The Human AC133 Hematopoietic Stem Cell Antigen Is also Expressed in Epithelial Cells and Targeted to Plasma Membrane Protrusions*

Denis Corbeil, a,b,c Katja Röper, a,b,d Andrea Hellwig, a Manuela Taviani, e Sheri Miraglia, f Suzanne M. Watt, e,h Paul J. Simmons, i,j Bruno Peault, * David W. Buck, f and Wieland B. Huttner a,h

From the a Department of Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, and the Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 110, D-01307 Dresden, Germany,
b d’Embryologie, CNRS Unité Propre de Recherche 9064, Nogent-sur-Marne, France, and INSERM U506, Villejuif, France,
c AmCell Corp, Sunnyvale, California 94089, d Medical Research Council Molecular Haematology Unit, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom, and the e Hanson Center for Cancer Research, Adelaide, Australia 5000

The human AC133 antigen and mouse prominin are structurally related plasma membrane proteins. However, their tissue distribution is distinct, with the AC133 antigen being found on hematopoietic stem and progenitor cells and prominin on various epithelial cells. To determine whether the human AC133 antigen and mouse prominin are orthologues or distinct members of a protein family, we examined the human epithelial cell line Caco-2 for the possible expression of the AC133 antigen. By both immunofluorescence and immunoprecipitation, the AC133 antigen was found to be expressed on the surface of Caco-2 cells. Interestingly, immunoreactivity for the AC133 antigen, but not its mRNA level, was down-regulated upon differentiation of Caco-2 cells. The AC133 antigen was specifically located at the apical rather than basolateral plasma membrane. An apical localization of the AC133 antigen was also observed in various human embryonic epithelia including the neural tube, gut, and kidney. Electron microscopy revealed that, within the apical plasma membrane of Caco-2 cells, the AC133 antigen was confined to microvilli and absent from the planar, intermicrovillar regions. This specific subcellular localization did not depend on an epithelial phenotype, because the AC133 antigen on hematopoietic stem cells, as well as that ectopically expressed in fibroblasts, was selectively found in plasma membrane protrusions. Hence, the human AC133 antigen shows the features characteristic of mouse prominin in epithelial and transfected non-epithelial cells, i.e. a selective association with apical microvilli and plasma membrane protrusions, respectively. Conversely, flow cytometry of murine CD34+ bone marrow progenitors revealed the cell surface expression of prominin. Taken together, the data strongly suggest that the AC133 antigen is the human orthologue of prominin.

A characteristic feature of epithelial cells, which is a prerequisite for their function, is the selective association of certain proteins with specific subdomains of the plasma membrane (1–3). An example is the recently identified protein prominin, a 115-kDa five transmembrane domain protein found to be expressed on the apical surface of neuroepithelial cells and several other embryonic epithelia and on brush border membranes of adult kidney proximal tubules (4). Within the apical plasma membrane domain, prominin is selectively associated with microvilli and other related plasma membrane protrusions rather than the planar subdomain of the membrane. Studies with prominin-transfected Madin-Darby canine kidney cells have shown that this selective association is due to a combination of apical sorting and retention in microvilli (5). Remarkably, a plasma membrane protrusion-specific localization of prominin was also observed in prominin-transfected non-epithelial cells (i.e. CHO cells),1 showing that the mechanism underlying the selective association of membrane proteins with plasmalemmal protrusions is conserved between epithelial and non-epithelial cells (4).

These studies were conducted with prominin derived from one species, the mouse. In independent studies, a novel marker of human hematopoietic stem and progenitor cells was identified, characterized, and referred to as AC133 antigen (6, 7). The human AC133 antigen appears to be related to mouse prominin in size (120 kDa), membrane topology (five transmembrane domains, two large extracellular loops), and sequence (8, 9).

