
Cholesterol and Alzheimer’s disease

Is there a link?
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Article abstract—The A�-amyloid peptide (A�), the main component of amyloid plaques, is derived by proteolytic
cleavage from the amyloid precursor protein (APP). Epidemiologic and biochemical data suggest a link between choles-
terol, APP processing, A�, and Alzheimer’s disease. Two recent epidemiologic studies indicate that there is a decreased
prevalence of AD associated with the use of cholesterol-lowering drugs that inhibit 3-hydroxy-3-methylglutaryl coenzyme
A reductase (HMG-CoA reductase inhibitors or statins). Experiments in cell culture and in vivo demonstrate that
treatment with statins reduces production of A�. The authors discuss how cholesterol might modulate A� deposit
formation. As neurons receive only small amounts of exogenous cholesterol, statins that efficiently cross the blood–brain
barrier may reduce the amount of neuronal cholesterol below a critical level. Decreased neuronal cholesterol levels inhibit
the A�-forming amyloidogenic pathway possibly by removing APP from cholesterol- and sphingolipid-enriched membrane
microdomains. In addition, depletion of cellular cholesterol levels reduces the ability of A� to act as a seed for further fibril
formation. These intriguing relationships raise the hopes that cholesterol-lowering strategies may influence the progres-
sion of AD.
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The amyloid hypothesis. The A�-amyloid pep-
tide (A�) is the main component of senile plaques,
which are the pathologic hallmark of AD. This find-
ing has led to the amyloid hypothesis, which states
that A� triggers a cascade eventually leading to neu-
rodegeneration.1,2 A� occurs in two different forms,
A�40 and A�42, varying in the length at the C ter-
minus. It is the longer A�42 that aggregates more
avidly and is thought to be the most important trig-
ger of the amyloid cascade. Considerable experimen-
tal support for this hypothesis comes from genetic
data of the small fraction of autosomal dominant
inherited forms of AD, as disease-linked mutations
in the genes of amyloid precursor protein (APP), pre-
senilin 1, and presenilin 2 all result in increased
production of A�42.3 The cellular events that lead to
A� production are well known. A� is part of APP, a
transmembrane protein containing a large
N-terminal ectodomain and a small C-terminal cyto-
plasmic tail. During intracellular transport, APP un-
dergoes a series of proteolytic cleavages that lead to
the release of either amyloidogenic A� or �APPsec,
the secreted ectodomain of APP.4 Most APP is
cleaved by �-secretase within the A� domain to re-
lease �APPsec. A� is produced in two sequential
steps from APP, which has escaped processing at the
� site. There, the first cleavage occurs in the luminal

domain by �-secretase, a newly identified aspartyl
protease (BACE 1) that leaves behind a membrane-
bound C-terminal fragment of 10 kD.5 This � stub is
the substrate of �-secretase, which appears to be a
multiprotein complex containing at least presenilin
1, presenilin 2, and nicastrin.6 Processing within the
� stub occurs at different sites to generate A� species
of either 40, 42, or 43 amino acids in length. Physio-
logically, these secreted amyloid peptides are cleared
from the extracellular space. However, in the case of
AD when A�42 production is increased, clearance is
not complete and amyloid fibrils start to form. These
A�42 deposits are thought to serve as seeds that
trigger the formation of senile plaques,7 which is bal-
anced by factors that influence the clearance/deposi-
tion of A�. The apolipoprotein apoE is believed to be
such a factor.

