Non-canonical Wnt signalling and regulation of gastrulation movements

Masazumi Tadaa,*, Miguel L. Conchaa,b,* and Carl-Philipp Heisenbergc,*

Introduction

The basic body plan of vertebrate embryos is established during gastrulation by a series of co-ordinated movements of cell groups that give rise to the three germ layers—ectoderm, mesoderm and endoderm—and overtly shape the embryonic axis. One such movement is convergent extension, a process that has been best characterised in amphibians and teleosts. During convergent extension, cells of the mesoderm and ectoderm accumulate on the dorsal side of the gastrula by means of highly directed and integrated movements. This results in both medio–lateral narrowing (convergence) and anterior–posterior elongation (extension) of tissues to create the embryonic axis1–4 (Figure 1(A)).

In recent years, members of the Wnt family of secreted glycoproteins have been implicated in the regulation of morphogenesis during gastrulation3 and the signalling pathways through which these Wnt signalling molecules act are now beginning to be uncovered. It appears that the Wg/Wnt signalling pathway used for establishment of epithelial planar cell polarity (PCP) in Drosophila— the process by which epithelial cells within the eye, wing and thorax become polarised along the surface plane of these tissues4–6—also plays an important role in regulating convergent extension movements in both zebrafish and Xenopus.

The zebrafish has developed over the last two decades into an important model organism to study multiple aspects of vertebrate development. Zebrafish embryos combine several features that are ideal for a cellular and genetic analysis of early developmental processes. They develop \textit{ex utero} into transparent embryos that are easily accessible for experimental manipulations such as cell and tissue transplantsations. Moreover, large-scale genetic screens have generated a wide selection of mutant lines exhibiting defects in many different developmental processes. More recently, molecular and genetic tools have been developed which allow targeted knock-down of gene function by the application of morpholino antisense oligonucleotides7 and the generation of transgenic lines.

In this review we will focus on recent studies in zebrafish—and to a lesser extent in \textit{Xenopus}—that suggest a role for non-canonical Wnt-signalling in regulating morphogenetic movements during vertebrate gastrulation.

Cellular mechanisms underlying convergent extension in zebrafish and \textit{Xenopus}

The cellular mechanisms underlying convergent extension have been extensively studied in the posterior mesoderm (notochord and somites) and...
Figure 1. Convergent extension in zebrafish. (A) Schematics of dorsal views of zebrafish embryos at 70% epiboly (left) and tailbud stages (right). Convergent extension of the mesoderm and ectoderm results from both medio-lateral narrowing (convergence, black arrows) and anterior-posterior elongation (extension, white arrows) of the embryonic axis. Mesodermal domains of expression of \textit{wnt11} in the anterior paraxial mesoderm (apm), and \textit{wnt5a} in the posterior paraxial mesoderm (ppm), are shown. Abbreviations: not (notochord), ppl (prechordal plate). (B) Cellular basis of convergent extension of posterior tissues. Cells within the mesoderm and neural plate elongate along the medio-lateral axis while undergoing medio-lateral cell intercalation (left, arrows). This in turn leads to extension of embryonic tissues (right). Although the cell activities responsible for medio-lateral cell intercalation have not been analysed in detail in zebrafish, it is likely that they involve medio-laterally aligned protrusive activities similar to those described for \textit{Xenopus}. See Reference 2.

neuroectoderm (spinal cord and hindbrain) of \textit{Xenopus} embryos.1,2 In these tissues, convergent extension is driven by tissue-autonomous activities that lead cells to become highly aligned along the major embryonic axes and which are integrated over time and space to generate forces that ultimately shape the entire gastrula. Within the mesoderm, cells predominantly develop a mode of bipolar medio-laterally oriented protrusive activity that results in medio-lateral cell intercalation8 (Figure 1(B)). This in turn leads to extension of the mesoderm along the anterior-posterior and to some degree also thickening along the superficial to deep axes. Within the neural plate, the most prominent cell behaviour underlying convergent extension involves monopolar lateral to medial directed protrusive activity that depends on vertical signalling from the underlying mesoderm9 and which also results in medio-lateral cell intercalation and elongation of the neural plate along the anterior-posterior axis.10 Such aligned cell behaviours likely require reorganization of the cytoskeleton and modulation of cell adhesion but these issues have yet to be fully analysed.