However, the tissue distribution reported for the human AC133 antigen (6, 7) is remarkably distinct from that reported for mouse prominin (4). In contrast to the epithelial expression of prominin (4), the AC133 antigen was found to be selectively expressed on human CD34+ bright progenitors derived from bone marrow, fetal liver, and peripheral blood (6) and on subsets of CD34+ leukemia cells, i.e. non-epithelial cells, but not in epithelial tissues such as colon and kidney (7). Moreover, the sequence identity between mouse prominin and the human

* The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
† Joint first authors.
‡ Recipient of a fellowship from the Max-Planck-Society.
§ Supported by the Studienstiftung des Deutschen Volkes.
¶ Supported by the Medical Research Council, UK, the Leukemia Research Fund, UK, and EU Biotech and INTAS/RFBR grants.
‖ Supported by the National Health and Medical Research Council (NHMRC) of Australia.
¶¶ Supported by Grants SFB 317, D2 and SFB 352, C1 from the Deutsche Forschungsgemeinschaft, the German-Israeli Foundation for Scientific Research and Development, and the Fonds der Chemischen Industrie. To whom reprint requests and correspondence should be addressed: Dept. of Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany. Tel.: 49-6221-54218; Fax: 49-6221-546700; E-mail: whuttner@sun0.urz.uni-heidelberg.de.

1 The abbreviations used are: CHO, Chinese hamster ovary; BMNC, bone marrow mononuclear cells; HBSS, Hanks’ balanced salt solution; PE, phycoerythrin; sulfo-NHS-LC-biotin, sulfosuccinimidyl-6-(biotinamido)-hexanoate biotinylating agent; PBS, phosphate-buffered saline; mAb, monoclonal antibody.

This paper is available on line at http://www.jbc.org
AC133 antigen is relatively low (average 60%), in particular in the three extracellular domains (54%), which comprise more than 70% of the polypeptide.

This raises a major question. Is the AC133 antigen the human orthologue of prominin? If so, an explanation would be required as to why the AC133 antigen is apparently not expressed in epithelial tissues such as adult kidney (7), which in the case of mouse does express prominin (4), although mRNA for the AC133 antigen is well detectable (7). In addition, one would then expect the AC133 antigen to be selectively associated with plasma membrane protrusion upon expression in fibroblasts, as previously observed in the case of prominin (4). Conversely, prominin should then be expressed also in murine hematopoietic progenitor cells.

Or, alternatively, are prominin and the AC133 antigen distinct members of a protein family? In the support of this possibility is the occurrence of at least three open reading frames in the C. elegans genome related to mouse prominin. However, the three extracellular domains (54%), which comprise more than 70% of the polypeptide, are associated with plasma membrane evaginations at the base of the rod outer segment that are intermediates in disc formation. If the AC133 antigen was the human orthologue of prominin rather than a distinct member of the prominin family, this would suggest that the lack of appearance of this protein in the plasma membrane evaginations of the rod outer segment may lead to impaired disc formation and, eventually, to retinal degeneration.

Here we report several lines of evidence strongly suggesting that the AC133 antigen is the human orthologue of prominin. The evidence includes the expression of the AC133 antigen in certain human epithelial cells. This apparent contradiction of previous observations (6, 7) is very likely explained by our finding that the epitope recognized by monoclonal antibody AC133, which is thought to be a glycosylated structure (7), is down-regulated upon differentiation of epithelial cells.

EXPERIMENTAL PROCEDURES

Cell Culture and Transfection—Caco-2 cells (kindly donated by Drs. S. Robine and D. Louvard, CNRS-Institut Curie, Paris, France) were maintained in Dulbecco’s minimal essential medium supplemented with 10% fetal calf serum, 1% non-essential amino acids (Life Technologies, Inc.), 2 mM l-glutamine, 100 units/ml penicillin, and 100 μg/ml streptomycin and were cultured in a humidified incubator at 37 °C under 10% CO₂ atmosphere. Cultures were used between passages 8 and 18. CHO cells were cultured in Ham's F-12 medium supplemented with 10% fetal calf serum and 50 μg/ml gentamycin at 37 °C under 5% CO₂. For experiments studying polarized cell surface delivery, Caco-2 cells were plated at a density of 4.5 × 10⁴ cells/cm² on permeable membranes (24-mm Transwell™.COIL chambers, 0.4-μm pore size). Media were changed every day, and the experiments were performed 11 days after seeding to allow the development of a tight monolayer.

