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Abstract Digital reconstruction of neurons from
microscope images is an important and challenging
problem in neuroscience. In this paper, we propose
a model-based method to tackle this problem. We
first formulate a model structure, then develop an
algorithm for computing it by carefully taking into
account morphological characteristics of neurons, as
well as the image properties under typical imaging
protocols. The method has been tested on the data
sets used in the DIADEM competition and produced
promising results for four out of the five data sets.

Keywords DIADEM · Neuron tracing ·
Tube models · Tree structure reconstruction ·
3D microscopy

Introduction

Progress in microscopy has generated a need for
automated computational analysis and research into
methods for such analyses has been termed bioimage
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informatics, e.g. Peng (2008). In this paper we address
a specific problem in this field, that of reconstructing
neuronal morphologies from 3D microscopy images. It
can be stated as follows:

Given a 3D image that is acquired via a com-
mon 3D microscopy protocol, automatically re-
construct the morphology of the neurons present
in the image.

This specific problem is important because a good
solution will have a significant impact on neuro-
science. The ultimate goal of neuroscience is to un-
derstand how nervous systems work. This cannot be
achieved without obtaining the structure of a real
neuronal network, which reveals how neurons are
connected. This in turn requires the extraction of mor-
phologies of individual neurons in the system. How-
ever, biologists have to rely on time-consuming manual
or semi-manual methods to turn the images into mor-
phological models. Given the number of neurons in a
nervous system, we can easily foresee the emergence
of a bottleneck. Therefore, an accurate fully-automated
reconstruction method is critical to the advancement of
neuroscience.

The importance of the problem has led to quite a few
attempts at developing automated methods for neuron
reconstruction (Meijering 2010). To understand these
methods, we need to remember two important common
properties of the morphology of a neuron:

1. The fibers of a neuron form a tree.
2. At the typical resolution of a light microscope,

a fiber of a neuron often has a smooth tubular
shape.
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The most successful automated methods take advan-
tages of one or both of these two properties. They can
be further classified into two main categories:

Local Tracing A method in this category usually starts
from a seed, which can be located automatically or
manually, and traces where a neuronal fiber goes in
the given image. The direction of tracing is determined
based on the signal around the current location. A
representative of this class is the method that was
proposed in Al-Kofahi et al. (2002). The authors used
template fitting to determine the direction of tracing.
The template they used consists of four parallel edge
detectors, each of which locates a part of the branch
boundary with a greedy search. A local tracing method
produces one branch at a time and does not directly
trace through branch points where a fiber forks into two
or more continuing fibers. So a separate branch point
detection method is required to complete the recon-
struction (Al-Kofahi et al. 2007). Model-free strategies
of local tracing, such as Rayburst Sampling (Rodriguez
et al. 2006) and Voxel Scooping (Rodriguez et al. 2009),
can trace multiple branches with one seed. However,
the quality of the tracing relies heavily on the existence
of a preprocessing step that accurately separates fore-
ground and background.

Global Skeletonization In contrast to local tracing
methods, the other category of methods extract skele-
tons of neurons based on the global signal distribution
in an image. One straightforward way of doing this
is to use a selected segmentation algorithm to turn
the image into a binary foreground/background form,
and then apply a 3D binary skeletonization algorithm
(Dima et al. 2002; Weaver et al. 2004; Evers et al.
2005; Narro et al. 2007). But this has not always been
a good choice because of the difficulty of the first step,
binarization. A Hessian-based vesselness measurement
has been used to enhance line structures in images
and improve skeletonization (Abdul-Karim et al. 2005;
Yuan et al. 2009; Vasilkoski and Stepanyants 2009).
But it requires predefined scales and is computationally
expensive when the number of scales is large. In an
alternate strategy, Dijkstra’s shortest path algorithm
has been adopted to extract skeletons directly from
gray-scale images (Zhang et al. 2007; Peng et al. 2010b).
This algorithm was applied to find the path that gives
the shortest geodesic distance between two points. As
long as the geodesic distance is reasonably defined,
the path found is indeed the one desired. Since Dijk-
stra’s algorithm provides the global optimal solution,
the method is robust when the seed points are well
located (Meijering et al. 2004; Xie et al. 2010; Peng et al.