Several observations suggest that the mechanisms of convergent extension in zebrafish are similar to those in \textit{Xenopus}. The ability of tissues that undergo convergent extension movements to exhibit autonomous elongation when explanted11 and to deform the yolk cell12 indicates that this process is force generating in zebrafish as in frogs. Furthermore, the patterns of cell behaviours observed in the posterior mesoderm and neuroectoderm of zebrafish suggest that medio-lateral cell intercalation also contributes to convergent extension movements. Epiblast cells, for example, elongate along the medio-lateral axis while displaying autonomous protrusive activities.13 This behaviour is contemporaneous with medio-lateral cell intercalation and anterior-posterior extension of the neural plate.13-15 In the mesoderm, cells also become elongated along the medio-lateral axis.16
Non-canonical Wnt signal and gastrulation movements

while undergoing medio–lateral cell intercalation.14 However, whether this pattern of cell elongation is a consequence of oriented protrusive activity is still unclear. Taken together, these observations suggest that convergent extension of the posterior mesoderm and neural plate makes use of a similar set of cell behaviours in both zebrafish and \textit{Xenopus} although some variations are likely due to the dissimilar phylogenetic histories of these two species.

One aspect still unexplored in zebrafish is the extent to which mechanisms of convergent extension described for posterior tissues also operate for the anterior mesoderm (prechordal plate and anterior paraxial mesoderm) and neural plate (midbrain and forebrain). The observation that expression domains of different Wnt ligands implicated in convergent extension (e.g. \textit{wnt11}17 and \textit{wnt5a}18) and other molecules (e.g. \textit{papc}19) define anterior and posterior domains within the mesoderm of zebrafish gives a first indication that convergent extension in these two domains might differ (Figure 1(A)). Ongoing in vivo analyses of cell behaviour in zebrafish show that anterior axial and paraxial mesodermal cells seem not to undergo the classical medio–lateral cell intercalation behaviour described for posterior tissues, but instead exhibit a behaviour more typical of cells with directed migration on a substrate (MLC, MT, CPH, Steve Wilson, Richard Adams, unpublished observations) such as those described for the anterior migration of the prechordal plate in \textit{Xenopus}20. Whether this difference in cell behaviour is reflected at the molecular level is still unclear and further analyses will be needed to corroborate this hypothesis.

Zebrafish mutants exhibiting defective convergent extension movements

Several zebrafish mutants exhibit reduced convergent extension movements without major patterning defects of the gastrula (Table 1). The \textit{silberblick} (\textit{slb}) mutant shows a transiently shortened and broadened body axis at the end of gastrulation followed by a slight fusion of the eyes at later developmental stages21,22. In contrast, \textit{pipetail} (\textit{ppt}), \textit{knypek} (\textit{kny}) and \textit{trilobite} (\textit{tri}) mutant embryos exhibit a shortened body axis from late gastrulation stages onwards while the position of the eyes is only mildly affected23,24.

Clothing of the \textit{slb}, \textit{ppt} and \textit{kny} loci has revealed that they all encode components associated with a Wnt signalling pathway. It was observed that \textit{slb}/\textit{wnt11} and \textit{ppt}/\textit{wnt5a} encode Wnt ligands17,18 while \textit{kny} encodes a member of the glypican family of heparan sulphate proteoglycans, proteins implicated in Wg/Wnt signal reception/transduction.16 Positional cloning of the \textit{tri} locus is well underway (Solnica-Krezel, personal communication) and it will be interesting to see whether it also encodes a component or modulator of the Wnt signalling cascade since \textit{tri} genetically interacts with \textit{kny} in regulating convergent extension.25

Mutations in other components of the Wnt signalling pathway have been identified in zebrafish but these primarily show defects in patterning rather than morphogenesis26–28 (Table 1). It is therefore thought that these genes act in the canonical intracellular Wnt signalling cascade that may be relatively independent of the cascade regulating convergence extension.

| Table 1. Mutations in genes encoding components of the canonical and non-canonical Wnt signals in zebrafish |

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Gene product</th>
<th>Molecular role</th>
<th>Phenotype</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canonical pathway</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textit{wnt8}</td>
<td>Wnt8</td>
<td>Wnt ligand</td>
<td>Reduced posterior and ventral structures</td>
<td>28</td>
</tr>
<tr>
<td>\textit{masterblind}</td>
<td>Axin1</td>
<td>Intracellular scaffolding protein</td>
<td>No eyes and telencephalon</td>
<td>27</td>
</tr>
<tr>
<td>\textit{handless}</td>
<td>Tr4b</td>
<td>Transcription co-factor</td>
<td>No forebrain</td>
<td>26</td>
</tr>
<tr>
<td>Non-canonical pathway</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textit{silberblick}</td>
<td>\textit{wnt11}</td>
<td>Wnt ligand</td>
<td>Weakly reduced CE (gastrula stage)</td>
<td>17</td>
</tr>
<tr>
<td>\textit{pipetail}</td>
<td>\textit{wnt5a}</td>
<td>Wnt ligand</td>
<td>Weakly reduced CE (somitogenesis stage)</td>
<td>18</td>
</tr>
<tr>
<td>\textit{knypek}</td>
<td>Glypican6</td>
<td>Wnt co-receptor?</td>
<td>Strongly reduced CE</td>
<td>16</td>
</tr>
<tr>
<td>\textit{trilobite}</td>
<td>?</td>
<td>?</td>
<td>Strongly reduced CE</td>
<td>23, 24</td>
</tr>
</tbody>
</table>