**CHO cells were transfected with the pCR3.1-Uni plasmid containing the AC133 antigen-coding cDNA sequence under the control of the cytomegalovirus promoter (7), using the LipofectAMINE reagent (Life Technologies, Inc.) according to the supplier's instructions. Cells expressing the neomycin resistance gene were then selected by introducing 600 μg/ml of G418 into the incubation medium. Two weeks later, G418-resistant colonies were picked and expanded. To enhance the expression of the transgene, cells were incubated for 17 h with 10 mM sodium butyrate (11). All subsequent steps were performed in medium lacking butyrate. Under these conditions 10–30% of neomycin-resistant cells expressed the recombinant AC133 antigen.

Isolation of Human and Mouse Hematopoietic Cells From Bone Marrow—Human bone marrow was aspirated into preservative-free hepala-
Expression of AC133 Antigen in Epithelial Cells

From the posterior iliac crest of normal adult volunteers according to procedures approved by the ethics committee of the Royal Adelaide Hospital. Bone marrow mononuclear cells (BMNC) were obtained following separation over Ficoll (Lymphoprep, Nygaard) and washed twice at 4 °C in HHF (balanced salt solution (HBSS) supplemented with 5% fetal calf serum). CD34+ cells were isolated from BMNC suspensions by means of immunomagnetic beads (Dynal Pty. Ltd). Briefly, BMNC were pelleted by centrifugation, and the pellet was suspended in 100 μl of CD34 Dynabeads to give a final cell:bead ratio of 4:1. After gentle vortexing for 2 min, the cells were resuspended in 4 ml of HHF and exposed to a rotator for a further 30 min at 4 °C to ensure complete capture of CD34+ cells. Bead-rosetted CD34+ cells were isolated and purified by five sequential rounds of washing with HHF followed by capture on a magnet. The CD34 antibody-coated beads were released from the CD34+ cells by the addition of 200 μl of the CD34 Detachabead reagent (supplied with the kit) followed by incubation in a shaking waterbath for 45 min at 37 °C. After removal of the detached beads using the magnet, the cells were washed three times in HHF, and the aliquots were analyzed for purity using HPCA-2-PE (Becton Dickinson) and for expression of AC133 antigen using AC133-PE conjugates (Amcyl). In all experiments, the purity of the CD34+ cell preparations obtained in this manner was >98%.

Mouse bone marrow cells were obtained from 8–10-week-old BALB/c mice by flushing dissected femurs, using a flushing with 27G needle, with Hank’s balanced salt solution supplemented with 0.5% bovine serum albumin (Sigma). Red blood cells were lysed by a 5-min incubation with red cell lysing buffer (Sigma), and BMNC were isolated on a Histopaque 1077 gradient (Sigma). Interface cells were harvested and washed twice with HBSS/bovine serum albumin at 4 °C and adjusted to a concentration of 2 × 10^6/ml prior to staining for flow cytometric analysis.

Flow Cytometric Analysis—Antibodies were purified from murine ascites or hollow fiber culture harvests (Cellmax QUAD artificial capillary system, Cellco Inc. Germantown, MD) by protein A affinity chromatography and phycoerythrin (PE) conjugates prepared as described previously (6).

10^6 murine BMNC were stained for 30 min at 4 °C with biotinylated anti-mouse CD34 (RAM 34) and, after washing with HBSS/bovine serum albumin, stained with streptavidin-Cy-Chrome (Pharmingen). Cells were washed twice with HBSS/bovine serum albumin before incubation with 150 ng/test of PE-conjugated 13A4 antibody (anti-mouse prominin). Stained cells were analyzed on a FACScan flow cytometer (BDIS, San Jose, CA) with the scatter gates set on the lymphoid population. 50,000 events were acquired and analyzed using Cell Quest software (BDIS).