2010a). But such a method is not reliable when there
are multiple neurons in an image and it requires manual
selection of the termini to trace between.

Both types of methods have been shown to be useful
for neuron tracing. However, these automated results
still require significant human curation and correction
in order to be perfect. In this paper our goal is to
develop a better method for reconstructing neurons
whose morphology adheres to the two common prop-
erties mentioned above. For tracing neurons that do
no show smooth neurites in the images (e.g. neurons
imaged by electron microscopy), we would expect very
different methods to work and it is beyond the scope
of this paper. So we employ the idea of local tracing,
and then refine the result with the use of shortest paths.
Especially, we formulate the procedure of model based
tracing, in the spirit of Al-Kofahi et al. (2002) but by
realizing it with a formal tube model, improve per-
formance significantly. A general framework of tree-
like morphology reconstruction from the resulting fiber
segments is also proposed. Based on the framework,
we have developed an automated pipeline to produce a
final reconstruction from a raw or preprocessed image.
The method was tested on the DIADEM data sets
(Brown et al. 2011). The main purpose of this paper
is to describe the method that brought us to the DIA-
DEM final, so we do not formally evaluate it against
the many algorithmic ideas that have been explored
previously.

Methods

Model-based Neurite Fiber Tracing in 3D

The shape of a neurite fiber can be approximated as a
series of circular cross sections along a continuous curve
(Fig. 1) that are deformed to an ellipse along the axial
direction by the anisotropy of the point spread function
(PSF) of the microscope. More formally, its surface
N(t, u) for parameters t, u ∈ [0, 1] can be defined as:

N(t, u) = C(t) + O(u, t)R(t)A (1)

where C(t) = ( x(t), y(t), z(t) ) is a continuous and
differentiable curve, O(u, t) = (r(t) cos 2πu, r(t) sin
2πu, 0) is a circle of radius r(t) in the z = 0 plane,

R(t) =

⎛
⎜⎜⎝

ry × rz

ry = k × rz

rz = �C(t)
‖�C(t)‖

⎞
⎟⎟⎠
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Fig. 1 Neurite model and
example. a is a cartoon to
show that the model is
composed of a set of cross
sections along a principle axis.
b–e are neurites from the real
images of the 4 DIADEM
datasets. b, c are examples of
darkfield microscopy and
d, e are examples of
brightfield microscopy. Refer
to the “Results” section for
more details about the
imaging conditions
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is a fixed matrix at each value of t that maps the circle
from the z = 0 plane into a plane perpendicular to the
tangent of the curve C,1 and

A =
⎛
⎝

1 0 0
0 1 0
0 0 a(t)

⎞
⎠

stretches or squeezes the z-dimension by the parameter
a(t) > 0 reflecting the asymmetry of the PSF and the
sampling rate.

When a neurite is smooth enough, which is often
true in real data, we can approximate a neurite segment
as a discrete series of elliptical cylinders. So one way
to reliably detect if a point (x, y, z) is on the neurite’s
principle axis C(t), is to see if there is a good fit between

1The product for ry can give a singular 0-vector when rz = k. In
this case, its value is the limit of the expression as the singularity
is reached.

the signal and a cylindrical model centered at (x, y, z)

of fixed height h reflecting the “mesh size” of the
proposed series. Such an elliptic cylinder has four free
parameters: its radius r, two Euler angles φ and ψ that
orient it along a vector in space, and the anisotropy
calibration a in the axial direction. This also defines a
deformable model of a canonical cylinder, which has
unit radius and orientation parallel to the axial or z-
axis. Therefore designing a more reasonable filter-like
structure for the canonical cylinder will allow us to esti-
mate the parameters more efficiently and accurately.