Notes: CE refers to convergent extension. Citations are selective and more details are given in the text.
Identification of *silberblick* (*slb*) as a component of the Wnt/PCP pathway

It was originally identified as a mutant affecting eye/forebrain development. More detailed analysis, however, showed that the eye/forebrain phenotype is preceded by a reduced elongation of the body axis during gastrulation. The *slb* locus encodes *wnt11*, a gene initially expressed in the dorsal region of the germ ring at sphere/dome stage (4–5 hpf). Through the course of gastrulation, *wnt11* expression expands to the lateral and ventral germ ring while becoming downregulated within the shield and its axial derivatives. In addition to the germ ring, *wnt11* is expressed in restricted domains within the anterior paraxial mesoderm and anterior lateral neuroectoderm by the end of gastrulation.

The phenotypic characterisation of *slb* mutant embryos has provided some initial insights into the potential genetic and cellular mechanisms of Slb function. Cell-labelling and tracking experiments have shown that the shortened body length of *slb* mutants is due to reduced cell intercalations along the medio-lateral axis during gastrulation (Figure 2). Through cell- and tissue-transplantation experiments, it has been demonstrated that Slb acts cell-non-autonomously and that its function within paraxial tissues is sufficient to drive normal convergent extension movements of axial and paraxial tissues (Figure 3).

In *Drosophila*, establishment of epithelial PCP depends on a non-canonical Wg/Wnt-signalling cascade involving small GTPases (RhoA, Rac and Cdc42) and the Jun-N-terminal-kinase (JNK) cascade. Various truncated forms of the Dsh protein, a downstream
Figure 3. A model for the non-canonical Wnt/PCP pathway regulating convergent extension during zebrafish/Xenopus gastrulation. The secreted ligands, Wnt11/Slb and Wnt5a/Ppt, bind to the receptor Frizzled-7, an interaction possibly facilitated by the GPI-anchored proteoglycan Kny. This leads to translocation of Dsh to the membrane. The PDZ and DEP domains of Dsh are responsible for the specific activation of the PCP/convergent extension pathway, but not of the canonical pathway, through mediation of the activity of members of the Rho family of small GTPases. RhoA, which is linked by Daam1 with Dsh, activates an effector Rok that in turn directly regulates the actin cytoskeleton. Alternatively or additionally, Dsh-mediated activation of Cdk42 signals to JNK that in turn regulates transcription of target genes. These two branches potentially collaborate to mediate convergent extension during zebrafish/Xenopus gastrulation. (see also text). The Wnt/Ca\(^{2+}\) pathway is not shown.

Several other loci/genes are known to genetically interact with slb/wnt11 in the regulation of convergent extension movements. The ppt/wnt5a mutant embryos display mild defects in convergent extension movements of the posterior body axis.18 However, embryos mutant for both slb/wnt11 and ppt/wnt5a show a strong reduction in convergent extension suggesting that Ppt/Wnt5a and Slb/Wnt11 have partially overlapping functions (CPH, MT, unpublished observations). This notion is also supported by previous studies in Xenopus showing that Wnt5, like Wnt11, can signal through a non-canonical Wnt-pathway to influence convergent extension movements during gastrulation.33–35 Given the observed genetic interaction, it is surprising that zebrafish wnt11 and wnt5a are expressed in largely non-overlapping domains (anterior versus posterior; also see Figure 1(A)), suggesting that they possess some far-reaching cell-non-autonomous activity during gastrulation.