Northern Blot Analysis—Total RNA from Caco-2 cells was prepared using the acidic phenol/chloroform phase separation method (12). Northern blot analyses were performed using CLONTECH multiple tissue Northern blot membrane and by resolving 20 μg of total RNA from Caco-2 cells on formaldehyde-agarose gels followed by RNA transfer to a membrane and hybridization with the EcoRI-EcoRI fragment (nucleotides 756–1195) derived from the human AC133 hematopoietic stem cell antigen cDNA (GenBank™ accession number AF027208). The probe was labeled with [α-^32P]dCTP using the Rediprim kit (Amersham Pharmacia Biotech). Hybridization and washing were performed at either 65 °C using Church buffer as described elsewhere (13) or at 68 °C using the ExpressScribe hybridization solution (CLONTECH) according to the manufacturer’s instructions. Blots were analyzed using a Fuji phosphoimager.

Cell Surface Biotinylation and Immunoprecipitation—All steps of cell surface biotinylation and immunoprecipitation were carried out at 4 °C. Just prior to use, the membrane-impermeable sulfo-NHS-LC-biotin was dissolved in Ca/Mg-PBS (PBS containing 1 mM CaCl\(_2\) and 0.5 mM MgCl\(_2\)) to a final concentration of 0.2 mM. After repeated washing (three times) with Ca/Mg-PBS, Caco-2 cells (on 24-mm filters) were diluted 4-fold in immunoprecipitation buffer (1% Triton X-100, 0.1% SDS, 150 mM NaCl, 10 mM EDTA, 50 mM Tris/HCl, pH 7.8, 10 μg/ml aprotinin, 2 μg/ml leupeptin, and 1 mM phenylmethylsulfonyl fluoride), and monoclonal antibody (mAb) AC133 (10 μg/ml) was added. Samples were incubated overnight on an end-over-end shaker. Immune complexes were collected with protein A-Sepharose CL-4B beads (Amersham Pharmacia Biotech), pre-adsorbed with rabbit anti-mouse IgG, and used for deglycosylation, SDS-polyacrylamide gel electrophoresis, and NeutrAvidin blotting (see below).

Endoglycosidase Digestions and NeutrAvidin Blotting—Immune complexes containing the cell surface-biotinylated proteins were eluted from protein A-Sepharose beads using glycosidase buffer (1% Triton X-100, 0.1% SDS, 150 mM NaCl, 10 mM EDTA, 50 mM Tris/HCl, pH 7.8, 10 μg/ml aprotinin, 2 μg/ml leupeptin, 2 μg/ml pepstatin, and 1% Triton X-100, 0.1% SDS, 25 mM EDTA, 1% 2-mercaptoethanol, 50 mM sodium phosphate, pH 7.2) at 95 °C. Eluates were incubated for 6 h at room temperature in the absence or presence of 1 unit PNGase F (Roche Molecular Biochemicals). Proteins were then analyzed by SDS-polyacrylamide gel electrophoresis and transferred to nitrocellulose membranes (Schleicher and Schuell, pore size 0.45 μm) using standard procedures. After transfer, nitrocellulose membranes were incubated for 2 h in PBS containing 5% low fat milk powder and 0.3% Tween 20 and then washed extensively with PBS. Biotinylated proteins were identified with horseradish peroxidase-conjugated NeutrAvidin (Pierce) (diluted in PBS containing 0.1% Tween 20) followed by incubation with the SuperSignal ULTRA chemiluminescent substrate (Pierce).

Immunofluorescence and Confocal Microscopy—Cell surface immu-
nofluorescence was carried out as described previously (5). Cells grown on glass coverslips were washed with Ca/Mg-PBS, first at room temperature and then on ice, and surface-labeled for 30 min at 4 °C by the addition of the mAb AC133 (10 μg/ml) or mAb AC141 (10 μg/ml) or double surface-labeled by an additional incubation for 10 min with fluorescein isothiocyanate-conjugated wheat germ agglutinin (Sigma). Both antibodies and wheat germ agglutinin were diluted in ice-cold immunofluorescence buffer (Ca/Mg-PBS containing 0.2% gelatin). Unbound antibodies or free wheat germ agglutinin were removed by five washes with ice-cold immunofluorescence buffer. Fixative (3% paraformaldehyde (Sigma) in PBS) was added to the cells on ice, and the coverslips were placed at room temperature for 30 min. The fixative was removed by three washes with Ca/Mg-PBS, and the residual formaldehyde was quenched for 30 min with 0.1 M glycine in PBS. Cells were then incubated for 30 min at room temperature with lissamine rhodamine-conjugated goat anti-mouse IgG (H + L) (Dianova). Coverslips were rinsed sequentially with immunofluorescence buffer, PBS, and distilled water and mounted in Mowiol 4.88 (Calbiochem).