A 3D Cylinder Filter

To evaluate the fit of a cylinder model to the data, we
derived a 3D filter for a cylinder, which we also call
a template. The fitting score between the model and
the data is defined as the the correlation between the
intensity data and the template. Due to its averaging
effect, this simple defintion can effectively suppress
the disturbance of imaging noise or artifcacts, even
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if our modeling procedure does not consider imaging
noise or artifcacts explcitly. Our template is designed
for darkfield images, where signal is brighter than
background. One can simply invert the template for
brightfield images.

In cross-section, a neurite fiber looks like a Gaussian-
diffused spot possibly scaled along the axial direction,
so we use an elliptical Mexican Hat filter (Laplacian
of a Gaussian) to convolve with the signal along the
symmetric axis of the cylinder. The choice of using
a Mexican Hat filter is similar to the one in Schmitt
et al. (2004), except that the shape of our filter can be
elliptical. So our canonical unit vector is given by:

U(x, y, z) = (
1 − (

x2 + y2
))

e−(x2+y2) (2)

where z ∈ [−h/2, h/2]. To obtain the space of all pos-
sible cylinder templates, one can scale U in x and y by
radius r, then rotate it in any manner desired, and final
scale it along z (making it elliptical) by factor a.

Of course, the support of the filter must be finite
not only for computational purposes, but also because,
while the model demands that background surround
(most) of the neurite fiber, making this zone too large
means that fibers passing very near by will disrupt
the fit of the filter. So for a given filter instance, re-
gardless of a and r, we limit the support of the filter
to τ pixels beyond the zero-crossing of the Mexican
Hat. The second consideration, is that for very thick
neurons, their intensity profile often has a flattened
top due to saturation of the signal in the center (e.g.
Fig. 2). For such a profile a slight deformation of the
template induces little or no change in score, so we
empirically found that regularizing the template family
by multiplying the positive part of the Mexican Hat by
(ar2)1/4 solves the problem.

As long as the neurite fiber section under considera-
tion is surrounded by background, the filter essentially

gives a large score for any cross section surrounding the
bright region. To rectify this the cross correlation score
of the filter convolved with the signal is normalized
by dividing by the integral of the absolute value of
the filter over its support. In the optimization step to
follow, the r and a parameters are varied along with
the orientation angles at a specified center point in
space to those for which the template yields the largest
normalized score when convolved with the signal.

Note that h and τ are the two parameters that need
to be chosen prior to running our method for any partic-
ular image acquisition conditions and they are primarily
a function of pixel size. For example, for most images
at 40X h = 10 and τ = 2 suffice. In our experience the
method is robust to these parameter choices and they
remain fixed for any set of images acquired with the
same microscope and imaging protocol.

Tracing a Neurite Fiber

One could use a greedy search to optimize the four
free parameters (two orientation parameters and two
scale parameters) of the template when it is placed at
a given point in space. But this is less appropriate for
such a large number of parameters because search time
increases exponentially in the number of parameters.
If the score function is smooth and has a single peak,
gradient descent is certainly preferred. Fortunately, our
scoring function does have this property in a fairly large
zone of the parameter space around the true optimum.
Moreover, the symmetry of the function makes it well
fit by a quadratic function within this zone, so as long
as the template is placed in a reasonable initial po-
sition (which could for example be determined by a
coarse discrete sampling of the parameter space), one
can use the conjugate gradient descent method, which
has been shown to be the best for optimizing general

Fig. 2 Example of a thick
neuron cross-section where
the intensity profile is
flattened in the center. a is
the actual image cross
section. b is a plot of the
intensity profile of the cross
section in a
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quadratic functions. In our implementation, we used
the Polak–Ribière conjugate gradient descent method
(Wright and Nocedal 2006). Results showed that it is
significantly better than steepest gradient descent (e.g.
Fig. 3).

There is no closed form expression for calculating
the gradients because of the lack of a closed form
describing the image. So numerical estimation is nec-
essary, and as per standard practice we use the approx-
imation (S(u + �u) − S(u − �u))/(2�u) for the partial
derivative ∂S/∂u of a variable u.

