Authors | Aryaman Gupta |
---|---|
Advisors | |
University | Technische Universität Dresden |
Examination Date | 2023-06-30 |
Open Access | true |
Print Publication Date | 2023-06-30 |
Online Publication Date | 2023-06-30 |
Abstract | Three-dimensional volume data is routinely produced, at increasingly high spatial resolution, in computer simulations and image acquisition tasks. In-situ visualization, the visualization of an experiment or simulation while it is running, enables new modes of interaction, including simulation steering and experiment control. These can provide the scientist a deeper understanding of the underlying phenomena, but require interactive visualization with smooth viewpoint changes and zooming to convey depth perception and spatial understanding. As the size of the volume data increases, however, it is increasingly challenging to achieve interactive visualization with smooth viewpoint changes. This thesis presents an end-to-end solution for interactive in-situ visualization based on novel extensions proposed to the Volumetric Depth Image (VDI) representation. VDIs are view-dependent, compact representations of volume data than can be rendered faster than the original data. Novel methods are proposed in this thesis for generating VDIs on large data and for rendering them faster. Together, they enable interactive in situ visualization with smooth viewpoint changes and zooming for large volume data. The generation of VDIs involves decomposing the volume rendering integral along rays into segments that store composited color and opacity, forming a representation much smaller than the volume data. This thesis introduces a technique to automatically determine the sensitivity parameter that governs the decomposition of rays, eliminating the need for manual parameter tuning in the generation of a VDI. Further, a method is proposed for sort-last parallel generation and compositing of VDIs on distributed computers, enabling their in situ generation with distributed numerical simulations. A low latency architecture is proposed for the sharing of data and hardware resources with a running simulation. The resulting VDI can be streamed for interactive visualization. A novel raycasting method is proposed for rendering VDIs. Properties of perspective projection are exploited to simplify the intersection of rays with the view-dependent segments contained within the VDI. Spatial smoothness in volume data is leveraged to minimize memory accesses. Benchmarks are performed showing that the method significantly outperforms existing methods for rendering the VDI, and achieves responsive frame rates for High Definition (HD) display resolutions near the viewpoint of generation. Further, a method is proposed to subsample the VDI for preview rendering, maintaining high frame rates even for large viewpoint deviations. The quality and performance of the approach are analyzed on multiple datasets, and the contributions are provided as extensions of established open-source tools. The thesis concludes with a discussion on the strengths, limitations, and future directions for the proposed approach. |
Cover Image | |
Affiliated With | Sbalzarini |
Selected By | |
Acknowledged Services | |
Publication Status | Published |
Edoc Link | |
Sfx Link | |
DOI | |
PubMed ID | |
WebOfScience Link | |
Alternative Full Text URL | https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-889224 |
Display Publisher Download Only | false |
Visible On MPI-CBG Website | true |
PDF Downloadable | true |
Created By | thuem |
Added Date | 2024-07-04 |
Last Edited By | thuem |
Last Edited Date | 2024-08-01 13:51:38.735 |
Library ID | 8751 |
Document ID | |
Entry Complete | true |
eDoc Compliant | true |
Include in Edoc Report | true |
In Pure | false |
Ready for eDoc Export | true |
Author Affiliations Complete | false |
Project Name | |
Project URL | |
Grant ID | |
Funding Programme | |
Funding Organisation |