In experiments with permeabilized cells, cells grown on glass coverslips were washed with PBS and fixed with 3% paraformaldehyde in PBS for 30 min at room temperature. Coverslips were then rinsed with and incubated for 10 min in PBS containing 50 mM ammonium chloride. Cells were permeabilized and blocked with 0.2% saponin/0.2% gelatin in PBS (blocking solution) for 30 min. Cells were then incubated sequentially with mAb AC133 (10 μg/ml), 1 mg/ml RNase A for 10 min at room temperature (to digest cytoplasmic mRNA), and Cy™2-conjugated goat anti-mouse IgG (H + L) (Dianova), all in blocking solution. Nuclei were labeled with propidium iodide (0.3 μg/ml) during the incubation of secondary antibody. Coverslips were rinsed and mounted as described above. Cells were observed with a Leica TCS® confocal laser scanning microscope. The confocal microscope settings were such that the photomultipliers were within their linear range. The images shown were prepared from the confocal data files using Adobe photoshop software.
Transwell filter-grown Caco-2 cells were surface-biotinylated at 4 °C the apical and basolateral plasma membrane of Caco-2 cells. Either mAb AC133 (AC133) or, as a control, no antibody (−), biotin. Immune precipitates were analyzed by NeutrAvidin blotting. A asterisk 120-kDa AC133 antigen.

Human AC133 gene cultured on collagen-coated 60-mm Petri dishes transfected CHO Cells—Caco-2 cells or CHO cells stably transfected with the human colon, six expressed sequence tags derived from this operates. In the colon and small intestine (Fig. 3), the mRNA expression of AC133 is endogenously expressed in the epithelial cell line Caco-2.

RESULTS

The AC133 Antigen Is Endogenously Expressed in the Human Intestine-derived Epithelial Cell Line Caco-2—Both previously described (6) mouse mAb against the human AC133 hematopoietic stem cell antigen, mAb AC133 (Fig. 1A) and mAb AC141 (Fig. 1B) were found to stain, on cell surface immunofluorescence, Caco-2 cells, a human intestine-derived epithelial cell line (16). The staining showed a punctate pattern, which is characteristic of a microvilli-associated antigen. Caco-2 cells did not show any staining when primary antibodies were omitted (Fig. 1C).

The antigen recognized by mAbs AC133 and AC141 on the surface of Caco-2 cells was characterized. Both mAb AC133 (7) and mAb AC1412 recognize a glycosylated structure. We therefore labeled the surface of Caco-2 cells with the membrane-impermeant sulfo-NHS-LC-biotin and subjected the antigen immunoprecipitated with mAb AC133 to incubation with and without PNGase F, followed by SDS-polyacrylamide gel electrophoresis and blotting with horseradish peroxidase-conjugated NeutrAvidin (Fig. 2A). Without PNGase F treatment, a band with an apparent molecular mass of ∼120 kDa was detected (Fig. 2A, lane 1). Deglycosylation yielded a 95-kDa band (Fig. 2A, lane 2). These apparent molecular masses are those expected for the AC133 antigen (7). The same results were obtained using mAb AC141 instead of mAb AC133 for the immunoprecipitation (data not shown). Furthermore, native and deglycosylated protein immunoprecipitated from Caco-2 cells with mAb AC133 exhibited the same molecular mass as authentic human AC133 antigen obtained from CHO cells transfected with the AC133 antigen cDNA (data not shown).

Northern blot analysis of Caco-2 cell RNA, using an EcoRI fragment derived from the human AC133 antigen cDNA as probe, revealed the presence of a ∼5.0-kilobase mRNA (Fig. 2B), as expected for the AC133 antigen (7). Taken together, the data of Fig. 1 and Fig. 2, A and B, show that the AC133 antigen is endogenously expressed in the epithelial cell line Caco-2.