After fitting a cylinder at a given position, we have
only modeled a small section of the target neurite fiber.
To cover the whole neurite, we use a strategy similar to
the one introduced in Al-Kofahi et al. (2002) to traverse
the entire fiber in mesh steps of size h/2. Once we
have fitted a cylinder ci, we then place a cylinder ci+1

with its center at one end of ci’s symmetric axis in the
same orientation and of the same cross-section shape,
and then optimize the orientation and shape of ci+1

from this starting position. In this way, given an initial
cylinder c0, one can walk in both direction to traverse
a fiber. The pseudo-code for tracing in one direction is
simply as follows.
i ← 0
repeat

ci+1 ← Axial translation of ci by h/2 pixels
Optimize ci+1

i ← i + 1
until ci has a score below the threshold or ci hits a

previously traced region

In the next subsection, we discuss how to arrive at a
set of seed cylinders c0 for an entire image.
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Fig. 3 Conjugate gradient descent reaches the optimal score
faster than steepest gradient descent

Tracing All Neurite Fibers

In the previous section we showed how to trace a
neurite fiber given an initial filter fit c0. To find a
set of initial filters, one for each fiber, we developed
a seed detection method to locate all locations and
approximate orientations of points on the curve of a
neurite based on two image features. The first feature is
pixel intensity: when a pixel is brighter it is more likely
on a neurite. The second feature is local geometry. We
prefer a seed to be on a line structure. This can be
measured by examining the eigenvalues of a Hessian
matrix (Sato et al. 1998) computed at a point, typically
at a number of scales. But the calculation of a Hessian
matrix is expensive in both time and space, so we only
do the calculation once at the smallest scale (3 × 3 × 3),
and assume that thick fibers are bright enough that they
will be picked up by the intensity feature. For each of
these two features a threshold is computed with the
triangle method over the histogram of the local maxima
of feature scores at all pixels. Any pixel that has either
of its two features above threshold is considered to be
an on pixel in a binarization of the image that roughly
covers all the neurites or at least a portion of every
neurite fiber.

Since we want to place our initial filter fits c0 at the
center of a neurite, we consider as possible seed loca-
tions those points that are local maxima of the distance
map of the binary image. Obviously, many possible
seeds can be reported for a given neurite fiber whereas
only one is needed. So we optimize the fit of a cylinder
template at every possible seed. The optimization at
each point is initialized with the best-scoring τ -pixel
circular cylinder over a fixed set of orientation sampling
the space of all possible orientations. We then sort the
seeds in the order of their optimized model scores for
c0. We start with the best seed and trace its neurite
fiber, removing from consideration any seeds that are
covered by the tracing. We then pick the next best
remaining seed and trace it, and continue greedily in
this fashion until all the seeds are exhausted. In this way
we build a model of (almost) every neurite fiber in the
image. The caveats are that if the signal is sufficiently
dim in parts then the fiber may not be spanned leading
to the occasional broken fiber, and in some cases the
tracing moves directly through a branch point, but this
is benign in that it is technically the fusion of two fibers
that should ultimately be fused anyway.

Reconstruction of Neuronal Morphology

Once the set of individual neurite fibers or fragmentary
trace have been obtained for an image, they can then
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be assembled to form a neuronal tree structure. There
are typically many ways to join them together, but by
prohibiting the formation of cycles during the assembly
process we guarantee that the final structure is a tree.
This can be formulated as a graph problem.

Suppose we have a set of neurite fibers, {Nk}N
k=1. The

goal is to determine how they are connected. We first
create a neurite graph, in wich each node is a neurite
and each edge indicates a possible connection between
two neurites. In contrast to a usual graph, a node in a
neurite graph has three parts, two ends and a body. So
an edge between two nodes in this undirected graph
must also specify at each node whether it connects
to an end or the body. The connection pattern of an
edge can be either end-to-end or end-to-body (Fig. 4),
but never body-to-body. Moreover, only one edge is
allowed between two neurites. Our problem, in the
framework of this graph, is to find a minimum weight
spanning tree in the case one neuron is under view and

all the Nk are true positives. The whole procedure is
illustrated in Fig. 5. In our method, we do not consider
the connection between a pair of neurites that are too
far away from each other. The distance threshold is set
to 20 pixels, which is twice as long as the height of
the cylinder templates. Any two neurites that have a
distance larger than the threshold are supposed to be
from different neurons.