Cholesterol metabolism in the brain. In intesti-
nal epithelial cells, dietary cholesterol is incorpo-
rated into chylomicrons. They are transported to the
liver, where they are taken up as chylomicron rem-
nants by receptor-mediated endocytosis. The liver re-
leases this cholesterol in the form of very-low-density
lipoproteins that contain three apolipoproteins (E, C,
and B100), which subsequently are transformed to
low-density lipoproteins (LDL) with mainly apoli-
poprotein B100 as their coat protein. Those LDL par-
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ticles are the major source of cholesterol for most
cells of the body. However, cells are also able to
produce cholesterol by de novo synthesis in the endo-
plasmic reticulum. Excess cholesterol is stored as
esterified cholesterol in lipid droplets within the cell
or removed by high-density lipoproteins (HDL). By
these four mechanisms (LDL uptake, de novo syn-
thesis, cholesterol esterification, and HDL efflux),
cells manage to keep cholesterol levels in their mem-
branes fairly constant. This process is tightly regu-
lated and involves transcription factors called sterol
regulatory element-binding proteins (SREBP). The
activity of SREBP is controlled by the SREBP
cleavage-activating protein (SCAP) that contains
sterol-sensing domains. When cholesterol levels are
low, SREBP are activated by SCAP and in turn acti-
vate genes that control LDL internalization, de novo
synthesis, and cholesterol esterification.8

Although cholesterol homeostasis has been stud-
ied in detail in peripheral cells, relatively little is
known about cholesterol metabolism in the brain,
the organ richest in cholesterol.9 As the brain is lo-
cated behind the blood–brain barrier, it does not
compete for circulating plasma lipoproteins. Indeed,
the CSF has a distinct spectrum of lipoproteins as
compared with that of plasma.10,11 Human CSF li-
poproteins exist as two major classes, the apolipopro-
teins apoE and apoAI, which form particles that
resemble HDL.12 Apolipoprotein B100, which is in-
volved in transport of exogenous cholesterol to cells
by LDL particles, is very low in the CSF. Influx and
efflux of cholesterol in brain cells must therefore fol-
low different rules. Early work indeed suggested that
cholesterol is synthesized locally in the brain and
only a little is taken up from the plasma (figure 1).13

For oligodendrocytes, cells that, owing to their pro-
duction of the myelin membrane, contain a tremen-
dous amount of cholesterol, there is also evidence that
cholesterol is derived from de novo synthesis.14 Re-
moval of brain cholesterol may not occur via lipopro-
teins but by conversion to 24-hydroxycholesterol, a
compound that passes the blood–brain barrier.15

Apolipoproteins present in the brain thus do not
seem to play a major role in lipid transfer from and
to the brain but most likely exert their function by
redistributing cholesterol within the brain.16 After
nerve injury, apoE production, for example, is in-
duced in astrocytes from where it is delivered to
sprouting axons and remyelination glial cells as
apoE–lipid complexes. In the brain, apoE could be
involved in transfer of cholesterol from regions high
in cholesterol to regions low in cholesterol.16

The fact that cellular cholesterol levels are so
tightly regulated raises the question of the function
of cholesterol in membranes. It has been long known
that cholesterol regulates important physical proper-
ties of the cell membrane. Cholesterol enhances the
rigidity of the membrane and makes it therefore less
permeable for small water-soluble molecules. Recent

advances showing that cholesterol plays an impor-
tant role in membrane compartmentalization now
extend the function of cholesterol.17 It also is an es-
sential component of lipid rafts, lateral assemblies of
cholesterol and sphingolipids in the exoplasmic leaf-
let of the bilayer.17 The formation of these microdo-
mains is thought to occur by self-association of
sphingolipids via their long saturated hydrocarbon
chains. Cholesterol condenses this packing by posi-
tioning between these hydrocarbon chains below the
large head groups of the sphingolipids. These inter-
actions lead to the formation of a less fluid, liquid-
ordered phase, separate from a phosphatidylcholine-
rich liquid-disordered phase. Lipid rafts are small,
about 50 nm in size, and float in the exoplasmic part
of the fluid membrane.18 Only when the amounts of
cholesterol and sphingolipids continuously increase,
as in the case of myelin in oligodendrocytes, may
lipid rafts become the dominating lipid phase.19 Rafts
function by separating and condensing molecules,
such that they can exert their function in concert.
Signal transduction and generation of membrane po-
larity are examples of processes that involve the in-
terplay of molecules within lipid rafts.17 Cholesterol
not only is an essential component of lipid rafts but
also serves an important role in keeping them in a
functional state.