We examined the presence of the AC133 antigen mRNA in various human tissues. AC133 antigen mRNA was detected in brain, heart, kidney, liver, lung, and placenta, as reported previously (7), as well as in the colon and small intestine (Fig. 2C). Consistent with the presence of AC133 antigen mRNA in the human colon, six expressed sequence tags derived from this source were identified (GenBank™ accession numbers A1469575, A1273443, A1308936, D25789, AA622198, and AA577606). It should be noted that the presence of the AC133
antigen mRNA in adult colon is in contrast to the lack of AC133 immunoreactivity in that tissue (see Table II within Ref. 7).

Polarized Distribution of the AC133 Antigen at the Plasma Membrane of Caco-2 Cells—Consistent with their epithelial origin, Caco-2 cells exhibit an apical-basal polarity with distinct, apical versus basolateral, plasma membrane domains (17, 18). To determine the localization of AC133 antigen with regard to the apical versus basolateral plasma membrane domain of these cells, indirect immunofluorescence using mAb AC133 followed by confocal laser scanning microscopy was performed on Caco-2 cells grown on glass coverslips for 16 days after reaching confluence (Fig. 3). To facilitate the analysis, nuclei were labeled with propidium iodide (red). A series of single optical xy-plane sections from the apical (Fig. 3A) to the basolateral (Fig. 3E) side revealed that AC133 immunostaining (green) was predominantly located at the apical domain. Two single optical xz-plane sections through the AC133 antigen-positive cells shown in panels A–E confirmed the apical localization of the AC133 antigen (Fig. 3, e' and e'').

The staining for the AC133 antigen was not uniform across the entire postconfluent cell monolayer (Fig. 3), in contrast to the observations on subconfluent cultures where almost all cells were stained (Fig. 1A). Approximately 20% of the postconfluent Caco-2 cells showed immunofluorescence staining at the apical membrane (Fig. 3, A–E and Fig. 4, A–C), whereas ~80% of the cells did not show any prominent immunofluorescence staining (Fig. 4, J–L). Mosaic expression of the AC133 antigen in postconfluent Caco-2 cells is reminiscent of that reported for several brush-border hydrolases (19, 20) and transporters (21). The intensity of immunostaining for the AC133 antigen at the apical membrane was variable (compare Fig. 4, A, D, and G). In addition, some Caco-2 cells showed staining for the AC133 antigen also in intracellular compartments (Fig. 4H) and on the lateral domain of the cells (see ring-like staining in Fig. 4E). The latter observation suggested that the AC133 antigen in these cells was located either at the lateral plasma membrane and/or in vesicles closely associated with this membrane.

To quantitate the cell surface distribution of the AC133 antigen in Caco-2 cells, domain-selective cell surface biotinylation was performed. 11-day-old postconfluence Caco-2 cell monolayers grown on Transwell filters were biotinylated with sulfo-NHS-LC-biotin agent on either the apical or basolateral membrane. The AC133 antigen was immunoprecipitated from cell extracts, and cell surface-labeled AC133 antigen was then quantified by probing the immunoprecipitates with horseradish peroxidase-conjugated avidin (Fig. 5A). Biotinylated AC133 antigen was recovered from the apical (Fig. 5A, lane 1) but not basolateral (Fig. 5A, lane 2), plasma membrane. The absence of biotinylated AC133 antigen at the basolateral cell surface suggested that either the lateral staining for the AC133 antigen detected by light microscopy in some cells (Fig. 4E) occurred in an intracellular membrane compartment closely associated with the basolateral membrane, or the amount of AC133 antigen in the lateral plasma membrane was below the level of biochemical detection.

To rule out the possibility that the biotinylation agent did not have access to the basolateral membrane due to steric hindrance, we analyzed the protein composition of the apical and basolateral membranes after domain-selective cell surface biotinylation. Visualization of biotinylated proteins with horseradish peroxidase-conjugated NeutraAvidin revealed that both membrane domains contain a distinct set of cell surface proteins (Fig. 5B, lanes 1 and 2), which indicated that the biotinylation agent reached both the apical and basolateral surface of Caco-2 cells grown on permeable supports. These data also document the integrity of the cell monolayer used in our assays.