So the design issue is how to assign a cost to each
possible edge, which will join fibers if selected to be in
the result. The cost must be such that the smaller the
value the more desirable the edge for inclusion. One of
the simplest schemes for the cost of connecting Ni to
N j is the distance between the center of the end of Ni

and the center of the end of N j in the case of an end-
to-end edge, and the distance of the center of the end
of Ni to the nearest point on the surface of the body of
N j in the case of an end-to-body edge. This definition
is quite natural because two fibers tend to be close

Fig. 4 Graph of neurites. A
neurite is modeled as a 3-part
node a, which can form
end-to-end connection b or
end-to-body connection c
with another node. Real
examples of end-to-end
connection and end-to-body
connection are shown in d
and e respectively. Colors
indicate different neurites
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Fig. 5 Flowchart of the tree reconstruction procedure

to each other when they join to form a branch point
in the image. However, when such gaps start being as
large as the nearest fiber to one of the fibers under
consideration, a wrong choice can be made. This does
happen with some low frequency. For example, there
was one such occurrence for a traced neuron which has
about 40 branches. So other cues must be considered.

One such strong cue to tell if two tubes are truly con-
nected is the strength of the image signal between them.
If we can find a path from one neurite fiber end or body
to the other endpoint along a path of bright pixels, then
it is highly likely that the two tubes connect to each

other. Therefore we added another measurement, the
geodesic distance, as an option. The geodesic distance
between two points x0 and x1 is defined as

geog(x0, x1) = min
c∈{all possible paths}

∫
c

g[I(c(t))] ||dc(t)|| (3)

where c(0) = x0, c(1) = x1, ||dc(t)|| =√
dc2

x(t) + dc2
y(t) + dc2

z(t) is the differential of the

arc length of c(t), and I(x) is the image intensity at x.
The function g defines how image intensity contributes
to the geodesic distance. In our study, we expect the
shortest path c, to be on the foreground. This can be
expressed by a sigmoid function

g(x) = 1

1 + e
x−α
β

(4)

where α and β are selected to reflect the separability
between the foreground and background and we do not
have to set them arbitrarily. For example, we can take
the signal inside a tube as foreground and those around
the tube as background and calculate their average
values, which are denoted as c f and cb , respectively.
If we want g(c f ) = 0.99 and g(cb ) = 0.01, it is easy to
solve for α and β yielding α = c f +cb

2 and β = c f −cb

2ln(99)
.

A neurite graph becomes a typical weighted undi-
rected graph if we ignore the internal structure of
its nodes and the connection pattern of its edges. In
some sense, the minimal spanning tree of this graph
maximizes the likelihood of being the appropriate tree
reconstruction if the cost function on edges properly

X

Y

Z

Fig. 6 An example of crossover from real data. The top image
and the bottom image are showing the same two neurites pro-
jected onto X-Y plane and X-Z plane respectively. The color lines
indicate how the two neurites cross
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Fig. 7 Crossover a in a
neurite graph b. The solution
c, d gives the minimal sum of
the angles between matched
neurites. The red and green
lines in c and d show how the
neurites are merged after
matching
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reflects the likelihood that two neurites involved have a
direct connection. Unfortunately there is the case that
when two neuron fibers cross each other very closely,
even the quite reasonable geodesic cost function fails
to meet this criterion.