In kny mutant embryos, convergent extension movements of the posterior body axis are strongly reduced.24 The kny locus encodes a member of the glypican family of heparan sulphate proteoglycans16 and embryos mutant for both slb and kny display an additive phenotype compared to either single mutant. This indicates that Slb/Wnt11 and Kny act in the same or parallel pathways. Furthermore, the ability of Slb/Wnt11 to rescue the slb phenotype can be enhanced by co-injection of kny suggesting that Kny can interact with the Slb/Wnt11 signal transduction cascade.25 Similar to the Drosophila Dally (dly) and...
Dally-like (dll), Kny could be involved in Wg/Wnt signal reception and/or extracellular distribution of Wnt proteins. It is therefore conceivable that Kny enhances Sbh/Wnt11 signalling by directly localising the ligand to the cell surface, thereby facilitating receptor–ligand interaction. Considering the fact that the kny mutation does not affect canonical Wnt signalling during zebrafish gastrulation, it is possible that Kny determines the preference of a cell to activate the Wnt/PCP pathway in response to Wnt11/Slb. Kny might thereby act in a similar way to LDL-receptor related proteins (LRPs) which facilitate Wnt signalling via the canonical pathway.

Studies in Xenopus have identified Frizzled 7 (Fz7) as a potential receptor for Wnt11. Fz7 can bind directly to Wnt11 and both constitutively active and dominant negative forms of Fz7 interfere with normal convergent extension movements. Similarly, inactivation of Fz7 by morpholino antisense oligonucleotides leads to reduced convergent extension movements and a failure of tissue separation during involution of prospective mesendodermal cells. Fz7 is also expressed in largely overlapping domains with wnt11, which provides further evidence that Fz7 might indeed act as a Wnt11 receptor. Similar to Fz7, Fz2 may act as a receptor for Wnt5a since injection of fz2 morpholinos into zebrafish embryos results in a phenotype reminiscent of ppk/wnt5a.

Intracellular mediators of Sbh/Wnt11

What are the potential components of the signalling cascade downstream of Sbh/Wnt11/Fz7? Strong candidates are members of the family of small GTPases such as RhoA, Rac and Cdc42 that are considered to be direct regulators of cytoskeletal architecture. In the establishment of PCP within the Drosophila eye, rhoA genetically interacts with fz1 and dsh and acts downstream of these genes. Similarly in Xenopus, Wnt11/Fz7 signalling activates rhoA during gastrulation and Cdc42 may mediate the function of Wnt11/Fz7 in cells undergoing convergent extension.

Most recently, Daam1 has been identified as a key factor linking Dsh to the small GTPase RhoA. Daam1 can bind to Dsh and also directly to RhoA thereby mediating Wnt-induced Dsh/RhoA complex formation. Daam1 function is required for RhoA activation and gastrulation movements in Xenopus embryos, while defective morphogenetic movements caused by loss of Wnt11, Fz7 or Dsh activity are rescued by an active form of Daam1. These observations provide strong evidence that Daam1 functions downstream of Wnt11/Fz7.

In Drosophila, RhoA-associated kinase (Dock), a RhoA effector links Fz-mediated PCP signalling directly to the rearrangement of the actin cytoskeleton. Similarly in zebrafish, inhibition of Rok2 function by use of a dominant-negative version of Rok2 causes reduced convergent extension movements, while over-expression of rok2 can rescue the sbl/wnt11 mutant phenotype (Lila Solnica-Krezel, personal communication). This suggests that Rok2 acts downstream of Wnt11 to influence the actin cytoskeleton during gastrulation.

One of the remaining questions is whether the Wnt/PCP pathway transcriptionally regulates target genes that influence cytoskeletal rearrangements. In the Drosophila eye, the small GTPases Rac and RhoA act downstream of Fz/Dsh and signal via MAP kinase effectors such as Midshapen (Msn) through to the JNK cascade. In turn this cascade activates transcriptional targets, such as delta, involved in the establishment of PCP. There is mounting evidence that transcriptional targets are also required for Wnt/PCP signalling during vertebrate gastrulation. First, Dsh can activate JNK in cultured cells and this activation is at least in part mediated by Cdc42. Third, modulators of Dsh function including Naked cuticle (Nkd), casein kinase I (CKI) and Strabismus/Van Gogh (Stbm/Yang) are able to affect convergent extension cell behaviours as well as to activate JNK. However, as yet there is no direct evidence that the Wnt/PCP pathway requires transcriptional targets to regulate convergent extension movements in vertebrates. Although XFz8 has the capacity to activate JNK and a dominant-negative XFz8 can modulate convergent extension in Xenopus embryos, this Fz-mediated activation of JNK occurs in a Dsh-independent manner and is closely associated with inducing apoptosis rather than regulating convergent extension. This argues that the activation of JNK might be uncoupled from the output of the Wnt/PCP pathway that regulates cell polarity. The only currently known potential transcriptional target for the Sbh/Wnt11 pathway in regulating convergent extension is wnt11 itself since wnt11 expression is down-regulated in sbl embryos. The identification of further transcriptional targets is needed to clarify the role of transcription in Wnt/PCP signalling during vertebrate gastrulation.
Involvement of other PCP-specific genes in the regulation of convergent extension