Down-regulation of the AC133 Epitope upon Differentiation of Caco-2 Cells—Enterocytic differentiation of Caco-2 cells is a growth-related process, which starts about 7 days after the cells reach confluence (17, 18) and is complete within 20–30 days (20). To further analyze the mosaic expression of the AC133 antigen in Caco-2 cells, we investigated in greater detail its expression pattern in relation to the time cells spent in a subconfluent state. AC133 antigen expression was monitored by indirect cell surface immunofluorescence using either mAb AC133 (Fig. 6A) or mAb AC141 (which gave the same results as mAb AC133 (data not shown)). As mentioned above, virtually all cells in subconfluent culture were labeled (Fig. 6A). After confluence, AC133 immunoreactivity persisted for about a week in 70–80% of the cells (Fig. 6A). Interestingly, upon differentiation of Caco-2 cells, the AC133 immunoreactivity decreased rapidly, and at 15 days...
post-confluence and thereafter only 10–20% of the cells were stained by the mAb AC133 (Fig. 6A).

To determine whether down-regulation of AC133 immunoreactivity is associated with a change in mRNA expression, we examined transcripts by Northern blot analysis on days 3, 17, and 33 post-confluence (Fig. 6B). Remarkably, a small increase, rather than a decrease, in the relative level of the AC133 antigen mRNA over time was detected (Fig. 6B).

Expression of the AC133 Antigen in Human Embryonic Tissues—Prominin immunoreactivity has previously been detected in various murine embryonic epithelia (4). Given that the AC133 antigen is expressed in a human epithelial cell line, Caco-2, we examined the expression of the AC133 antigen in human embryonic epithelia. 32-day-old human embryonic tissues were stained with mAb AC133 (Fig. 7). Interestingly, AC133 immunoreactivity was detected on the apical, but not basolateral, side of the neural tube (Fig. 7A). AC133 immunoreactivity was also observed on the apical side of the mesonephros (Fig. 7B) and gut (Fig. 7C). Hence, the tissue expression of the AC133 antigen in the human embryo is similar to that of prominin in the mouse embryo (4).

The AC133 Antigen Is Associated with Apical Microvilli in Epithelial Cells and with Plasma Membrane Protrusions in Non-epithelial Cells—The remarkable feature of mouse prominin, i.e. its specific localization in microvillar membranes of epithelial cells (4, 5) and related plasma membrane protrusions of non-epithelial cells (4), prompted us to investigate the ultrastructural localization of the AC133 antigen in Caco-2 cells and, upon transfection, in CHO cells (Fig. 8). Immunogold EM revealed that AC133 immunoreactivity was specifically associated with microvilli at the apical surface of Caco-2 cells and lacking from the small intermicrovillar regions of the plasma membrane (Fig. 8, A and B). The preferential localization of the AC133 antigen to plasma membrane protrusions was also observed in AC133-antigen-transfected fibroblasts (Fig. 8, C and D). In this case, gold particles were consistently concentrated on microvilli-like protrusions, whereas the large neighboring planar areas of the plasma membrane were labeled to a much lesser extent, if at all.

The AC133 Antigen Is Enriched in Plasma Membrane Protrusions of Human CD34⁺ Hematopoietic Progenitor Cells—To investigate the ultrastructural localization of the AC133 antigen in hematopoietic progenitor cells, CD34⁺ cells were isolated from human bone marrow, subjected to cell surface immunogold labeling, and analyzed by EM (Fig. 9). Remarkably, cell surface AC133 immunoreactivity was preferentially associated with plasma membrane protrusions (Fig. 9A, arrows), where it appeared to be concentrated at the tip (Fig. 9B). Specifically, about half of the gold particles were associated with protrusions, which however constituted only a minor proportion of the plasma membrane. Control experiments performed with mAb 7E10 (anti-CD34) revealed that the CD34 antigen was randomly distributed over the surface of CD34⁺ cells (Fig. 9C), with a minor fraction (~5%) of the gold particles being associated with protrusions. In contrast, cell surface staining with mAb DREG 56 (anti-CD62L) showed, as anticipated, the preferential association of L-selectin (CD62L) with plasma membrane protrusions (Fig. 9D, arrows), with about half of the gold particles being associated with these structures, as was the case for the AC133 antigen.

