Machine learning methods for genomic high-content screen data analysis applied to deduce organization of endocytic network.

Authors Kseniia Nikitina
Advisors
University Technische Universität Dresden
Examination Date 2021-03-04
Open Access true
Print Publication Date 2021-03-04
Online Publication Date
Abstract High-content screens are widely used to get insight on mechanistic organization of biological systems. Chemical and/or genomic interferences are used to modulate molecular machinery, then light microscopy and quantitative image analysis yield a large number of parameters describing phenotype. However, extracting functional information from such high-content datasets (e.g. links between cellular processes or functions of unknown genes) remains challenging. This work is devoted to the analysis of a multi-parametric image-based genomic screen of endocytosis, the process whereby cells uptake cargoes (signals and nutrients) and distribute them into different subcellular compartments. The complexity of the quantitative endocytic data was approached using different Machine Learning techniques, namely, Clustering methods, Bayesian networks, Principal and Independent component analysis, Artificial neural networks. The main goal of such an analysis is to predict possible modes of action of screened genes and also to find candidate genes that can be involved in a process of interest. The degree of freedom for the multidimensional phenotypic space was identified using the data distributions, and then the high-content data were deconvolved into separate signals from different cellular modules. Some of those basic signals (phenotypic traits) were straightforward to interpret in terms of known molecular processes; the other components gave insight into interesting directions for further research. The phenotypic profile of perturbation of individual genes are sparse in coordinates of the basic signals, and, therefore, intrinsically suggest their functional roles in cellular processes. Being a very fundamental process, endocytosis is specifically modulated by a variety of different pathways in the cell; therefore, endocytic phenotyping can be used for analysis of non-endocytic modules in the cell. Proposed approach can be also generalized for analysis of other high-content screens.
Cover Image
Affiliated With Zerial
Selected By
Acknowledged Services
Publication Status Published
Edoc Link
Sfx Link
DOI
PubMed ID
WebOfScience Link
Alternative Full Text URL https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-864593
Display Publisher Download Only false
Visible On MPI-CBG Website false
PDF Downloadable true
Created By herbst
Added Date 2022-01-06
Last Edited By thuem
Last Edited Date 2023-08-07 14:16:26.05
Library ID 8253
Document ID
Entry Complete true
eDoc Compliant true
Include in Edoc Report true
In Pure true
Ready for eDoc Export false
Author Affiliations Complete false
Project Name
Project URL
Grant ID
Funding Programme
Funding Organisation