When one fiber passes another very closely, espe-
cially in the axial z-dimension where resolution is lower
with most microscopes, their signal may overlap to the
extent that the geodesic cost function (falsely) indicates
that they should be joined (Fig. 6). In other words,
the overlap pattern cannot be identified by the MST
algorithm. We call such a pattern a crossover, and it
must be distinguished from the real fusions that need
to occur at branch points in a neuron. In the neurite
graph, a crossover has one of two special signatures
depending on whether the fiber tracing passes through
the crossover region or not. If the tracing does not pass,
the pattern will be pairwise end-to-end connections
among four or more nodes (Fig. 7). Otherwise, the
pattern will be the connections from the ends of two or
more neurites to the body of another neurite (imagine
fibers 1 and 3 are already joined into a single fiber in
Fig. 7). For the latter case, the problem is compounded
as the local tracing that went through the crossover
region may have “jumped tracks” to another fiber. So
conservatively, we break any fibers that pass through
the connection region. This has the further advantage
of reducing the problem to the first case where all
possible connections are end-to-end.

Crossover cannot be solved directly with minimum
spanning tree as it will tend to just join all the fibers
together (in the case that multiple neurons are present),
or join fibers depending on the signal strength between
them which is not a good indicator of which fiber should
be joined with which. A better indicator is the angle
between two neurite end vectors: if there is no or little
change in direction as one goes from one fiber to the
next, then it is likely that the two fibers should be
joined. So for the fibers that end at the crossover region
we find the best set of pairings based on minimizing the
total of the join angles using the Hungarian algorithm.
These neurites are then fused. The cross-over process
takes place prior to the greedy minimum spanning tree
algorithm (MST).

Results

We tested the algorithm on 4 of the 5 data sets2 from
the Digital Reconstruction of Axonal and Dentritic

2The excluded dataset, Neuromuscular Projectio Fibers, contains
neurons that have irregular surfaces and uneven internal stain-
ings. Therefore we used a model-free region growing method to
process the dataset instead.
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Table 1 Summary of the datasets

Dataset CF HC NL OP

Species Rat Rat Mouse Drosophila
Nervous system Cerebellar cortex Hippocampus CA3 Peripheral Olfactory bulb
Fiber type Axon terminals Dendrites and axons Axons Axons
Microscopy Transmitted light brightfield Transmitted light brightfield 2-photon microscopy Confocal microscopy
Voxel size 1 × 1 × 8.8 μm 0.217 × 0.217 × 0.33 μm 0.294 × 0.294 × 1 μm 0.33 × 0.33 × 1 μm

Fig. 8 The tracing result
(green) of an CF image stack
overlaps with a slice of the
original stack. The result is
translated a little from its
original position for better
view

Fig. 9 The tracing result
(red) of an HC image stack
overlaps with a slice of the
original stack. The result is
translated a little from its
original position for better
view
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Fig. 10 The tracing result
(colored) of an NL image
stack overlaps with the
volume rendering of the
original stack. The result is
translated a little from its
original position for better
view. Note that there is plenty
of signal that has no
corresponding neuronal
structure. This is because the
structures are excluded from
the specified neuron set,
despite that the tracing did
not miss them

Morphology (DIADEM) competition (http://www.
diademchallenge.org). Named after the stained neu-
ron types, the 4 datasets are CF (Cerebellar Climbing
Fibers) (Sugihara et al. 1999), HC (Hippocampal CA3
Interneuron) (Calixto et al. 2008), NL (Neocortical

Layer6 Axons) (De Paola et al. 2006) and OP (Olfac-
tory Projection Fibers) (Jefferis et al. 2007). The imag-
ing protocol for each dataset is listed briefly in Table 1.
The images of the datasets CF and HC are from bright-
field microscopy and some special preprocessing steps,

Fig. 11 The tracing result
(red) of an OP image stack
overlaps with the volume
rendering of the original
stack. The result is translated
a little from its original
position for better view

http://www.diademchallenge.org
http://www.diademchallenge.org
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Fig. 12 An OP image stack was contaminated by different levels of Gaussian noise: a σ = 20, b σ = 40, c σ = 60, d σ = 80, e σ = 100

to be described, are necessary before applying model
fitting on them. For the NL dataset, an image contains
multiple neurons. Given the coordinates of a point on
each neuron, we built a single tree first and then cut
the edges with largest connection cost to get multiple
trees. Also the crossover prior described in the previous
section was applied to the NL data only. The final
results on all 4 datasets are illustrated in Fig. 8 (CF),
Fig. 9 (HC), Fig. 10 (NL), Fig. 11 (OP).