A fundamental and unresolved question regarding both the establishment of PCP in flies and the generation of convergent extension movements in vertebrates is how cells interact with one another in order to coordinate the response to a polarizing signal within a large population of cells. Genes shown to function cell-non-autonomously in the establishment of PCP in *Drosophila* are *fz*, *flamingo* (*fmi*) and *stbm/vang* (reviewed in Reference 4). A cadherin-related molecule is encoded by *fmi* that plays a pivotal role in establishing PCP in part by mediating cell adhesion with surrounding cells. In *Drosophila*, membrane localisation of Dsh is thought to be one of the key processes in the establishment of PCP, presumably leading to the formation of a functional signalling complex, including Fmi, Fz and Diego.65–68

The *stbm/vang* gene encodes a novel four-pass membrane protein with a putative C-terminal PDZ-binding motif and cell-non-autonomously affects polarity of adjacent cells in the *Drosophila* wing disc.69–70 A recent analysis has revealed that a vertebrate homologue of *stbm/vang* regulates convergent extension in *Xenopus* and zebrafish.71 The mode of action of Stbm/Vang in the regulation of convergent extension is still unclear, but might in part be explained by the ability of Stbm/Vang to bind and recruit Dsh to the membrane thereby facilitating the activation of JNK.

Further studies on the function of vertebrate homologues of other *Drosophila* PCP-specific genes will be needed to better understand the mechanisms by which these genes regulate convergent extension in vertebrate gastrulation.

Involvement of Wnt/Ca\(^{2+}\) pathway in regulating convergent extension

Several lines of evidence suggest that a further branch of the Wnt pathway that modulates intracellular Ca\(^{2+}\) levels could be involved in regulating convergent extension movements. Wnt5a is capable of stimulating intracellular Ca\(^{2+}\) release in combination with Fz2 in a G-protein coupled manner71 and can thereby activate Ca\(^{2+}\)-sensitive enzymes including Ca\(^{2+}\)/calmodulin-dependent protein kinase II (CamKII) and protein kinase C (PKC).72–74 Interestingly, interfering with Fz7 function leads to defective separation of mesodermal and ectodermal germ layers in *Xenopus* gastrula embryos, and this function appears to be mediated by PKC in a G-protein-dependent manner.75 This indicates that Fz7 may regulate the adhesive properties of tissues during gastrulation through the activation of Ca\(^{2+}\) signalling.

There is, as yet, no direct genetic evidence that the Wnt/Ca\(^{2+}\) pathway is directly involved in regulating convergent extension in zebrafish gastrula embryos. Validation of a role for Ca\(^{2+}\) signalling will require the identification of mutant loci encoding intracellular mediators of the Wnt/Ca\(^{2+}\) pathway that exhibit defective convergent extension movements. It will also be of interest to test whether intracellular Ca\(^{2+}\) signalling is altered in *slt/wnt11* or *ppt/wnt5a* mutant embryos.

In addition to intracellular Ca\(^{2+}\) signals, recent reports suggest that, at least in *Xenopus*, intracellular Ca\(^{2+}\) signals could play an important role in the co-ordination of individual cell behaviour within tissues undergoing convergent extension movements.75, 76 Calcium waves are generated within the dorsal tissues of gastrula embryos at some frequency and propagated to surrounding cells over long distances. This dynamic event is closely associated with the generation of convergent extension within the dorsal tissue. It is likely that Wnt signals are involved in the regulation of some aspects of these Ca\(^{2+}\) waves as their frequency is reduced through over-expression of a dominant-negative form of xjak8 which strongly inhibits both canonical and non-canonical Wnt signalling.77 Further experiments are required to elucidate the mechanisms that underlie intracellular Ca\(^{2+}\) signals in relation to non-canonical Wnt/PCP signals. These may lead us to a better understanding of how the Wnt/PCP signals co-ordinate convergent extension movements in large populations of cells.

Perspective

Genetic evidence in zebrafish, together with functional analyses in *Xenopus*, strongly support the notion that there are similarities between the Wnt/Wg signalling pathways controlling gastrulation movements in zebrafish/*Xenopus* and those controlling PCP in *Drosophila*. However, despite the similarities between these signalling pathways, there are also significant differences both molecular and also with respect to cellular contexts and outcomes. For instance, in *Drosophila* PCP signalling no ligand for the Fz receptor has yet been identified while in zebrafish and *Xenopus* it is clear that both Wnt11 and Wnt5a constitute central components of the pathway regulating gastrulation movements. Furthermore, while PCP is
References

258
Non-canonical Wnt signal and gastrulation movements