Prominin Is Found on Murine Hematopoietic Progenitor Cells—The data presented above show that the human AC133 antigen exhibits the same key features as previously reported for mouse prominin. This in turn raises the possibility that prominin is expressed by murine hematopoietic progenitor cells. To examine this possibility, we analyzed by flow cytometry the expression of prominin in mouse bone marrow CD34⁺ cells (22–24) (Fig. 10). Double cell surface staining of the lymphoid-gated cell population with mAb anti-CD34 and mAb 13A4 (anti-mouse prominin) (4) revealed that 36% (n = 3) of the CD34⁺ cells (which represented 2.85% of nucleated cells in bone marrow) express prominin. This expression level was comparable to that reported for the AC133 antigen in human bone marrow cells (6, 25).

DISCUSSION

The present data indicate that the human AC133 antigen shows a very similar, if not identical, cellular distribution and subcellular localization as previously reported for mouse prominin (4, 5). The human AC133 antigen, previously found in flow cytometry to be restricted to the CD34bright population of progenitors cells from adult and fetal bone marrow, fetal liver, cord, or peripheral blood (6, 25), and to subsets of CD34⁺ leukemias (7), is like prominin (4) expressed in epithelial cells. Conversely, mouse prominin is also expressed on a subset of CD34⁺ progenitors isolated from murine bone marrow, consistent with the expression of the AC133 antigen on human hematopoietic stem cells (6, 25). This finding suggests that prominin could be of use as a marker of murine hematopoietic progenitors, and therefore its value in studies of murine hematopoiesis may be considerable. Further studies will be needed to characterize the specific subpopulation of mouse bone marrow cells expressing prominin.

As previously reported for mouse prominin in epithelial cells (4, 5), the human AC133 antigen is mainly confined to the apical plasma membrane, where it appears to be concentrated in microvilli. This microvillar localization is independent of the epithelial phenotype of the cell, as shown by the ectopic expression of the AC133 antigen in fibroblasts and its physiological expression in hematopoietic progenitor cells. Considering also the sequence homology between the human AC133 antigen and mouse prominin (8, 9), the present results strongly suggest that
the AC133 antigen is the human orthologue of prominin rather than a distinct member of the prominin family. Following a suggestion of the HUGO Nomenclature Committee, we propose to refer to the AC133 antigen as "prominin (mouse)-like 1" (PROML1) until completion of the sequencing of the human genome; should the latter fail to reveal the existence of a human open reading frame more closely related to mouse prominin than the human AC133 antigen, the latter should be called prominin like its mouse orthologue.

The presence of mRNA for the AC133 antigen/PROML1 in adult colon is in contrast to the lack of AC133 immunoreactivity in this tissue reported previously (7). This discrepancy may be explained by the fact that mAb AC133 binds to a glycosylation-dependent epitope (7) and that processing of asparagine-linked oligosaccharides has been reported to change upon differenti-
vation of HT-29 cells (26), a model cell line to study enterocytic differentiation (18). Our results with Caco-2 cells, showing a decrease of AC133 immunoreactivity, but not of the mRNA level for the AC133 antigen/PROM1, upon differentiation are consistent with differential glycosylation depending on the state of enterocytic differentiation. Perhaps the more widespread presence of AC133 immunoreactivity in embryonic as compared with adult human epithelia reflects, at least in part, differential glycosylation rather than a variation in protein expression of the AC133 antigen/PROM1. Further investigation of this issue will require the generation of antibodies directed against the AC133 antigen/PROM1 polypeptide.

The likely orthologue relationship between the human AC133 antigen/PROM1 and mouse prominin has important implications for studies addressing the as yet unknown function of this protein. In particular, insight into the molecular basis of prominin’s preference for plasma membrane protrusions, derived from murine models, can now be used to understand human disease caused by mutation of the AC133 antigen/PROM1 gene, as exemplified by that causing retinal degeneration (10).

Acknowledgments—S. M. W. thanks Professor Sir David J. Weatherall for his support.

REFERENCES