Testing for Robustness to Noise We also tested our
method on different noise levels to show its strength.
The testing images were created by adding Gaussian
noise to the OP image stack (Fig. 11). We used five
noise levels, measured by the standard deviation of
the noise distribution: σ = 20, σ = 40, σ = 60, σ = 80,
σ = 100 where values in the image range from 0 to
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Fig. 13 The tracing results on different noise levels generated
by our method (solid line) are compared to the results obtained
from NeuroStudio (dash-dot line). It shows that our result is much
more robust to the noise

255. The neuron becomes less visible when σ is larger
(Fig. 12), making tracing progressively more difficult.
To quantitatively evaluate how robust our method is
to noise, we calculated the scores of tracing quality us-
ing the DIADEM metric (http://www.diademchallenge.
org/metric.html). The results were also compared with
those obtained from the free software NeuroStudio
(Wearne et al. 2005), which was developed based on
the Rayburst Sampling tracing algorithm. As shown in
Fig. 13, our method produced reasonable result (score
= 0.866) even when the noise level is at 100. In contrast,
NeuroStudio’s performance degrades rapidly reaching
a score of 0 when the noise is at 80. Moreover, our
method outperformed NeuroStudio significantly for all
the noise levels, including the case where there is no
noise.

Preprocessing for the CF Dataset In the CF images
neurons are brown and nuclei are blue. In some ar-
eas they overlap due to the nature of the bright-field
point spread function which does not optically section
in z. This overlap can not be resolved by extracting
a certain color component as in some regions light
from both objects is present. We solved the problem
based on a color mixing model. In this model, there is
an average (bright) background B and there are two
different materials, m1 and m2, in the imaging field
and each material absorbs light of a certain color, c1

and c2, respectively. At any voxel x, the total observed
intensity I(x) is:

I(x) = B − [c1, c2] ·
[

p1(x)

p2(x)

]
(5)

where pi(x) denotes the absorption contribution from
material mi. We estimate B as the average intensity
of each frame which is a good estimate as the back-
ground occupies most of each frame. c1 and c2 are cal-
culated reliably by taking the average values of the two

http://www.diademchallenge.org/metric.html
http://www.diademchallenge.org/metric.html
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Fig. 14 The color component
corresponding to neurons b is
extracted from an image of
the CF dataset a

ba

separable peaks in the color histogram of B − I. Once
we have these three values, we compute the amount of
each material at each voxel by solving Eq. 5 by linear
regression. The result is shown in Fig. 14.

Preprocessing for the HC Dataset Much of the pre-
processing required for this dataset was due to either
poor microscopy or poor stitching of the multiple 3D
stacks that made up each data set. In particular, the
z-planes of a given tile were offset with respect to
each other and the luminence of each plane varied
significantly. We do not know how these artifacts were
introduced, but we perforce had to correct them.

First the images were converted to gray-scale for the
neuron intensity using the color model scheme used
for CF, save that here matters were particular easy as
there was only one material. Next the motion artifacts
were corrected by splitting the full volume into a se-
ries of subvolumes corresponding to the lateral tiling
used to originally acquire the data. Each subvolume

was then processed independently. For each pair of
successive z-planes, a lateral translation was estimated
as that maximizing the correlation between each edge-
enhanced representations of the respective planes.
Edge enhanced images were computed by filtering with
a difference-of-boxes filter (box sizes 5 and 15 pixels)
followed by masking with the original data binarized
according to the Ostu threshold. Linear interpolation
was used to align images according to the estimated
translation. Border regions were filled by clamping to
the edges. After motion correction, the volume was me-
dian filtered along z (window size 1 × 1 × 13) in order
to correct for intensity fluctuations between planes. The
window size was chosen to approximate the observed
extent of a single neurite image along the z direction.
Finally, the vertical blur from strongly labeled objects,
such as the cell soma, added an approximate constant
signal to all planes above and below the object. To
remove this signal, we estimated it as the median plane
along z and subtracted that from each plane clamping

Fig. 15 Preprocessing result
for the HC dataset: a Original
image; b Processed image

ba
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negative values to zero. An example of processing re-
sult is shown in Fig. 15.

