is fast, the output
X is able to suppress most of the variability in Z. In contrast, if Z is
slow, fluctuations are largely transferred to X (i.e.,Z has a large effective
noise) such that extrinsic noise in X is substantial.
doi:10.1371/journal.pcbi.1003942.g004
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Figure 4. Propagation and suppression of environmental fluctu-



resulting protein distributions as a function of the environmental

timescale. Apart from the exact correspondence for the limiting

time-scales, Fig. 5 indicates that the SNA provides a good

approximation regardless of the environmental timescale.

Discussion

There is increasing evidence that models of biochemical

networks need to account for both intrinsic and extrinsic noise

caused by variations in the intracellular environment. In recent

studies, this is done by extending a model’s state space by certain

environmental species, whose dynamics are described along with

the actual system of interest. In particular, the resulting system

dynamics are described and studied conditional on a particular

history of the environment and thus, do not provide a coherent

description of a dynamical system subject to extrinsic noise. In this

work, we derived and analyzed a novel process framework, which

is able to describe just the system of interest as if it was still

embedded into its environment. In that sense, it permits a

mathematically exact way to analyze small parts of networks in an

uncoupled fashion.

Several recent studies rely on the extreme assumptions that the

environmental fluctuations are either infinitely fast or slow. While

both strategies may in fact lead to strongly simplified and tractable

models, they are characterized by significant approximation errors

when considering intermediate environmental timescales (see e.g.,

Fig. 5b). The approach proposed here allows to uncouple a

reaction network from its surrounding environment regardless of

the latter’s timescale. In that sense, the approach is fully general

although practical implementations may rely on efficient but

approximate solutions of the discussed filtering problem.

In the context of Monte Carlo simulation the decoupled process

can yield a significant reduction in computational effort when

compared to standard SSA – especially if the environmental

network is costly to simulate. This highlights the role of the

provided framework as a general tool to split stochastic

biochemical networks into individual parts that are easier to

simulate. We believe that it will aid in turning stochastic modeling

and simulation techniques more large-scale and more faithful to in
vivo conditions, where significant environmental fluctuations are

present. Moreover, the framework can be used in the model-based

design of novel circuit motifs in synthetic biology and is related to

the notion of retroactivity [35].

We further demonstrate that the uncoupled dynamics provide a

novel analytical tool to study how environmental stochasticity is

propagated along coupled reaction networks. For instance, we

have shown that the total environmental noise splits up into two

terms: one corresponding to the noise that is suppressed and a

second term that quantifies the effective noise that is sensed by the

target network. In [36] the authors derive a lower bound on a

network’s ability to suppress fluctuations and show its immediate

relation to the uncertainty at which those fluctuations can be

estimated – similar to what we defined as effective noise. The

methods proposed here allow to not only bound, but fully

determine both the suppressed and effective environmental noise.

Our results further indicate that two environments with very

different timescales may impact a network in a similar way. For

instance a fixed but random environment may yield the same

effective noise as a fluctuating environment with larger variance.

Along those lines, we derived a simple but widely applicable

approximation of the transient probability distribution for birth-

death processes subject to environmental noise. It is based on the

idea to approximate a fluctuating environmental process by a

simple random variable that impacts the birth death process in an

equivalent way. In order to solve for the transient probability

distribution we derived a generalized master equation for this

non-Markovian process. The results were derived under the

assumption of a one-dimensional environmental process but its

extension to multivariate scenarios shall be examined at a later

stage.

The presented framework provides a novel and orthogonal

notion of environmentally perturbed stochastic networks from

which several interesting avenues could be pursued. However,

the approach in its current form has a few practical limitations

that should be addressed in future work. Above all, if the

uncoupled dynamics cannot be computed analytically, its

accuracy – and hence, reliability will depend on finding suitable

approximate schemes. For that sake, we believe that one will

profit from the approach’s tight connection to stochastic filtering

– a field that has been thoroughly explored over the past

decades. Therefore, the marginal hazard functions may be

approximated by exploiting certain features of the associated

filtering problems such as their asymptotic theories and so forth.

Those could for instance be used to derive more general

moment-closure schemes or to construct concise and more

efficient state-space truncations [37] when integrating the

respective filtering distribution. The main bottleneck of the

MSA algorithm is the simulation of the non-exponential waiting-

times, which relies on the integration of an ODE. Therefore, the

use of optimized and dedicated ODE solvers could further boost

the algorithm’s performance.

approximation. (a) Two-stage gene expression model. Transcription
and translation are modeled through mass-action kinetics with reaction
rate constants c1-c4 . Fluctuations on the mRNA are considered
environmental and hence, integrated out in order to obtain a one-
dimensional stochastic process describing only the protein. (b)
Accuracy of the slow noise approximation. The SNA was compared to
the QSS- and CE-approximations by means of the Kolmogorov distance
between the respective approximate and exact distribution (SSA) as a
function of the relative speed of the mRNA fluctuations defined by
c2=�hh3 and �hh3~c3c1=c2 . The mRNA birth- and death-rates were varied
between 1e{4 and 1 while maintaining a constant ratio of c1=c2~5.
The remaining parameters were chosen as cb~c3~0:03 and
cd~c4~0:01. QSS- and CE approximations break down for slow or
fast environmental fluctuations respectively, whereas the SNA yields
accurate distributions regardless of the mRNA’s timescale. (c) Exemplary
distributions obtained through the different approaches in three
different regimes (slow, intermediate, fast).
doi:10.1371/journal.pcbi.1003942.g005
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Figure 5. Analytical protein distributions through the slow noise



Models

All models and simulations were implemented in MATLAB

(The MathWorks, Natick, MA). Source codes for reproducing the

numerical results have been attached as S1 Database.

Supporting Information

S1 Text Supplementary theory and derivations.

(PDF)

S1 Mathematica Notebook Mathematica notebook for the

telegraph model.

(NB)

S1 Database MATLAB source codes used for simulations.

(ZIP)
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