Cholesterol and AD. There are epidemiologic
data that point to a relationship between cholesterol
and AD. Cross-sectional analyses have described an

Figure 1. Neurons receive cholesterol almost entirely from
in situ synthesis. Only small amounts of neuronal choles-
terol come from uptake from the plasma. Neurons obtain
cholesterol either by de novo synthesis or by transfer of
cholesterol from other cells of the CNS. Statins reduce de
novo synthesis of cholesterol by inhibition of 3-hydroxy-3-
methylglutaryl coenzyme A reductase (HMG-CoA reduc-
tase). This might reduce cholesterol to a critical level in
neuronal cells such that A�-amyloid peptide production
would be affected.
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association of atherosclerosis for which hypercholes-
terinemia is an important risk factor and AD.20 Lon-
gitudinal studies have suggested a relationship
between elevated midlife cholesterol levels and late-
life cognitive impairment or AD.21,22

Two recent retrospective clinical studies indicate
that there is a decreased prevalence of AD associated
with the use of statins to treat hypercholesterolemia.
Those drugs cross the blood–brain barrier efficiently
and reduce de novo cholesterol synthesis by inhibi-
tion of the ubiquitously expressed enzyme 3-hydroxy-
3-methylglutaryl coenzyme A reductase (HMG-CoA
reductase) (see figure 1). One study23 compared the
prevalence of probable AD in groups of patients re-
ceiving HMG-CoA reductase inhibitors with that in
patients receiving medication to treat hypertension
or cardiovascular disease. The investigators found
that the likelihood to develop AD was 60 to 73%
lower in the cohort taking statins.23 Another study24

showed in a case-control analysis that the risk of
dementia is up to 70% lower in patients using statins
compared with patients with untreated hyperlipid-
emia or patients receiving other lipid-lowering drugs
(fibrates, cholestyramine, or nicotinic acid).

In addition, animal studies have revealed an asso-
ciation of amyloid production and cholesterol.
Whereas rabbits and rats fed with a cholesterol-rich
diet have a tendency to accumulate A� in the
brain,25,26 guinea pigs treated with statins have lower
levels of A� in the CSF.27 How can these effects be
explained?

Previous studies have shown that cholesterol mod-
ulates the processing of APP in cultures of rat hip-
pocampal neurons.28 A� production and secretion
were dramatically reduced when cellular cholesterol
levels were reduced by inhibiting de novo synthesis
with statins alone or in combination with the
cholesterol-extracting agent methyl-�-cyclodextrin.27-30

Cholesterol depletion also led to a marked reduction of
the C-terminal � stub, suggesting that �-secretase
cleavage depended on cholesterol.28 In contrast, secre-
tion of the APP ectodomain generated by the nonamy-
loidogenic �-secretase pathway was shown to
increase.30 Thus, cholesterol depletion seems to inhibit
the amyloidogenic (�- and �-secretase) pathway while
stimulating the nonamyloidogenic (�-secretase) path-
way. What is the reason for the cholesterol dependence
of � cleavage? In neurons, a small but substantial frac-
tion of APP (approximately 5%) is turned into amyloi-
dogenic A�, whereas the majority is cleaved by
�-secretase to release �APPsec.31 Several studies have
shown that a small fraction of APP in neurons is asso-
ciated with lipid rafts.28,32,33 This finding was based on
the presence of APP in detergent-resistant membranes.
Interestingly, cholesterol depletion not only reduced
A� secretion but also decreased to a similar extent
the association of APP with detergent-resistant
membranes.28 This and the observation that A� di-
rectly associates with a lipid raft fraction derived

from brain tissue led us to hypothesize that the amy-
loidogenic processing of APP occurs within rafts,
whereas nonamyloidogenic � cleavage takes place
outside rafts (figure 2).28,32 This compartmentaliza-
tion would also explain the mutual exclusion of �
and � cleavage.