Discussion

There have been numerous articles on methods for
the automated reconstruction of neuronal morphology.
However, the quest for better, more powerful recon-
struction algorithms remains. Existing methods fall into
the two main classes of local tracing and global skele-
tonization. Both paradigms have proved to be useful,
but we feel their potential has not been fully explored.
In this paper, we refined a local tracing approach
by designing a more sophisticated template for which
we carefully optimize its orientation and positioning
as the tracing progresses. Combining it with a novel
neurite fiber graph model, we have developed a ro-
bust neuron reconstruction method. The method works
on various types of images with few modifications.
Even though the method was originally designed for
darkfield images, it generates reliable results for pre-
processed brightfield images as well.

We proposed a geometrical model to formulate the
shape of a neurite fiber. From the model, we derived
a tracing algorithm based on deformable templates.
We also found that the template parameters can be
estimated efficiently by conjugate gradient descent. As
a result the method can deal with neurites with various
sizes and produce accurate measurement of the surface
of a neuron.

One main advantage of our model-based approach
is its robustness to noise. This is due to the intrinsic
averaging effect of the score calculation. So it does
not need an additional noise reduction method to get
acceptable results. This is especially well-suited for
interactive tracing, which allows a user to extract a
neurite with one click on raw data.

We have also defined a special graph model to derive
algorithms for finding the most likely tree structure
given a set of neurite fibers. The graph model is flexible
and allowed us to add useful priors. For example, we
have shown that adding a prior for crossover patterns
can improve the reconstruction results of the NL data
set dramatically.

The positive feature of our template model is that
given sufficient support h it clearly distinguishes neurite
from non-neurite artifacts. That is it has a low false
positive rate of identification (an example is shown in
Fig. 16). The problem is that it does not detect short fea-
tures that are at fewer than h pixels in size such as short
side branches, or sometimes it will erroneously fit the
model over a small break that actually separates two

Fig. 16 Our method can avoid tracing blobs (marked by green
arrows) that are as bright as some neurites

fibers. To further improve the method, its limitation in
these circumstances must be addressed (Fig. 17) and we
suggest approaches as follows:

Dense Branches When many branches are present in
a small region, such as the end of an axonal projection,
the fitting template may jump from one branch tip to
another or fail to fit on a short segment between two
branch points. Both mistakes will result in topological
errors. The first type of mistake is hard to fix because of
the loop structures formed in the image due to the lim-
ited resolution. We may have to correct them manually
or add topological constraints for reconstruction. The
second one may be less a problem because it is easier
to detect the missing signal than to correct an over-
fitting. Once we find a bright region not being included
in the reconstruction, we can extract it and estimate the
orientation and size by principle component analysis if
the cylinder model does not fit.

Broken Branch Signal Although a neurite is contin-
uous, we may only see a sequence of isolated bright
dots when it is imaged. This can be caused by uneven
staining or uneven distribution of GFP particles and is
generally indicative of poor sample preparation. Our
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Fig. 17 Scenarios causing
problems for our tracing
method: a The two branch
tips are so close that the
tracing jumps from one to the
other; b The cylinder model
may fail to fit on a short
branch between two close
branch points; c Two
examples of broken neurite
signal on which the tracing
will stop too early at any
seeding point

ba

c

tube model will generally fail on data of this quality
because the assumption of continuity is no longer valid.
One could treat this as a special case and use a different
tracing method, such as the one proposed in Peng et al.
(2010a) to attempt to span such dark zones.

Information Sharing Statement

All codes for our neuron tracing pipeline are available
in open source and can be found on the DIADEM
website (http://diademchallenge.org).
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