Akiko Nakamura✳︎, Yan Fung Wong✳︎, Andrea Venturato, Magali Michaut, Seshasailam Venkateswaran, Mithun Santra, Carla A C Gonçalves, Michael Larsen, Marit Leuschner, Yung Hae Kim, Joshua Brickman, Mark Bradley, Anne Grapin-Botton
Long-term feeder-free culture of human pancreatic progenitors on fibronectin or matrix-free polymer potentiates β cell differentiation.
Stem Cell Rep, Art. No. doi: 10.1016/j.stemcr.2022.03.013 (2022)
Open Access PubMed Source
With the aim of producing β cells for replacement therapies to treat diabetes, several protocols have been developed to differentiate human pluripotent stem cells to β cells via pancreatic progenitors. While in vivo pancreatic progenitors expand throughout development, the in vitro protocols have been designed to make these cells progress as fast as possible to β cells. Here, we report on a protocol enabling a long-term expansion of human pancreatic progenitors in a defined medium on fibronectin, in the absence of feeder layers. Moreover, through a screening of a polymer library we identify a polymer that can replace fibronectin. Our experiments, comparing expanded progenitors to directly differentiated progenitors, show that the expanded progenitors differentiate more efficiently into glucose-responsive β cells and produce fewer glucagon-expressing cells. The ability to expand progenitors under defined conditions and cryopreserve them will provide flexibility in research and therapeutic production.
@article{Nakamura8338,
author={Akiko Nakamura, Yan Fung Wong, Andrea Venturato, Magali Michaut, Seshasailam Venkateswaran, Mithun Santra, Carla A C Gonçalves, Michael Larsen, Marit Leuschner, Yung Hae Kim, Joshua Brickman, Mark Bradley, Anne Grapin-Botton},
title={Long-term feeder-free culture of human pancreatic progenitors on fibronectin or matrix-free polymer potentiates β cell differentiation.},
journal ={Stem cell reports},
volume={},
pages={null--null},
year=2022
}