Interestingly, A� within rafts seems to promote
fibrillogenesis of soluble A�. A recent study34 sug-
gested that A� associated with cholesterol-rich mem-
branes adopts a different conformation, acting as a
“seed” for amyloid formation. Depletion of cellular
cholesterol reduced the seeding properties of A�.
How rafts change the conformation of A� is not
known. However, the ganglioside GM1, a raft lipid,
is known to bind to A� and thereby might change its
secondary structure.35-37

Caveolae, which are considered to be a specific
form of raft, are involved in cholesterol-dependent
regulation of specific signal transduction pathways.
Interestingly, statins reduce inflammatory response
by inhibiting the induction of inducible nitric oxide
synthase, an enzyme that localizes to caveolae.38,39

Reducing brain inflammatory responses may be im-
portant in AD where immune cells are activated.

Figure 2. A model of the compartmentalization of amyloi-
dogenic (� cleavage) and nonamyloidogenic (� cleavage) of
amyloid precursor protein (APP).Nonamyloidogenic pro-
cessing of APP involves cleavage by �-secretase within the
A�-amyloid peptide (A�) domain to release �APPsec. Low
cholesterol stimulates the nonamyloidogenic pathway.
�-Secretase might therefore require a membrane domain,
which is poor in cholesterol. Generation of A� (amyloido-
genic processing) occurs in two sequential steps: cleavage
by �-secretase and �-secretase. �-Secretase cleavage, in
contrast, requires cholesterol and might therefore occur in
cholesterol-rich membrane domains. The content of choles-
terol in the membrane is shown in black in the figure.
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Furthermore, cholesterol may also exert indirect
effects via the allele �4 of APOE, a susceptibility
gene of AD.40 Several hypotheses for the role of apoE
have been put forward: for example, increased A�
fibrillogenesis, decreased A� clearance, and de-
creased neuronal repair for APOE4 compared with
APOE2 and APOE3.41 However, it is also possible
that apoE contributes to the pathology of AD by ef-
fects on lipid metabolism.42 Indeed, the APOE4 allele
is associated with higher cholesterol levels.43 Fur-
thermore, a recent study has shown that apoE4 pro-
motes the efflux of cholesterol from neurons less
efficiently than apoE2 and apoE3.44 We propose,
therefore, that apoE could also be involved in regu-
lating the cholesterol supply to neurons that gener-
ate A�. The increased risk to develop AD in patients
carrying the APOE4 allele could thus be explained
by the associated higher cholesterol levels that
would allow more A� to be produced.

The different possibilities of how lowering choles-
terol levels might influence AD can now be challenged
experimentally. For patients with AD, double-blind
prospective placebo-controlled clinical trials with
statins will be of importance. These are on their way
and will, it is hoped, be beneficial for patients with AD.
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Neuro Images

Microvascular decompression for
trigeminal neuralgia

Rafael Allende, MD, Sandeep Teja, MD,
Cargill H. Alleyne, Jr., MD, Rochester, NY

A 58-year-old woman presented with sharp, lancinating
pain in the V2 distribution unresponsive to carbamaz-
epine. Her neurologic examination and an MRI were unre-
markable. The patient underwent a posterior fossa
craniectomy for microvascular decompression (MVD)
where a loop of the anterior inferior cerebellar artery was

noted to compress the trigeminal nerve. Her symptoms
resolved postoperatively. Trigeminal neuralgia most com-
monly affects the V2 and V3 branches. Microvascular de-
compression has an initial success rate of 85 to 95% with a
recurrence rate of 20% and 30%, at 6 and 10 years.1,2 There
is no sensory loss associated with MVD.

1. Janetta PJ. Trigeminal neuralgia: treatment by microvascular decom-
pression. In: Wilkins RH, Rengachary SS, eds. Neurosurgery, vol III.
New York: McGraw-Hill, 1996:3961–3968.

2. Barker FG, Jannetta PJ, Bissonette DJ, Larkins MV, Jho HD. The
long-term outcome of microvascular decompression for trigeminal neu-
ralgia. N Engl J Med 1996;334:1077–1083.

Figure. Posterior view of left cerebellopontine angle showing loop (L) of the anterior inferior cerebellar artery separated
from groove (G) in the trigeminal nerve by a Teflon sponge (Boston Scientific, Medox Medical Industries, Oakland, NJ)
(S). Note the seventh and eighth nerve complex (7) (superior and inferior vestibular nerves hiding facial and acoustic
nerves) and sixth nerve (6).
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